首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

As a potent CD8+ T cell activator, peptide vaccine has found its way in vaccine development against intracellular infections and cancer, but not against leishmaniasis. The first step toward a peptide vaccine is epitope mapping of different proteins according to the most frequent HLA types in a population.

Methods and Findings

Six Leishmania (L.) major-related candidate antigens (CPB,CPC,LmsTI-1,TSA,LeIF and LPG-3) were screened for potential CD8+ T cell activating 9-mer epitopes presented by HLA-A*0201 (the most frequent HLA-A allele). Online software including SYFPEITHI, BIMAS, EpiJen, Rankpep, nHLApred, NetCTL and Multipred were used. Peptides were selected only if predicted by almost all programs, according to their predictive scores. Pan-A2 presentation of selected peptides was confirmed by NetMHCPan1.1. Selected peptides were pooled in four peptide groups and the immunogenicity was evaluated by in vitro stimulation and intracellular cytokine assay of PBMCs from HLA-A2+ individuals recovered from L. major. HLA-A2 individuals recovered from L. major and HLA-A2+ healthy donors were included as control groups. Individual response of HLA-A2+ recovered volunteers as percent of CD8+/IFN-γ+ T cells after in vitro stimulation against peptide pools II and IV was notably higher than that of HLA-A2 recovered individuals. Based on cutoff scores calculated from the response of HLA-A2 recovered individuals, 31.6% and 13.3% of HLA-A2+ recovered persons responded above cutoff in pools II and IV, respectively. ELISpot and ELISA results confirmed flow cytometry analysis. The response of HLA-A2 recovered individuals against peptide pools I and III was detected similar and even higher than HLA-A2+ recovered individuals.

Conclusion

Using in silico prediction we demonstrated specific response to LmsTI-1 (pool II) and LPG-3- (pool IV) related peptides specifically presented in HLA-A*0201 context. This is among the very few reports mapping L. major epitopes for human HLA types. Studies like this will speed up polytope vaccine idea towards leishmaniasis.  相似文献   

2.

Background

TcTLE is a nonamer peptide from Trypanosoma cruzi KMP-11 protein that is conserved among different parasite strains and that is presented by different HLA-A molecules from the A2 supertype. Because peptides presented by several major histocompatibility complex (MHC) supertypes are potential targets for immunotherapy, the aim of this study was to determine whether MHC molecules other than the A2 supertype present the TcTLE peptide.

Methodology/Principal Findings

From 36 HLA-A2-negative chagasic patients, the HLA-A genotypes of twenty-eight patients with CD8+ T cells that recognized the TcTLE peptide using tetramer (twenty) or functional (eight) assays, were determined. SSP-PCR was used to identify the A locus and the allelic variants. Flow cytometry was used to analyze the frequency of TcTLE-specific CD8+ T cells, and their functional activity (IFN-γ, TNFα, IL-2, perforin, granzyme and CD107a/b production) was induced by exposure to the TcTLE peptide. All patients tested had TcTLE-specific CD8+ T cells with frequencies ranging from 0.07–0.37%. Interestingly, seven of the twenty-eight patients had HLA-A homozygous alleles: A*24 (5 patients), A*23 (1 patient) and A*01 (1 patient), which belong to the A24 and A1 supertypes. In the remaining 21 patients with HLA-A heterozygous alleles, the most prominent alleles were A24 and A68. The most common allele sub-type was A*2402 (sixteen patients), which belongs to the A24 supertype, followed by A*6802 (six patients) from the A2 supertype. Additionally, the A*3002/A*3201 alleles from the A1 supertype were detected in one patient. All patients presented CD8+ T cells producing at least one cytokine after TcTLE peptide stimulation.

Conclusion/Significance

These results show that TcTLE is a promiscuous peptide that is presented by the A24 and A1 supertypes, in addition to the A2 supertype, suggesting its potential as a target for immunotherapy.  相似文献   

3.
We previously reported peptide vaccine candidates for HLA-A3 supertype (-A3, -A11, -A31, -A33)-positive cancer patients. In the present study, we examined whether those peptides can also induce cytotoxic T lymphocyte (CTL) activity restricted to HLA-A2, HLA-A24, and HLA-A26 alleles. Fourteen peptides were screened for their binding activity to HLA-A*0201, -A*0206, -A*0207, -A*2402, and -A*2601 molecules and then tested for their ability to induce CTL activity in peripheral blood mononuclear cells (PBMCs) from prostate cancer patients. Among these peptides, one from the prostate acid phosphatase protein exhibited binding activity to HLA-A*0201, -A*0206, and -A*2402 molecules. In addition, PBMCs stimulated with this peptide showed that HLA-A2 or HLA-A24 restricted CTL activity. Their cytotoxicity toward cancer cells was ascribed to peptide-specific and CD8+ T cells. These results suggest that this peptide could be widely applicable as a peptide vaccine for HLA-A3 supertype-, HLA-A2-, and -A24-positive cancer patients.  相似文献   

4.
5.
Identification of cytotoxic T lymphocyte (CTL) epitopes from additional tumor antigens is essential for the development of specific immunotherapy of malignant tumors. CML28, a recently discovered cancer-testis (CT) antigen from chronic myelogenous leukemia, is considered to be a promising target of tumor-specific immunotherapy. Because HLA-A*0201 is one of the most common histocompatibility molecule in Chinese, we aim at identifying CML28 peptides presented by HLA-A*0201. A panel of CML28-derived antigenic peptides was predicted using a computer-based program. Four peptides with highest predicted score were synthesized and tested for their binding affinities to HLA-A*0201 molecule. Then these peptides were assessed for their immunogenicity to elicit specific immune responses mediated by CTLs both in vitro, from PBMCs sourced from four healthy HLA-A*0201+ donors, and in vivo, in HLA-A*0201 transgenic mice. One of the tested peptides, CML28(173–181), induced peptide-specific CTLs in vitro as well as in vivo, which could specifically secrete IFN-γ and lyse major histocompatibility complex (MHC)-matched tumor cell lines endogenously expressing CML28 antigen and CML28(173–181) pulsed Jurkat-A2/Kb cells, respectively. These results demonstrate that CML28(173–181) is a naturally processed and presented CTL epitope with HLA-A*0201 motif and has a promising immunogenicity both in vitro and in vivo. As CML28 is expressed in a large variety of histological tumors besides chronic myelogenous leukemia, we propose that the newly identified epitope, CML28(173–181), would be of potential use in peptide-based, cancer-specific immunotherapy against a broad spectrum of tumors.  相似文献   

6.
Leishmania-specific cytotoxic T cell response is part of the acquired immune response developed against the parasite and contributes to resistance to reinfection. Herein, we have used an immune-informatic approach for the identification, among Leishmania major potentially excreted/secreted proteins previously described, those generating peptides that could be targeted by the cytotoxic immune response. Seventy-eight nonameric peptides that are predicted to be loaded by HLA-A*0201 molecule were generated and their binding capacity to HLA-A2 was evaluated. These peptides were grouped into 20 pools and their immunogenicity was evaluated by in vitro stimulation of peripheral blood mononuclear cells from HLA-A2+-immune individuals with a history of zoonotic cutaneous leishmaniasis. Six peptides were identified according to their ability to elicit production of granzyme B. Furthermore, among these peptides 3 showed highest affinity to HLA-A*0201, one derived from an elongation factor 1-alpha and two from an unknown protein. These proteins could constitute potential vaccine candidates against leishmaniasis.  相似文献   

7.
A novel knowledge-based method is developed to virtually screen potential HLA-A?0201 binders from large-scale peptide candidates. This method utilizes the information from both the crystal structures and experimental affinities of various peptides bound with HLA-A*0201 to construct a single-position mutation free energy profile for accurately characterizing HLA-A*0201-peptide interaction and for effectively predicting the binding affinities of peptides to HLA-A*0201. We employ this method to analyze physicochemical properties and structural implication underlying the specific recognition and association between the HLA-A*0201 and a large panel of peptide segments generated from the herpes simplex virus type 1 (HSV-1) genome, and to evaluate the binding potencies of these peptide candidates to HLA-A*0201. As a result, 288 out of 38,020 candidates are predicted as the potential high-affinity binders of HLA-A*0201, from which three most promising peptides are picked out for further development of potent vaccines against HSV-1. In addition, we also demonstrate that this newly proposed method can successfully identify 8 known binders and 3 known nonbinders from the glycoproteins D and K of HSV-1.  相似文献   

8.
Human Papillomavirus 16 (HPV-16) has been identified as the causative agent of 50% of cervical cancers and many other HPV-associated tumors. The transforming potential/tumor maintenance capacity of this high risk HPV is mediated by two viral oncoproteins, E6 and E7, making them attractive targets for therapeutic vaccines. Of 21 E6 and E7 peptides computed to bind HLA-A*0201, 10 were confirmed through TAP-deficient T2 cell HLA stabilization assay. Those scoring positive were investigated to ascertain which were naturally processed and presented by surface HLA molecules for CTL recognition. Because IFNγ ELISpot frequencies from healthy HPV-exposed blood donors against HLA-A*0201-binding peptides were unable to identify specificities for tumor targeting, their physical presence among peptides eluted from HPV-16-transformed epithelial tumor HLA-A*0201 immunoprecipitates was analyzed by MS3 Poisson detection mass spectrometry. Only one epitope (E711–19) highly conserved among HPV-16 strains was detected. This 9-mer serves to direct cytolysis by T cell lines, whereas a related 10-mer (E711–20), previously used as a vaccine candidate, was neither detected by MS3 on HPV-transformed tumor cells nor effectively recognized by 9-mer specific CTL. These data underscore the importance of precisely defining CTL epitopes on tumor cells and offer a paradigm for T cell-based vaccine design.  相似文献   

9.

Background

NY-ESO-1 belongs to the cancer/testis antigen (CTA) family and represents an attractive target for cancer immunotherapy. Its expression is induced in a variety of solid tumors via DNA demethylation of the promoter of CpG islands. However, NY-ESO-1 expression is usually very low or absent in some tumors such as breast cancer or multiple myeloma. Therefore, we established an optimized in vitro treatment protocol for up-regulation of NY-ESO-1 expression by tumor cells using the hypomethylating agent 5-aza-2''-deoxycytidine (DAC).

Methodology/Principal Findings

We demonstrated de novo induction of NY-ESO-1 in MCF7 breast cancer cells and significantly increased expression in U266 multiple myeloma cells. This effect was time- and dose-dependent with the highest expression of NY-ESO-1 mRNA achieved by the incubation of 10 μM DAC for 72 hours. NY-ESO-1 activation was also confirmed at the protein level as shown by Western blot, flow cytometry, and immunofluorescence staining. The detection and quantification of single NY-ESO-1 peptides presented at the tumor cell surface in the context of HLA-A*0201 molecules revealed an increase of 100% and 50% for MCF7 and U266 cells, respectively. Moreover, the enhanced expression of NY-ESO-1 derived peptides at the cell surface was accompanied by an increased specific lysis of MCF7 and U266 cells by HLA-A*0201/NY-ESO-1(157–165) peptide specific chimeric antigen receptor (CAR) CD8+ T cells. In addition, the killing activity of CAR T cells correlated with the secretion of higher IFN-gamma levels.

Conclusions/Significance

These results indicate that NY-ESO-1 directed immunotherapy with specific CAR T cells might benefit from concomitant DAC treatment.  相似文献   

10.
Genetic instability of tumor cells can result in translation of proteins that are out of frame, resulting in expression of neopeptides. These neopeptides are not self-proteins and therefore should be immunogenic. By eluting peptides from human glioblastoma multiforme (GBM) tumor cell surfaces and subjecting them to tandem mass spectrometry, we identified a novel peptide (KLWGLTPKVTPS) corresponding to a frameshift in the 3′ beta-hydroxysteroid dehydrogenase type 7 (HSD3B7) gene. HLA-binding algorithms predicted that a 9-amino acid sequence embedded in this peptide would bind to HLA-A*0201. We confirmed this prediction using an HLA-A*0201 refolding assay followed by live cell relative affinity assays, but also showed that the 12-mer binds to HLA-A*0201. Based on the 9-mer sequence, optimized peptide ligands (OPL) were designed and tested for their affinities to HLA-A*0201 and their abilities to elicit anti-peptide and CTL capable of killing GBM in vitro. Wild-type peptides as well as OPL induced anti-peptide CTL as measured by IFN-γ ELISPOTS. These CTL also killed GBM tumor cells in chromium-51 release assays. This study reports a new CTL target in GBM and further substantiates the concept that rational design and testing of multiple peptides for the same T-cell epitope elicits a broader response among different individuals than single peptide immunization.  相似文献   

11.
Liu F  Wang S  Ye Y  Zhang H  Zhang Y  Chen W 《Immunogenetics》2006,58(5-6):339-346
A novel HLA-A allele, HLA-A*0279, was identified using PCR-SSP and PCR-SBT methods. It is inheritable. HLA-A*0279 differs from HLA-A*020601 by a single nucleotide at position 497 in exon 3, leading to an amino acid change from Threonine to Isoleucine at the alpha2 helix of HLA molecule. To investigate whether the altered amino acid residue could affect its peptide-binding repertoire, we compared the predicted crystal structure of HLA-A*020601 and HLA-A*0279 by Swiss-PdbViewer software analysis. We found that the crystal structure of the two molecules is very similar except for a difference in the number of hydrogen bonds they can possibly form, which in turn could affect their structural stability. To test whether HLA-A*0279 has the ability to cross-present A*0201 - restricted peptides to T cells, the full lenght cDNA of HLA-A*0201, -A* 020601 and -A*0279 were respectively transfected into COS-7 cells, which were then used as targets in IFN-gamma release Elispot assay. A*2079 was found to be able to present A*0201- restricted peptides to and induce the response of CTL, thus it can be classified as member of the HLA-A2 functional supertype family. This finding would benefit the design of peptide vaccines to be applied in broader populations.The nucleotide sequence data reported in this paper have been submitted to the Genbank nucleotide sequence database and have been assigned the accession numbers AY856830 and HWS10002813.The name HLA-A*0279 was officially assigned by the World Health Organization Nomenclature Committee in January 2005.  相似文献   

12.

Objective

To determine the function and phenotype of CD8+ T-cells targeting consensus and autologous sequences of entire HIV-1 Nef protein.

Methods

Multiparameter flow cytometry-based analysis was used to evaluate the responses of two treatment naïve HIV-infected individuals, during primary and the chronic phases of infection.

Results

A greater breadth and magnitude of CD8 IFN-γ responses to autologous compared to clade-B consensus peptides was observed in both subjects. Cross recognition between autologous and consensus peptides decreased in both subjects during progression from primary to chronic infection. The frequencies of TEMRA and TEM CD8+ T-cells targeting autologous peptides were higher than those targeting consensus peptides and were more polyfunctional (IFN-γ+ Gr-B+ CD107a+).

Conclusions

Our data indicate superior sensitivity and specificity of autologous peptides. The functional and maturational aspects of “real” versus “cross-recognized” responses were also found to differ, highlighting the importance of a sequence-specific approach towards understanding HIV immune response.  相似文献   

13.
Cyclin D1 is over-expressed in various human tumors and therefore can be a potential oncogenic target antigen. However, only a limited number of T cell epitopes has been characterized. We aimed at identifying human cyclin D1-derived peptides that include both CD4 and CD8 T cell epitopes and to test if such multi-epitope peptides could yield improved cytotoxic CD8 T cell responses as well as cytotoxic CD4 T cells. Five HLA-DR.B1-binding peptides containing multiple overlapping CD4 epitopes and HLA-A0201-restricted CD8 T cell epitopes were predicted by computer algorithms. Immunogenicity of the synthetic peptides was assessed by stimulating T cells from healthy donors in vitro and the epitope recognition was measured by IFN-γ ELISPOT and 51Chromium release assays. A HLA-DR.B1 peptide, designed “DR-1”, in which a HLA-A0201-binding epitopes (D1-1) was imbedded, induced CD3 T cell responses against both DR-1 and D1-1 peptides in IFN-γ ELISPOT assay. This suggested processing of the shorter D1-1 epitope from the DR-1 sequence. However, only DR-1-stimulated CD4 or CD3 T cells possessed cytotoxicity against peptide-pulsed autologous DCs and a cancer cell line, that expresses a high level of cyclin D1. Monoclonal antibody to HLA-DR abrogated the epitope-specific responses of both CD3 and CD4 T cells, demonstrating class II-mediated killing. Our studies suggest a possible role of CD4 T cells in anti-tumor immunity as cytotoxic effectors against HLA-DR expressing cancers and provide a rationale for designing peptide vaccines that include CD4 epitopes.  相似文献   

14.
Leptospirosis is an important zoonosis in humans. Immunity against leptospiral infection was thought to be primarily humoral, and limited studies have addressed the role of CD8+ T cells. Leptospiral immunoglobulin-like protein A (LigA) is an important protective antigen of Leptospira and a potential target for Leptospira-specific cell-mediated immunity. In this study, twenty LigA-derived peptides were tested their binding affinity and stability for the HLA-A*0201 molecule. Peptides with high binding affinity and stability for HLA-A*0201 were then assessed their capacity to elicit specific cytotoxic T-lymphocyte (CTL) responses using cytotoxicity, ELISPOT assays for IFN-γ and HLA-A*0201-peptide tetramer assays. We identified a HLA-A*0201-restricted epitope, LigA305–313 KLIVTPAAL in Leptospira LigA. CTLs specific for LigA305–313 were elicited both in HLA-A2.1/Kb transgenic mice and in patients with a clinical and/or laboratory diagnosis of leptospirosis. Staining of the HLA-A*0201–LigA305–313 tetramer revealed the presence of LigA305–313-specific CTLs in peripheral blood mononuclear cells (PBMCs) sourced from five patients infected with three different serovars of Leptospira. In conclusion, we report the existence of specific cytotoxic CD8+ T cells in patients with leptospirosis and we suggest that the newly identified epitope, LigA305–313, will be helpful in enhancing the understanding of the mechanism of immunity to leptospirosis.  相似文献   

15.
PSA (Promastigote Surface Antigen) belongs to a family of membrane-bound and secreted proteins present in several Leishmania (L.) species. PSA is recognized by human Th1 cells and provides a high degree of protection in vaccinated mice. We evaluated humoral and cellular immune responses induced by a L. amazonensis PSA protein (LaPSA-38S) produced in a L. tarentolae expression system. This was done in individuals cured of cutaneous leishmaniasis due to L. major (CCLm) or L. braziliensis (CCLb) or visceral leishmaniasis due to L. donovani (CVLd) and in healthy individuals. Healthy individuals were subdivided into immune (HHR-Lm and HHR-Li: Healthy High Responders living in an endemic area for L. major or L. infantum infection) or non immune/naive individuals (HLR: Healthy Low Responders), depending on whether they produce high or low levels of IFN-γ in response to Leishmania soluble antigen. Low levels of total IgG antibodies to LaPSA-38S were detected in sera from the studied groups. Interestingly, LaPSA-38S induced specific and significant levels of IFN-γ, granzyme B and IL-10 in CCLm, HHR-Lm and HHR-Li groups, with HHR-Li group producing TNF-α in more. No significant cytokine response was observed in individuals immune to L. braziliensis or L. donovani infection. Phenotypic analysis showed a significant increase in CD4+ T cells producing IFN-γ after LaPSA-38S stimulation, in CCLm. A high positive correlation was observed between the percentage of IFN-γ-producing CD4+ T cells and the released IFN-γ. We showed that the LaPSA-38S protein was able to induce a mixed Th1 and Th2/Treg cytokine response in individuals with immunity to L. major or L. infantum infection indicating that it may be exploited as a vaccine candidate. We also showed, to our knowledge for the first time, the capacity of Leishmania PSA protein to induce granzyme B production in humans with immunity to L. major and L. infantum infection.  相似文献   

16.
Previous studies have shown that substitution of single amino acid residues in human Melan-A immunodominant peptides Melan-A27-35 and Melan-A26-35 greatly improved their binding and the stability of peptide/HLA-A*0201 complexes. In particular, one Melan-A peptide analogue was more efficient in the generation of Melan-A peptide-specific and melanoma-reactive CTL than its parental peptide in vitro from human PBL. In this study, we analyzed the in vivo immunogenicity of Melan-A natural peptides and their analogues in HLA-A*0201/Kb transgenic mice. We found that two human Melan-A natural peptides, Melan-A26-35 and Melan-A27-35, were relatively weak immunogens, whereas several Melan-A peptide analogues were potent immunogens for in vivo CTL priming. In addition, induced Melan-A peptide-specific mouse CTL cross-recognized natural Melan-A peptides and their analogues. More interestingly, these mouse CTL were also able to lyse human melanoma cell lines in vitro in a HLA-A*0201-restricted, Melan-A-specific manner. Our results indicate that the HLA-A*0201/Kb transgenic mouse is a useful animal model to perform preclinical testing of potential cancer vaccines, and that Melan-A peptide analogues are attractive candidates for melanoma immunotherapy.  相似文献   

17.
One of the most successful strategies in designing peptide-based cancer vaccines is modifying natural epitope peptides to increase their binding strength to human leukocyte antigens (HLAs). Anchor-modified Mart-1 peptide (ELAGIGILTV) is among the artificial epitope peptides with the highest binding affinity for HLA-A*0201. In this study, by fluorescence labeling of its either C- or N-terminus with Nε-(5-carboxyfluorescein)-l -lysine, we not only made it traceable but also drastically increased its binding strength to HLA-A*0201. HLA streptamer, for the first time, is introduced for measuring the binding constants (Ka) of the labeled peptides. The affinity of the labeled peptides for the HLA-A*201 of the MCF-7 cells was extraordinarily high and co-incubating them with the highest possible amount of the unlabeled peptide, as a competitor, did not significantly prohibit them from binding to the HLA. The reproducibility of the obtained results was confirmed by using the T2 cell line. The HLA-deficient K562 cell line was used as the negative control. With in silico simulations, we found two hydrophobic pockets on both sides of HLA-A*0201 for anchoring the C- or N-terminal 5-carboxyfluorescein probe, which can explain the extraordinary affinity of the labeled peptides for the HLA-A*0201.  相似文献   

18.

Background

The virus-specific cytotoxic T lymphocyte (CTL) induction is an important target for the development of a broadly protective human influenza vaccine, since most CTL epitopes are found on internal viral proteins and relatively conserved. In this study, the possibility of developing a strain/subtype-independent human influenza vaccine was explored by taking a bioinformatics approach to establish an immunogenic HLA-A24 restricted CTL epitope screening system in HLA-transgenic mice.

Methodology/Principal Findings

HLA-A24 restricted CTL epitope peptides derived from internal proteins of the H5N1 highly pathogenic avian influenza A virus were predicted by CTL epitope peptide prediction programs. Of 35 predicted peptides, six peptides exhibited remarkable cytotoxic activity in vivo. More than half of the mice which were subcutaneously vaccinated with the three most immunogenic and highly conserved epitopes among three different influenza A virus subtypes (H1N1, H3N2 and H5N1) survived lethal influenza virus challenge during both effector and memory CTL phases. Furthermore, mice that were intranasally vaccinated with these peptides remained free of clinical signs after lethal virus challenge during the effector phase.

Conclusions/Significance

This CTL epitope peptide selection system can be used as an effective tool for the development of a cross-protective human influenza vaccine. Furthermore this vaccine strategy can be applicable to the development of all intracellular pathogens vaccines to induce epitope-specific CTL that effectively eliminate infected cells.  相似文献   

19.

Background

Several intracellular Leishmania antigens have been identified in order to find a potential vaccine capable of conferring long lasting protection against Leishmania infection. Histones and Acid Ribosomal proteins are already known to induce an effective immune response and have successfully been tested in the cutaneous leishmaniasis mouse model. Here, we investigate the protective ability of L. infantum nucleosomal histones (HIS) and ribosomal acidic protein P0 (LiP0) against L. infantum infection in the hamster model of visceral leishmaniasis using two different strategies: homologous (plasmid DNA only) or heterologous immunization (plasmid DNA plus recombinant protein and adjuvant).

Methodology/Principal Findings

Immunization with both antigens using the heterologous strategy presented a high antibody production level while the homologous strategy immunized group showed predominantly a cellular immune response with parasite load reduction. The pcDNA-LiP0 immunized group showed increased expression ratio of IFN-γ/IL-10 and IFN-γ/TGF-β in the lymph nodes before challenge. Two months after infection hamsters immunized with the empty plasmid presented a pro-inflammatory immune response in the early stages of infection with increased expression ratio of IFN-γ/IL-10 and IFN-γ/TGF-β, whereas hamsters immunized with pcDNA-HIS presented an increase only in the ratio IFN-γ/ TGF-β. On the other hand, hamsters immunized with LiP0 did not present any increase in the IFN-γ/TGF-β and IFN-γ/IL-10 ratio independently of the immunization strategy used. Conversely, five months after infection, hamsters immunized with HIS maintained a pro-inflammatory immune response (ratio IFN-γ/ IL-10) while pcDNA-LiP0 immunized hamsters continued showing a balanced cytokine profile of pro and anti-inflammatory cytokines. Moreover we observed a significant reduction in parasite load in the spleen, liver and lymph node in this group compared with controls.

Conclusions/Significance

Our results suggest that vaccination with L. infantum LiP0 antigen administered in a DNA formulation could be considered a potential component in a vaccine formulation against visceral leishmaniasis.  相似文献   

20.
alpha fetoprotein (AFP)-derived peptide epitopes can be recognized by human T cells in the context of MHC class I. We determined the identity of AFP-derived peptides, presented in the context of HLA-A*0201, that could be recognized by the human (h) T cell repertoire. We screened 74 peptides and identified 3 new AFP epitopes, hAFP(137-145), hAFP(158-166), and hAFP(325-334), in addition to the previously reported hAFP(542-550.) Each possesses two anchor residues and stabilized HLA-A*0201 on T2 cells in a concentration-dependent class I binding assay. The peptides were stable for 2-4 h in an off-kinetics assay. Each peptide induced peptide-specific T cells in vitro from several normal HLA-A*0201 donors. Importantly, these hAFP peptide-specific T cells also were capable of recognizing HLA-A*0201(+)/AFP(+) tumor cells in both cytotoxicity assays and IFN-gamma enzyme-linked immunospot assays. The immunogenicity of each peptide was tested in vivo with HLA-A*0201/K(b)-transgenic mice. After immunization with each peptide emulsified in CFA, draining lymph node cells produced IFN-gamma on recognition of cells stably transfected with hAFP. Furthermore, AFP peptide-specific T cells could be identified in the spleens of mice immunized with dendritic cells transduced with an AFP-expressing adenovirus (AdVhAFP). Three of four AFP peptides could be identified by mass spectrometric analysis of surface peptides from an HLA-A*0201 human hepatocellular carcinoma (HCC) cell line. Thus, compelling immunological and physiochemical evidence is presented that at least four hAFP-derived epitopes are naturally processed and presented in the context of class I, are immunogenic, and represent potential targets for hepatocellular carcinoma immunotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号