首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Agricultural soils are important sources of atmospheric N2O and CO2. However, in boreal agro-ecosystems the contribution of the winter season to annual emissions of these gases has rarely been determined. In this study, soil N2O and CO2 fluxes were measured for 6 years in a corn-soybean-wheat rotation in northeast China to quantify the contribution of wintertime N2O and CO2 fluxes to annual emissions. The treatments were chemical fertilizer (NPK), chemical fertilizer plus composted pig manure (NPKOM), and control (Cont.). Mean soil N2O fluxes among all three treatments in the winter (November–March), when soil temperatures are below −7°C for extended periods, were 0.89–3.01 µg N m−2 h−1, and in between the growing season and winter (October and April), when freeze-thaw events occur, 1.73–5.48 µg N m−2 h−1. The cumulative N2O emissions were on average 0.27–1.39, 0.03–0.08 and 0.03–0.11 kg N2ON ha−1 during the growing season, October and April, and winter, respectively. The average contributions of winter N2O efflux to annual emissions were 6.3–12.1%. In all three seasons, the highest N2O emissions occurred in NPKOM, while NPK and Cont. emissions were similar. Cumulative CO2 emissions were 2.73–4.94, 0.13–0.20 and 0.07–0.11 Mg CO2-C ha−1 during growing season, October and April, and winter, respectively. The contribution of winter CO2 to total annual emissions was 2.0–2.4%. Our results indicate that in boreal agricultural systems in northeast China, CO2 and N2O emissions continue throughout the winter.  相似文献   

2.
Ucides cordatus is an abundant mangrove crab in Brazil constructing burrows of up to 2 m depth. Sediment around burrows may oxidize during low tides. This increase in sediment-air contact area may enhance carbon degradation processes. We hypothesized that 1) the sediment CO2 efflux rate is greater with burrows than without and 2) the reduction potential in radial profiles in the sediment surrounding the burrows decreases gradually, until approximating non-bioturbated conditions. Sampling was conducted during the North Brazilian wet season at neap tides. CO2 efflux rates of inhabited burrows and plain sediment were measured with a CO2/H2O gas analyzer connected to a respiration chamber. Sediment redox potential, pH and temperature were measured in the sediment surrounding the burrows at horizontal distances of 2, 5, 8 and 15 cm at four sediment depths (1, 10, 30 and 50 cm) and rH values were calculated. Sediment cores (50 cm length) were taken to measure the same parameters for plain sediment. CO2 efflux rates of plain sediment and individual crab burrows with entrance diameters of 7 cm were 0.7–1.3 µmol m−2 s−1 and 0.2–0.4 µmol burrows−1 s−1, respectively. CO2 released from a Rhizophora mangle dominated forest with an average of 1.7 U. cordatus burrows−1 m−2 yielded 1.0–1.7 µmol m−2 s−1, depending on the month and burrow entrance diameter. Laboratory experiments revealed that 20–60% of the CO2 released by burrows originated from crab respiration. Temporal changes in the reduction potential in the sediment surrounding the burrows did not influence the CO2 release from burrows. More oxidized conditions of plain sediment over time may explain the increase in CO2 release until the end of the wet season. CO2 released by U. cordatus and their burrows may be a significant pathway of CO2 export from mangrove sediments and should be considered in mangrove carbon budget estimates.  相似文献   

3.
This research examines the relationships between El Niño Southern Oscillation (ENSO), water level, precipitation patterns and carbon dioxide (CO2) exchange rates in the freshwater wetland ecosystems of the Florida Everglades. Data was obtained over a 5-year study period (2009–2013) from two freshwater marsh sites located in Everglades National Park that differ in hydrology. At the short-hydroperiod site (Taylor Slough; TS) and the long-hydroperiod site (Shark River Slough; SRS) fluctuations in precipitation patterns occurred with changes in ENSO phase, suggesting that extreme ENSO phases alter Everglades hydrology which is known to have a substantial influence on ecosystem carbon dynamics. Variations in both ENSO phase and annual net CO2 exchange rates co-occurred with changes in wet and dry season length and intensity. Combined with site-specific seasonality in CO2 exchanges rates, El Niño and La Niña phases magnified season intensity and CO2 exchange rates at both sites. At TS, net CO2 uptake rates were higher in the dry season, whereas SRS had greater rates of carbon sequestration during the wet season. As La Niña phases were concurrent with drought years and extended dry seasons, TS became a greater sink for CO2 on an annual basis (−11 to −110 g CO2 m−2 yr−1) compared to El Niño and neutral years (−5 to −43.5 g CO2 m−2 yr−1). SRS was a small source for CO2 annually (1.81 to 80 g CO2 m−2 yr−1) except in one exceptionally wet year that was associated with an El Niño phase (−16 g CO2 m−2 yr−1). Considering that future climate predictions suggest a higher frequency and intensity in El Niño and La Niña phases, these results indicate that changes in extreme ENSO phases will significantly alter CO2 dynamics in the Florida Everglades.  相似文献   

4.
Recent studies on the diazotrophic cyanobacterium Trichodesmium erythraeum (IMS101) showed that increasing CO2 partial pressure (pCO2) enhances N2 fixation and growth. Significant uncertainties remain as to the degree of the sensitivity to pCO2, its modification by other environmental factors, and underlying processes causing these responses. To address these questions, we examined the responses of Trichodesmium IMS101 grown under a matrix of low and high levels of pCO2 (150 and 900 μatm) and irradiance (50 and 200 μmol photons m−2 s−1). Growth rates as well as cellular carbon and nitrogen contents increased with increasing pCO2 and light levels in the cultures. The pCO2-dependent stimulation in organic carbon and nitrogen production was highest under low light. High pCO2 stimulated rates of N2 fixation and prolonged the duration, while high light affected maximum rates only. Gross photosynthesis increased with light but did not change with pCO2. HCO3 was identified as the predominant carbon source taken up in all treatments. Inorganic carbon uptake increased with light, but only gross CO2 uptake was enhanced under high pCO2. A comparison between carbon fluxes in vivo and those derived from 13C fractionation indicates high internal carbon cycling, especially in the low-pCO2 treatment under high light. Light-dependent oxygen uptake was only detected under low pCO2 combined with high light or when low-light-acclimated cells were exposed to high light, indicating that the Mehler reaction functions also as a photoprotective mechanism in Trichodesmium. Our data confirm the pronounced pCO2 effect on N2 fixation and growth in Trichodesmium and further show a strong modulation of these effects by light intensity. We attribute these responses to changes in the allocation of photosynthetic energy between carbon acquisition and the assimilation of carbon and nitrogen under elevated pCO2. These findings are supported by a complementary study looking at photosynthetic fluorescence parameters of photosystem II, photosynthetic unit stoichiometry (photosystem I:photosystem II), and pool sizes of key proteins in carbon and nitrogen acquisition.Human-induced climate change will significantly alter the marine environment within the next century and beyond. Future scenarios predict an increase from currently approximately 380 to about 750 to 1,000 μatm CO2 partial pressure (pCO2) in the atmosphere until the end of this century (Raven et al., 2005; Raupach et al., 2007). As the ocean takes up this anthropogenic CO2, dissolved inorganic carbon (DIC) in the surface ocean increases while the pH decreases (Wolf-Gladrow et al., 1999). Rising global temperatures will increase surface ocean stratification, which may affect the light regime in the upper mixed layer as well as nutrient input from deeper waters (Doney, 2006). Uncertainties remain regarding both the magnitude of the physicochemical changes and the biological responses of organisms, including species and populations of the oceanic primary producers at the basis of the food webs.In view of potential ecological implications and feedbacks on climate, several studies have examined pCO2 sensitivity in phytoplankton key species (Burkhardt and Riebesell, 1997; Riebesell et al., 2000; Rost et al., 2003; Tortell et al., 2008). Pronounced responses to elevated pCO2 were observed in N2-fixing cyanobacteria (Barcelos é Ramos et al., 2007; Hutchins et al., 2007; Levitan et al., 2007; Fu et al., 2008; Kranz et al., 2009), which play a vital role in marine ecosystems by providing a new source of biologically available nitrogen species to otherwise nitrogen-limited regions. Recent studies focused on the impact of different environmental factors on the filamentous Trichodesmium species, which is known for high abundance and the formation of massive blooms in tropical and subtropical areas (Capone et al., 2005; Mahaffey et al., 2005). Higher pCO2 levels stimulated growth rates, biomass production, and N2 fixation (Hutchins et al., 2007; Levitan et al., 2007; Kranz et al., 2009) and affected inorganic carbon acquisition of the cells (Kranz et al., 2009). While elevated sea surface temperatures are predicted to shift the spatial distribution of Trichodesmium species toward higher latitudes (Breitbarth et al., 2007), the combined effects of pCO2 and temperature may favor this species and extend its niche even farther (Hutchins et al., 2007; Levitan et al., 2010a). An increase in the average light intensity, caused by the predicted shoaling of the upper mixed layer, may further stimulate photosynthesis and thus growth and N2 fixation of Trichodesmium (Breitbarth et al., 2008). To our knowledge, the combined effects of light and pCO2 have not been studied yet, although these environmental factors are likely to influence photosynthesis and other key processes in Trichodesmium.To understand the responses of an organism to changes in environmental conditions, metabolic processes must be studied. In Trichodesmium, photosynthetically generated energy (ATP and NADPH) is primarily used for the fixation of CO2 in the Calvin-Benson cycle. A large proportion of this energy, however, is also required for the process of N2 fixation via nitrogenase and for the operation of a CO2-concentrating mechanism (CCM). The latter involves active uptake of inorganic carbon, which functions to increase the rate of carboxylation reaction mediated by Rubisco. This ancient and highly conserved enzyme is characterized by low affinities for its substrate CO2 and a susceptibility to a competing reaction with oxygen (O2) as substrate (Badger et al., 1998); the latter initiates photorespiration. As cyanobacterial Rubisco possesses one of the lowest CO2 affinities among phytoplankton (Badger et al., 1998), a considerable amount of resources have to be invested to achieve sufficient rates of carbon fixation and to avoid photorespiration. A first step toward a mechanistic understanding of responses in Trichodesmium has been taken by Levitan et al. (2007), focusing on pCO2 dependency of nitrogenase activity and photosynthesis. Subsequently, Kranz et al. (2009) described variations in CCM efficiency with pCO2 and suggested that the observed plasticity in CCM regulation allowed energy reallocation under high pCO2, which may explain the observed pCO2-dependent changes in nitrogenase activity, growth, and elemental composition (Barcelos é Ramos et al., 2007; Hutchins et al., 2007; Levitan et al., 2007).In this study, we measured growth responses as well as metabolic key processes in Trichodesmium erythraeum (IMS101) under environmental conditions that likely alter the energy budget and/or energy allocation of the cell. Cultures were acclimated to a matrix of low and high pCO2 (150 and 900 μatm) at two different light intensities (50 and 200 μmol photons m−2 s−1). For each of the four treatments, changes in growth rates, elemental ratios, and the accumulation of particulate carbon and nitrogen were measured. Metabolic processes (gross photosynthesis, CCM activity, and O2 uptake) were obtained by means of membrane-inlet mass spectrometry (MIMS), while N2 fixation was detected by gas chromatography. As these processes may vary over the diurnal cycle in Trichodesmium (Berman-Frank et al., 2001; Kranz et al., 2009), measurements were performed in the morning and around midday. The results on metabolic processes were accompanied by measurements of the fluorescence of PSII, ratios of the photosynthetic units (PSI:PSII), and pool sizes of key proteins involved in carbon and nitrogen fixation as well as assimilation (Levitan et al., 2010b).  相似文献   

5.
Interactions between the terrestrial nitrogen (N) and carbon (C) cycles shape the response of ecosystems to global change. However, the global distribution of nitrogen availability and its importance in global biogeochemistry and biogeochemical interactions with the climate system remain uncertain. Based on projections of a terrestrial biosphere model scaling ecological understanding of nitrogen–carbon cycle interactions to global scales, anthropogenic nitrogen additions since 1860 are estimated to have enriched the terrestrial biosphere by 1.3 Pg N, supporting the sequestration of 11.2 Pg C. Over the same time period, CO2 fertilization has increased terrestrial carbon storage by 134.0 Pg C, increasing the terrestrial nitrogen stock by 1.2 Pg N. In 2001–2010, terrestrial ecosystems sequestered an estimated total of 27 Tg N yr−1 (1.9 Pg C yr−1), of which 10 Tg N yr−1 (0.2 Pg C yr−1) are due to anthropogenic nitrogen deposition. Nitrogen availability already limits terrestrial carbon sequestration in the boreal and temperate zone, and will constrain future carbon sequestration in response to CO2 fertilization (regionally by up to 70% compared with an estimate without considering nitrogen–carbon interactions). This reduced terrestrial carbon uptake will probably dominate the role of the terrestrial nitrogen cycle in the climate system, as it accelerates the accumulation of anthropogenic CO2 in the atmosphere. However, increases of N2O emissions owing to anthropogenic nitrogen and climate change (at a rate of approx. 0.5 Tg N yr−1 per 1°C degree climate warming) will add an important long-term climate forcing.  相似文献   

6.
To investigate the correlation and accuracy of transcutaneous carbon dioxide partial pressure (PTCCO2) with regard to arterial carbon dioxide partial pressure (PaCO2) in severe obese patients undergoing laparoscopic bariatric surgery. Twenty-one patients with BMI>35 kg/m2 were enrolled in our study. Their PaCO2, end-tidal carbon dioxide partial pressure (PetCO2), as well as PTCCO2 values were measured at before pneumoperitoneum and 30 min, 60 min, 120 min after pneumoperitoneum respectively. Then the differences between each pair of values (PetCO2–PaCO2) and. (PTCCO2–PaCO2) were calculated. Bland–Altman method, correlation and regression analysis, as well as exact probability method and two way contingency table were employed for the data analysis. 21 adults (aged 19–54 yr, mean 29, SD 9 yr; weight 86–160 kg, mean119.3, SD 22.1 kg; BMI 35.3–51.1 kg/m2, mean 42.1,SD 5.4 kg/m2) were finally included in this study. One patient was eliminated due to the use of vaso-excitor material phenylephrine during anesthesia induction. Eighty-four sample sets were obtained. The average PaCO2–PTCCO2 difference was 0.9±1.3 mmHg (mean±SD). And the average PaCO2–PetCO2 difference was 10.3±2.3 mmHg (mean±SD). The linear regression equation of PaCO2–PetCO2 is PetCO2 = 11.58+0.57×PaCO2 (r2 = 0.64, P<0.01), whereas the one of PaCO2–PTCCO2 is PTCCO2 = 0.60+0.97×PaCO2 (r2 = 0.89). The LOA (limits of agreement) of 95% average PaCO2–PetCO2 difference is 10.3±4.6 mmHg (mean±1.96 SD), while the LOA of 95% average PaCO2–PTCCO2 difference is 0.9±2.6 mmHg (mean±1.96 SD). In conclusion, transcutaneous carbon dioxide monitoring provides a better estimate of PaCO2 than PetCO2 in severe obese patients undergoing laparoscopic bariatric surgery.  相似文献   

7.
The Tonle Sap Lake in Cambodia is a dynamic flood-pulsed ecosystem that annually increases its surface area from roughly 2,500 km2 to over 12,500 km2 driven by seasonal flooding from the Mekong River. This flooding is thought to structure many of the critical ecological processes, including aquatic primary and secondary productivity. The lake also has a large fishery that supports the livelihoods of nearly 2 million people. We used a state-space oxygen mass balance model and continuous dissolved oxygen measurements from four locations to provide the first estimates of gross primary productivity (GPP) and ecosystem respiration (ER) for the Tonle Sap. GPP averaged 4.1±2.3 g O2 m−3 d−1 with minimal differences among sites. There was a negative correlation between monthly GPP and lake level (r = 0.45) and positive correlation with turbidity (r = 0.65). ER averaged 24.9±20.0 g O2 m−3 d−1 but had greater than six-fold variation among sites and minimal seasonal change. Repeated hypoxia was observed at most sampling sites along with persistent net heterotrophy (GPP<ER), indicating significant bacterial metabolism of organic matter that is likely incorporated into the larger food web. Using our measurements of GPP, we calibrated a hydrodynamic-productivity model and predicted aquatic net primary production (aNPP) of 2.0±0.2 g C m−2 d−1 (2.4±0.2 million tonnes C y−1). Considering a range of plausible values for the total fisheries catch, we estimate that fisheries harvest is an equivalent of 7–69% of total aNPP, which is substantially larger than global average for marine and freshwater systems. This is likely due to relatively efficient carbon transfer through the food web and support of fish production from terrestrial NPP. These analyses are an important first-step in quantifying the resource pathways that support this important ecosystem.  相似文献   

8.
Ryan Lake, a 1.6-hectare basin lake near the periphery of the tree blowdown area in the blast zone 19 km north of Mount St. Helens, was studied from August to October 1980 to determine the microbial and chemical response of the lake to the eruption. Nutrient enrichment through the addition of fresh volcanic material and the organic debris from the surrounding conifer forest stimulated intense microbial activity. Concentrations of such nutrients as phosphorus, sulfur, manganese, iron, and dissolved organic carbon were markedly elevated. Nitrogen cycle activity was especially important to the lake ecosystem in regulating biogeochemical cycling owing to the limiting abundance of nitrogen compounds. Nitrogen fixation, both aerobic and anaerobic, was active from aerobic benthic and planktonic cyanobacteria with rates up to 210 nmol of N2 cm−1 h−1 and 667 nmol of N2 liter−1 h−1, respectively, and from anaerobic bacteria with rates reaching 220 nmol of N2 liter−1 h−1. Nitrification was limited to the aerobic epilimnion and littoral zones where rates were 43 and 261 nmol of NO2 liter−1 day−1, respectively. Potential denitrification rates were as high as 30 μmol of N2O liter−1 day−1 in the anaerobic hypolimnion. Total bacterial numbers ranged from 1 × 106 to 3 × 108 ml−1 with the number of viable sulfur-metal-oxidizing bacteria reaching 2 × 106 ml−1 in the hypolimnion. A general scenario for the microbial cycling of nitrogen, carbon, sulfur, and metals is presented for volcanically impacted lakes. The important role of nitrogen as these lakes recover from the cataclysmic eruption and proceed back towards their prior status as oligotrophic alpine lakes is emphasized.  相似文献   

9.
Ocean acidification (OA) due to atmospheric CO2 rise is expected to influence marine primary productivity. In order to investigate the interactive effects of OA and light changes on diatoms, we grew Phaeodactylum tricornutum, under ambient (390 ppmv; LC) and elevated CO2 (1000 ppmv; HC) conditions for 80 generations, and measured its physiological performance under different light levels (60 µmol m−2 s−1, LL; 200 µmol m−2 s−1, ML; 460 µmol m−2 s−1, HL) for another 25 generations. The specific growth rate of the HC-grown cells was higher (about 12–18%) than that of the LC-grown ones, with the highest under the ML level. With increasing light levels, the effective photochemical yield of PSII (Fv′/Fm′) decreased, but was enhanced by the elevated CO2, especially under the HL level. The cells acclimated to the HC condition showed a higher recovery rate of their photochemical yield of PSII compared to the LC-grown cells. For the HC-grown cells, dissolved inorganic carbon or CO2 levels for half saturation of photosynthesis (K1/2 DIC or K1/2 CO2) increased by 11, 55 and 32%, under the LL, ML and HL levels, reflecting a light dependent down-regulation of carbon concentrating mechanisms (CCMs). The linkage between higher level of the CCMs down-regulation and higher growth rate at ML under OA supports the theory that the saved energy from CCMs down-regulation adds on to enhance the growth of the diatom.  相似文献   

10.
Background and Aims Benefits to crop productivity arising from increasing CO2 fertilization may be offset by detrimental effects of global climate change, such as an increasing frequency of drought. Phosphorus (P) nutrition plays an important role in crop responses to water stress, but how elevated CO2 (eCO2) and P nutrition interact, especially in legumes, is unclear. This study aimed to elucidate whether P supply improves plant drought tolerance under eCO2.Methods A soil-column experiment was conducted in a free air CO2 enrichment (SoilFACE) system. Field pea (Pisum sativum) was grown in a P-deficient vertisol, supplied with 15 mg P kg−1 (deficient) or 60 mg P kg−1 (adequate for crop growth) and exposed to ambient CO2 (aCO2; 380–400 ppm) or eCO2 (550–580 ppm). Drought treatments commenced at flowering. Measurements were taken of soil and leaf water content, photosynthesis, stomatal conductance, total soluble sugars and inorganic P content (Pi).Key Results Water-use efficiency was greatest under eCO2 when the plants were supplied with adequate P compared with other treatments irrespective of drought treatment. Elevated CO2 decreased stomatal conductance and transpiration rate, and increased the concentration of soluble sugars and relative water contents in leaves. Adequate P supply increased concentrations of soluble sugars and Pi in drought-stressed plants. Adequate P supply but not eCO2 increased root length distribution in deeper soil layers.Conclusions Phosphorus application and eCO2 interactively enhanced periodic drought tolerance in field pea as a result of decreased stomatal conductance, deeper rooting and high Pi availability for carbon assimilation in leaves.  相似文献   

11.
Production-to-respiration (P:R) ratio was estimated at an offshore site of Lake Biwa in order to examine whether the plankton and benthic community is subsidized with allochthonous organic carbon, and to clarify the role of this lake as potential source or sink of carbon dioxide. The respiration rate of protozoan and metazoan plankton was calculated from their biomass and empirical equations of oxygen consumption rates, and that of bacterioplankton was derived from their production rate and growth efficiency. In addition, the carbon mineralization rate in the lake sediments was estimated from the accumulation rate of organic carbon, which was determined using a 210Pb dating technique. On an annual basis, the sum of respiration rates of heterotrophic plankton was comparable to net primary production rate measured by the 13C method. However, when the mineralization rate in the lake sediments was included, the areal P:R ratio was 0.89, suggesting that Lake Biwa is net heterotrophic at the offshore site with the community being subsidized with allochthonous organic carbon. Such a view was supported by the surface water pCO2 that was on average higher than that of the atmosphere. However, the estimate of net CO2 release rate was close to that of carbon burial rate in the sediments. The result suggests that the role of Lake Biwa in relation to atmospheric carbon is almost null at the offshore site, although the community is supported partially by organic carbon released from the surrounding areas.  相似文献   

12.
Arid grassland ecosystems have significant interannual variation in carbon exchange; however, it is unclear how environmental factors influence carbon exchange in different hydrological years. In this study, the eddy covariance technique was used to investigate the seasonal and interannual variability of CO2 flux over a temperate desert steppe in Inner Mongolia, China from 2008 to 2010. The amounts and times of precipitation varied significantly throughout the study period. The precipitation in 2009 (186.4 mm) was close to the long-term average (183.9±47.6 mm), while the precipitation in 2008 (136.3 mm) and 2010 (141.3 mm) was approximately a quarter below the long-term average. The temperate desert steppe showed carbon neutrality for atmospheric CO2 throughout the study period, with a net ecosystem carbon dioxide exchange (NEE) of −7.2, −22.9, and 26.0 g C m−2 yr−1 in 2008, 2009, and 2010, not significantly different from zero. The ecosystem gained more carbon in 2009 compared to other two relatively dry years, while there was significant difference in carbon uptake between 2008 and 2010, although both years recorded similar annual precipitation. The results suggest that summer precipitation is a key factor determining annual NEE. The apparent quantum yield and saturation value of NEE (NEEsat) and the temperature sensitivity coefficient of ecosystem respiration (Reco) exhibited significant variations. The values of NEEsat were −2.6, −2.9, and −1.4 µmol CO2 m−2 s−1 in 2008, 2009, and 2010, respectively. Drought suppressed both the gross primary production (GPP) and Reco, and the drought sensitivity of GPP was greater than that of Reco. The soil water content sensitivity of GPP was high during the dry year of 2008 with limited soil moisture availability. Our results suggest the carbon balance of this temperate desert steppe was not only sensitive to total annual precipitation, but also to its seasonal distribution.  相似文献   

13.
In the present scenario of climate change with constantly increasing CO2 concentration, there is a risk of altered crop performance in terms of growth, yield, grain nutritional value and seed quality. Therefore, an experiment was conducted in open top chamber (OTCs) during 2017–18 and 2018–19 to assess the effect of elevated atmospheric carbondioxide (e[CO2]) (600 ppm) on chickpea (cv. JG 14) crop growth, biomass accumulation, physiological function, seed yield and its quality in terms of germination and vigour. The e[CO2] treatment increased the plant height, leaf and stem biomass over ambient CO2 (a[CO2]) treatment. The e[CO2] increased seed yield by 11–18% which was attributed to an increase in the number of pods (6–10%) and seeds plant−1 (8–9%) over a[CO2]. However, e[CO2] reduced the seed protein (7%), total phenol (13%) and thiobarbituric acid reactive substances (12%) and increased the starch (21%) and water uptake rate as compared to seeds harvested from a[CO2] environment. Exposing chickpea plant to e[CO2] treatment had no impact on germination and vigour of the harvested seeds. Also, the physical attributes, total soluble sugar and antioxidant enzymes activities of harvested seeds were comparable in a[CO2] and e[CO2] treatment. Hence, the experimental findings depict that e[CO2] upto 600 ppm could add to the growth and productivity of chickpea in a sub-tropical climate with an implication on its nutritional quality of the produce.  相似文献   

14.
We studied the interactive effects of pCO2 and growth light on the coastal marine diatom Thalassiosira pseudonana CCMP 1335 growing under ambient and expected end-of-the-century pCO2 (750 ppmv), and a range of growth light from 30 to 380 µmol photons·m−2·s−1. Elevated pCO2 significantly stimulated the growth of T. pseudonana under sub-saturating growth light, but not under saturating to super-saturating growth light. Under ambient pCO2 susceptibility to photoinactivation of photosystem II (σi) increased with increasing growth rate, but cells growing under elevated pCO2 showed no dependence between growth rate and σi, so under high growth light cells under elevated pCO2 were less susceptible to photoinactivation of photosystem II, and thus incurred a lower running cost to maintain photosystem II function. Growth light altered the contents of RbcL (RUBISCO) and PsaC (PSI) protein subunits, and the ratios among the subunits, but there were only limited effects on these and other protein pools between cells grown under ambient and elevated pCO2.  相似文献   

15.
The enzymic fractionation of the stable carbon isotopes of CO2 (Δco2) was determined using a purified preparation of ribulose-1,5-bisphosphate (RuBP) carboxylase isolated from cotton (a C3 plant) leaves. The bicarbonate concentration in the reaction mixture saturated the enzyme and furnished an infinite pool of 12CO2 and 13CO2 for enzyme fractionation. The RuBP was 96 to 98% pure. The phosphoglycerate synthesized in the reaction mixtures was purified free of RuBP, phosphoglycolate, and other phosphate esters by column chromatography on Dowex 1-Cl resin. The average Δco2 value of −27.1% was determined from five separate experiments. A discussion of the isotope fractionation associated with photosynthetic CO2 fixation in plants shows that the enzymic fractionation of stable carbon isotopes of CO2 by RuBP carboxylase is of major importance in determining the δ13C values of C3 plants.  相似文献   

16.
Synechococcus leopoliensis was grown in HCO3-limited chemostats. Growth at 50% the maximum rate occurred when the inorganic carbon concentration was 10 to 15 micromolar (or 5.6 to 8.4 nanomolar CO2). The O2 to CO2 ratios during growth were as high as 192,000 to 1. At growth rates below 80% the maximum rate, essentially all the supplied inorganic carbon was converted to organic carbon, and the cells were carbon limited. Carbon-limited cells used HCO3 rather than CO2 for growth. They also exhibited a very high photosynthetic affinity for inorganic carbon in short-term experiments. Cells growing at greater than 80% maximum growth rate, in the presence of high dissolved inorganic carbon, were termed carbon sufficient. These cells had photosynthetic affinities that were about 1000-fold lower than HCO3-limited cells and also had a reduced capacity for HCO3 transport. HCO3-limited cells are reminiscent of the air-grown cells of batch culture studies while the carbon sufficient cells are reminiscent of high-CO2 grown cells. However, the low affinity cells of the present study were growing at CO2 concentrations less than air saturation. This suggests that supranormal levels of CO2 not required to induce the physiological changes usually ascribed to high CO2 cells.  相似文献   

17.
Equations have been developed which quantitatively predict the theoretical time-course of photosynthetic 14C incorporation when CO2 or HCO3 serves as the sole source of exogenous inorganic carbon taken up for fixation by cells during steady state photosynthesis. Comparison between the shape of theoretical (CO2 or HCO3) and experimentally derived time-courses of 14C incorporation permits the identification of the major species of inorganic carbon which crosses the plasmalemma of photosynthetic cells and facilitates the detection of any combined contribution of CO2 and HCO3 transport to the supply of intracellular inorganic carbon. The ability to discriminate between CO2 or HCO3 uptake relies upon monitoring changes in the intracellular specific activity (by 14C fixation) which occur when the inorganic carbon, present in the suspending medium, is in a state of isotopic disequilibrium (JT Lehman 1978 J Phycol 14: 33-42). The presence of intracellular carbonic anhydrase or some other catalyst of the CO2-HCO3 interconversion reaction is required for quantitatively accurate predictions. Analysis of equations describing the rate of 14C incorporation provides two methods by which any contribution of HCO3 ions to net photosynthetic carbon uptake can be estimated.  相似文献   

18.
Soil CO2 efflux and pCO2 in the soil atmosphere were measured during one year at three montane sites of Mediterranean sclerophyllous forests in NE Spain. Two sites were located in the upper and lower slopes of a small catchment in the Prades mountains (mean precipitation 550 mm year–1), and a third site was located on a lower slope in the Montseny mountains (mean precipitation 900 mm year–1). The three sites were similar in bedrock and vegetation, but differed in soil characteristics and water availability. Seasonal variation of CO2 efflux and soil pCO2 were affected by soil temperature and, to a lesser extent, by soil moisture. Annual mean soil CO2 efflux (considered as soil respiration) was similar at Montseny and at the comparably located site at Prades (83 ± 18 S.E. vs. 75 ± 9 mg CO2 m–2 hour–1 , respectively), and was highest at the Prades upper slope site (122 ± 22 mg C02 m–2 hour–1 ). Despite those relatively similar CO2 effluxes, mean soil pCO2 was much higher at both Prades sites than at Montseny. Soil pCO2 always increased with depth at Prades while maxima pCO2 at Montseny were often at 20–30 cm depth. A model based on gas diffusion theory was able to explain why soil pCO2 was much higher at Prades than at Montseny, and to reproduce the shape of the vertical profile of pCO2 at the Prades soils. Nevertheless, the model failed to simulate the soil pCO2 maximum found at 20–30 cm depth at the Montseny site. Model simulations using a time-variable CO2 production rate suggested that pCO2 maxima at intermediate depth could be the result of a transient situation instead of an equilibrium one.  相似文献   

19.
Although many studies have focused on the effects of elevated atmospheric CO2 on algal growth, few of them have demonstrated how CO2 interacts with carbon absorption capacity to determine the algal competition at the population level. We conducted a pairwise competition experiment of Phormidium sp., Scenedesmus quadricauda, Chlorella vulgaris and Synedra ulna. The results showed that when the CO2 concentration increased from 400 to 760 ppm, the competitiveness of S. quadricauda increased, the competitiveness of Phormidium sp. and C. vulgaris decreased, and the competitiveness of S. ulna was always the lowest. We constructed a model to explore whether interspecific differences in affinity and flux rate for CO2 and HCO3 could explain changes in competitiveness between algae species along the gradient of atmospheric CO2 concentration. Affinity and flux rates are the capture capacity and transport capacity of substrate respectively, and are inversely proportional to each other. The simulation results showed that, when the atmospheric CO2 concentration was low, species with high affinity for both CO2 and HCO3 (HCHH) had the highest competitiveness, followed by the species with high affinity for CO2 and low affinity for HCO3 (HCLH), the species with low affinity for CO2 and high affinity for HCO3 (LCHH) and the species with low affinity for both CO2 and HCO3 (LCLH); when the CO2 concentration was high, the species were ranked according to the competitive ability: LCHH > LCLH > HCHH > HCLH. Thus, low resource concentration is beneficial to the growth and reproduction of algae with high affinity. With the increase in atmospheric CO2 concentration, the competitive advantage changed from HCHH species to LCHH species. These results indicate the important species types contributing to water bloom under the background of increasing global atmospheric CO2, highlighting the importance of carbon absorption characteristics in understanding, predicting and regulating population dynamics and community composition of algae.  相似文献   

20.
The African humid tropical biome constitutes the second largest rainforest region, significantly impacts global carbon cycling and climate, and has undergone major changes in functioning owing to climate and land-use change over the past century. We assess changes and trends in CO2 fluxes from 1901 to 2010 using nine land surface models forced with common driving data, and depict the inter-model variability as the uncertainty in fluxes. The biome is estimated to be a natural (no disturbance) net carbon sink (−0.02 kg C m−2 yr−1 or −0.04 Pg C yr−1, p < 0.05) with increasing strength fourfold in the second half of the century. The models were in close agreement on net CO2 flux at the beginning of the century (σ1901 = 0.02 kg C m−2 yr−1), but diverged exponentially throughout the century (σ2010 = 0.03 kg C m−2 yr−1). The increasing uncertainty is due to differences in sensitivity to increasing atmospheric CO2, but not increasing water stress, despite a decrease in precipitation and increase in air temperature. However, the largest uncertainties were associated with the most extreme drought events of the century. These results highlight the need to constrain modelled CO2 fluxes with increasing atmospheric CO2 concentrations and extreme climatic events, as the uncertainties will only amplify in the next century.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号