首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accumulation of saturated fatty acids in the liver can cause nonalcoholic fatty liver disease (NAFLD). This study investigated saturated fatty acid induction of endoplasmic reticulum (ER) stress and apoptosis in human liver cells and the underlying causal mechanism. Human liver L02 and HepG2 cell lines were exposed to the saturated fatty acid sodium palmitate. MTT assay was used for cell viability, flow cytometry and Hoechst 33258 staining for apoptosis, RT-PCR for mRNA expression, and Western blot for protein expression. Silence of PRK-like ER kinase (PERK) expression in liver cells was through transient transfection of PERK shRNA. Treatment of L02 and HepG2 cells with sodium palmitate reduced cell viability through induction of apoptosis. Sodium palmitate also induced ER stress in the cells, indicated by upregulation of PERK phosphorylation and expression of BiP, ATF4, and CHOP proteins. Sodium palmitate had little effect on activating XBP-1, a common target of the other two canonical sensors of ER stress, ATF6, and IRE1. Knockdown of PERK gene expression suppressed the PERK/ATF4/CHOP signaling pathway during sodium palmitate-induced ER stress and significantly inhibited sodium palmitate-induced apoptosis in L02 and HepG2 cells. Saturated fatty acid-induced ER stress and apoptosis in these human liver cells were enacted through the PERK/ATF4/CHOP signaling pathway. Future study is warranted to investigate the role of these proteins in mediating saturated fatty acid-induced NAFLD in animal models.  相似文献   

2.
Saturated free fatty acids (FFA) induce hepatocyte lipoapoptosis, a key mediator of liver injury in nonalcoholic fatty liver disease (NAFLD). Lipoapoptosis involves the upregulation of the BH3-only protein PUMA, a potent pro-apoptotic protein. Given that dysregulation of hepatic microRNA expression has been observed in NAFLD, we examined the role of miRNA in regulating PUMA expression during lipotoxicity. By in silico analysis, we identified two putative binding sites for miR-296-5p within the 3' untranslated region (UTR) of PUMA mRNA. Enforced miR-296-5p levels efficiently reduced PUMA protein expression in Huh-7 cells, while antagonism of miR-296-5p function increased PUMA cellular levels. Reporter gene assays identified PUMA 3'UTR as a direct target of miR-296-5p. The saturated FFA, palmitate, repressed miR-296-5p expression; and Huh-7 cells were sensitized to palmitate-induced lipotoxicity by antagonism of miR-296-5p function using a targeted locked nucleic acid (LNA). Finally, miR-296-5p was reduced in liver samples from nonalcoholic steatohepatitis (NASH) patients compared with patients with simple steatosis (SS) or controls. Also miR-296-5p levels inversely varied with PUMA mRNA levels in human liver specimens. Our results implicate miR-296-5p in the regulation of PUMA expression during hepatic lipoapoptosis. We speculate that enhancement of miR-296-5p expression may represent a novel approach to minimize apoptotic damage in human fatty liver diseases.  相似文献   

3.
4.
5.
Elevated extracellular lipids, such as the free fatty acid palmitate, can induce pancreatic beta cell endoplasmic reticulum (ER) stress and apoptosis, thereby contributing to the initiation and progression of type 2 diabetes. ATP-citrate lyase (ACLY), a key enzyme in cellular lipid production, was identified as a palmitate target in a proteomic screen. We investigated the effects of palmitate on ACLY activity and phosphorylation and its role in beta cell ER stress and apoptosis. We demonstrated that treatment of MIN6 cells, mouse islets and human islets with palmitate reduced ACLY protein levels. These in vitro results were validated by our finding that islets from high fat-fed mice had a significant decrease in ACLY, similar to that previously observed in type 2 diabetic human islets. Palmitate decreased intracellular acetyl-CoA levels to a similar degree as the ACLY inhibitor, SB-204990, suggesting a reduction in ACLY activity. ACLY inhibitors alone were sufficient to induce CCAAT/enhancer-binding protein homologues protein (CHOP)-dependent ER stress and caspase-3-dependent apoptosis. Similarly, even modest shRNA-mediated knockdown of ACLY caused a significant increase in beta cell apoptosis and ER stress. The effects of chemical ACLY inhibition and palmitate were non-additive and therefore potentially mediated by a common mechanism. Indeed, overexpression of ACLY prevented palmitate-induced beta cell death. These observations provide new evidence that ACLY expression and activity can be suppressed by exogenous lipids and demonstrate a critical role for ACLY in pancreatic beta cell survival. These findings add to the emerging body of evidence linking beta cell metabolism with programmed cell death.  相似文献   

6.

Background

Clinical trials have shown that treatment of patients with type 2 diabetes with pioglitazone, a peroxisome proliferator-activated receptor (PPAR)γ agonist, reduces cardiovascular events. However, the effect of PPARγ agonists on endoplasmic reticulum (ER) stress that plays an important role in the progression of atherosclerosis has not been determined. We sought to determine the effect of PPARγ agonists on ER stress induced by palmitate, the most abundant saturated fatty acid in the serum.

Methods and Results

Protein expression of ER stress marker was evaluated by Western blot analysis and stearoyl-CoA desaturase1 (SCD-1) mRNA expression was evaluated by qRT-PCR. Macrophage apoptosis was detected by flowcytometry. Pioglitazone and rosiglitazone reduced palmitate-induced phosphorylation of PERK, a marker of ER stress, in RAW264.7, a murine macrophage cell line. Pioglitazone also suppressed palmitate-induced apoptosis in association with inhibition of CHOP expression, JNK phosphorylation and cleavage of caspase-3. These effects of pioglitazone were reversed by GW9662, a PPARγ antagonist, indicating that PPARγ is involved in this process. PPARγ agonists increased expression of SCD-1 that introduces a double bond on the acyl chain of long-chain fatty acid. 4-(2-Chlorophenoxy)-N-(3-(3-methylcarbamoyl)phenyl)piperidine-1-carboxamide, an inhibitor of SCD-1, abolished the anti-ER stress and anti-apoptotic effects of pioglitazone. These results suggest that PPARγ agonists attenuate palmitate-induced ER stress and apoptosis through SCD-1 induction. Up-regulation of SCD-1 may contribute to the reduction of cardiovascular events by treatment with PPARγ agonists.  相似文献   

7.
Lipotoxicity in pancreatic β-cells, arising from excess free fatty acid-induced endoplasmic reticulum (ER) stress response, has been recognized as a key pathogenic factor causing loss of β-cell mass and contributing to type 2 diabetes. However, how the adaptive ER stress response causes cell death remains enigmatic. We report herein a critical role of cellular inhibitor of apoptosis protein-1 (cIAP1) in controlling β-cell survival under ER stress. While both palmitate and palmitoleate induced an overt ER stress response, lipotoxicity was only observed in β-cells exposed to palmitate but not palmitoleate. Interestingly, cells treated with palmitoleate exerted a sustainable level of cIAP1, whereas the protein quickly degraded following palmitate treatment. Enforced overexpression of cIAP1 prevented palmitate-induced cell death. In contrast, siRNA-mediated knockdown of cIAP1 in β-cells or knock-out of cIap1 in mouse embryonic fibroblasts not only increased palmitate-induced apoptosis, but also committed cells to death in response to the nontoxic palmitoleate treatment. Of importance, we found that cIAP1 functions as an E3 ubiquitin ligase promoting ubiquitination and degradation of C/EBP homologous protein (CHOP), a key mediator of ER stress-induced cell death. These findings define a novel mechanism for β-cell survival under ER stress and help to identify targets for therapeutic intervention against lipotoxicity in β-cells.  相似文献   

8.
9.
Excessive consumption of saturated fat leads to non-alcoholic fatty liver disease (NAFLD), which is attenuated by supplementation of n-3 polyunsaturated fatty acids (PUFAs). Endoplasmic reticulum (ER) stress is crucial in the development of NAFLD, but how high-saturated fat diet (HFD) causes ER stress and NAFLD remains unclear. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is involved in hepatic ER stress. We aimed to explore the roles of LOX-1 in HFD-induced ER stress. Male Sprague–Dawley rats were fed an HFD without or with supplementation of fish oil for 16 weeks. The effects of n-3 PUFAs on hepatic ER stress degrees and the expression levels of LOX-1 were examined. Then human L02 hepatoma cells were treated with palmitate or palmitate and DHA to determine the ER stress and LOX-1 expression levels in vitro. After that the expression of LOX-1 in L02 cells was either knocked-down or overexpressed to analyze the roles of LOX-1 in palmitate-induced ER stress. The feeding of HFD induced NAFLD development and ER stress in the liver, and LOX-1 expressing level, which were all reversed by fish oil supplementation. In vitro, DHA treatment reduced the expression of LOX-1, and palmitate-induced ER stress. SiRNA-mediated knock-down of LOX-1 inhibited palmitate-induced ER stress, whereas overexpression of LOX-1 dramatically induced ER stress in L02 cells.LOX-1 is critical for HFD-induced ER stress, and inhibition of its expression under the treatment of n-3 PUFAs could ameliorate HFD-induced NAFLD.  相似文献   

10.

Background

Aberrant microRNA (miRNA) expression is associated with tumor development. This study aimed to elucidate the role of miR-615-5p in the development of pancreatic ductal adenocarcinoma (PDAC).

Methods

Locked nucleic acid in situ hybridization (LNA-ISH) was performed to compare miR-615-5p expression in patients between PDAC and matched adjacent normal tissues. Effects of miR-615-5p overexpression on cell proliferation, apoptosis, colony formation, migration, and invasion were determined in the pancreatic cancer cell lines PANC-1 and MIA PaCa-2. Effects of miR-615-5p on AKT2 were examined by dual-luciferase reporter assay. Lentivirus expressing miR-615 was used to create stable overexpression cell lines, which were subsequently used in mouse xenograft and metastasis models to assess tumor growth, apoptosis and metastasis.

Results

miR-615-5p expression was significantly lower in PDAC than in adjacent normal tissues. Low levels of miR-615-5p were independently associated with poor prognosis (HR: 2.243, 95% CI: 1.190-4.227, P=0.013). AKT2 protein expression was inversely correlated with miR-615-5p expression (r=-0.3, P=0.003). miR-615-5p directly targeted the 3’-untranslated region of AKT2 mRNA and repressed its expression. miR-615-5p overexpression inhibited pancreatic cancer cell proliferation, migration, and invasion in vitro, and tumor growth and metastasis in vivo. Furthermore, miR-615-5p overexpression also induced pancreatic cancer cell apoptosis both in vitro and in vivo.

Conclusions

These results show that miR-615-5p inhibits pancreatic cancer cell proliferation, migration, and invasion by targeting AKT2. The data implicate miR-615-5p in the prognosis and treatment of PDAC.  相似文献   

11.
Induction of endoplasmic reticulum (ER) stress and apoptosis by elevated exogenous saturated fatty acids (FAs) plays a role in the pathogenesis of β-cell dysfunction and loss of islet mass in type 2 diabetes. Regulation of monounsaturated FA (MUFA) synthesis through FA desaturases and elongases may alter the susceptibility of β-cells to saturated FA-induced ER stress and apoptosis. Herein, stearoyl-CoA desaturase (SCD)1 and SCD2 mRNA expression were shown to be induced in islets from prediabetic hyperinsulinemic Zucker diabetic fatty (ZDF) rats, whereas SCD1, SCD2, and fatty acid elongase 6 (Elovl6) mRNA levels were markedly reduced in diabetic ZDF rat islets. Knockdown of SCD in INS-1 β-cells decreased desaturation of palmitate to MUFA, lowered FA partitioning into complex neutral lipids, and increased palmitate-induced ER stress and apoptosis. Overexpression of SCD2 increased desaturation of palmitate to MUFA and attenuated palmitate-induced ER stress and apoptosis. Knockdown of Elovl6 limited palmitate elongation to stearate, increasing palmitoleate production and attenuating palmitate-induced ER stress and apoptosis, whereas overexpression of Elovl6 increased palmitate elongation to stearate and palmitate-induced ER stress and apoptosis. Overall, these data support the hypothesis that enhanced MUFA synthesis via upregulation of SCD2 activity can protect β-cells from elevated saturated FAs, as occurs in prediabetic states. Overt type 2 diabetes is associated with diminished islet expression of SCD and Elovl6, and this can disrupt desaturation of saturated FAs to MUFAs, rendering β-cells more susceptible to saturated FA-induced ER stress and apoptosis.  相似文献   

12.
Endoplasmic reticulum (ER) stress has been implicated in Parkinson disease. We previously reported that thioredoxin 1 (Trx-1) suppressed the ER stress caused by 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine; however, its molecular mechanism remains largely unknown. In the present study, we showed that 1-methyl-4-phenylpyridinium ion (MPP+) induced ER stress by activating glucose-regulated protein 78 (GRP78), inositol-requiring enzyme 1α (IRE1α), tumor necrosis factor receptor-associated factor 2 (TRAF2), c-Jun N-terminal kinase (JNK), caspase-12, and C/EBP homologous protein (CHOP) in PC12 cells. The downregulation of Trx-1 aggravated the ER stress and further increased the expression of the above molecules induced by MPP+. In contrast, overexpression of Trx-1 attenuated the ER stress and repressed the expression of the above molecules induced by MPP+. More importantly, the overexpression of Trx-1 in transgenic mice suppressed ER stress by inhibiting the activation of these molecules. We present, for the first time, the molecular mechanism of Trx-1 suppression of endoplasmic reticulum stress in Parkinson disease in vitro and in vivo. Based on our findings, we conclude that Trx-1 plays a neuroprotective role in Parkinson disease by suppressing ER stress by regulating the activation of GRP78, IRE1α, TRAF2, JNK, caspase-12, and CHOP.  相似文献   

13.

Background

Palmitate, a saturated fatty acid (FA), is known to induce toxicity and cell death in various types of cells. Resveratrol (RSV) is able to prevent pathogenesis and/or decelerate the progression of a variety of diseases. Several in vitro and in vivo studies have also shown a protective effect of RSV on fat accumulation induced by FAs. Additionally, endoplasmic reticulum (ER) stress has recently been linked to cellular adipogenic responses. To address the hypothesis that the RSV effect on excessive fat accumulation promoted by elevated saturated FAs could be partially mediated by a reduction of ER stress, we studied the RSV action on experimentally induced ER stress using palmitate in several cancer cell lines.

Principal Findings

We show that, unexpectedly, RSV promotes an amplification of palmitate toxicity and cell death and that this mechanism is likely due to a perturbation of palmitate accumulation in the triglyceride form and to a less important membrane fluidity variation. Additionally, RSV decreases radical oxygen species (ROS) generation in palmitate-treated cells but leads to enhanced X-box binding protein-1 (XBP1) splicing and C/EBP homologous protein (CHOP) expression. These molecular effects are induced simultaneously to caspase-3 cleavage, suggesting that RSV promotes palmitate lipoapoptosis primarily through an ER stress-dependent mechanism. Moreover, the lipotoxicity reversion induced by eicosapentaenoic acid (EPA) or by a liver X receptor (LXR) agonist reinforces the hypothesis that RSV-mediated inhibition of palmitate channeling into triglyceride pools could be a key factor in the aggravation of palmitate-induced cytotoxicity.

Conclusions

Our results suggest that RSV exerts its cytotoxic role in cancer cells exposed to a saturated FA context primarily by triglyceride accumulation inhibition, probably leading to an intracellular palmitate accumulation that triggers a lipid-mediated cell death. Additionally, this cell death is promoted by ER stress through a CHOP-mediated apoptotic process and may represent a potential anticancer strategy.  相似文献   

14.
15.
Although fatty acids enhance preadipocyte differentiation in the presence of adequate hormone cocktails, little is known regarding their effects in the absence of these hormones. We have now shown that palmitate, a common long-chain saturated fatty acid, induced apoptosis in both mouse 3T3-L1 and rat primary preadipocytes grown in a normal serum-containing medium. Treatment of preadipocytes with palmitate induced multiple endoplasmic reticulum (ER) stress responses, evidenced by increased protein content of CHOP and GRP78 and splicing of XBP-1 mRNA, as well as altered phosphorylation of eIF2alpha and increased phosphorylation of JNK and Erk1/2. Intriguingly, palmitate induced an early activation of Akt but diminished both Akt activation and its protein mass after prolonged incubation (>6 h). In association with these changes, palmitate reduced expression of beta-catenin and its downstream target, c-Myc and cyclin D1, two key prosurvival proteins. Overexpression of constitutively active Akt did not block the apoptotic effect of palmitate. Cotreatment with unsaturated fatty acids (oleate, linoleate) or with LiCl (a glycogen synthase kinase-3beta inhibitor) attenuated the palmitate-induced apoptosis. Subsequent analysis suggested that the unsaturated fatty acids probably counteracted palmitate by reducing, not eliminating, ER stress, whereas LiCl probably improved viability by activating the Wnt signaling pathway. Cotreatment of palmitate with a standard adipogenic hormone cocktail also abolished the apoptotic effect and promoted adipocyte differentiation. Collectively, our results suggest that palmitate causes multiple cellular stresses that may lead to apoptosis in preadipocytes in the absence of adipogenic stimuli, highlighting the importance of exogenous hormones in directing cell fate in response to increased fatty acid influx.  相似文献   

16.
17.
18.
Free fatty acids (FFAs) are believed to be a stimulus to elicit beta cell dysfunction. The present study was undertaken to determine whether endoplasmic reticulum (ER) stress was involved in palmitate-induced inhibition of glucose-stimulated insulin secretion (GSIS) and whether reduction of ER stress using a chemical chaperone restored the GSIS-inhibition. Treatment of INS-1 cells with 300 μM palmitate for 24 h elicited ER stress, showing increased levels of phospho-eIF2α, Bip and spliced XBP, and also induced GSIS-inhibition without reduction of cell viability. Replenishment with 4-phenyl butyric acid (4-PBA) as a chemical chaperone reduced the palmitate-induced-ER stress and significantly reversed the palmitate-induced GSIS-inhibition. Furthermore, 4-PBA ameliorated palmitate-induced GSIS-inhibition in primary rat islet cells. These data suggested that ER stress was involved in FFA-induced GSIS-inhibition and that the FFA-induced beta cell dysfunction could be ameliorated by treatment with a chemical chaperone.  相似文献   

19.
Huang HL  Wu JL  Chen MH  Hong JR 《PloS one》2011,6(8):e22935
Aquatic birnavirus induces mitochondria-mediated cell death, but whether connects to endoplasmic reticulum (ER) stress is still unknown. In this present, we characterized that IPNV infection triggers ER stress-mediated cell death via PKR/eIF2α phosphorylation signaling for regulating the Bcl-2 family protein expression in fish cells. The IPNV infection can induce ER stress as follows: (1) ER stress sensor ATF6 cleavaged; (2) ER stress marker GRP78 upregulation, and (3) PERK/eIF2α phosphorylation. Then, the IPNV-induced ER stress signals can induce the CHOP expression at early (6 h p.i.) and middle replication (12 h p.i.) stages. Moreover, IPNV-induced CHOP upregulation dramatically correlates to apparently downregulate the Bcl-2 family proteins, Bcl-2, Mcl-1 and Bcl-xL at middle replication stage (12 h p.i.) and produces mitochondria membrane potential (MMP) loss and cell death. Furthermore, with GRP78 synthesis inhibitor momitoxin (VT) and PKR inhibitor 2-aminopurine (2-AP) treatment for blocking GRP78 expression and eIF2α phosphorylation, PKR/PERK may involve in eIF2α phosphorylation/CHOP upregulation pathway that enhances the downstream regulators Bcl-2 family proteins expression and increased cell survival. Taken together, our results suggest that IPNV infection activates PKR/PERK/eIF2α ER stress signals for regulating downstream molecules CHOP upregulation and Bcl-2 family downregulation that led to induce mitochondria-mediated cell death in fish cells, which may provide new insight into RNA virus pathogenesis and disease.  相似文献   

20.
Macrophage apoptosis is a host innate defense mechanism against tuberculosis (TB). In this study, we found that percentage of apoptotic cells in peripheral blood monocytes from patients with active TB was lower than that from healthy controls (p<0.001). To understand whether microRNAs can modulate apoptosis of monocytes, we investigated differentially expressed microRNAs in patients with active TB. miR-582-5p was mainly expressed in monocytes and was upregulated in patients with active TB. The apoptotic percentage of THP-1 cells transfected with miR-582-5p mimics was significantly lower than those transfected with negative control of microRNA mimics (p<0.001), suggesting that miR-582-5p could inhibit apoptosis of monocytes. To our knowledge, the role of miR-582-5p in regulating apoptosis of monocytes has not been reported so far. Systematic bioinformatics analysis indicated that FOXO1 might be a target gene for miR-582-5p and its 3′UTR contains potential binding sites for miR-582-5p. To determine whether miR-582-5p could influence FOXO1 expression, miR-582-5p mimics or negative control of microRNA mimics were transfected into THP-1 cells. RT-PCR and western blot analysis showed that the miR-582-5p could suppress both FOXO1 mRNA and protein expression. Co-transfection of miR-582-5p and FOXO1 3′UTR-luciferase reporter vector into cells demonstrated that significant decrease in luciferase activity was only found in reporter vector that contained a wild type sequence of FOXO1 3′UTR, suggesting that miR-582-5p could directly target FOXO1. In conclusion, miR-582-5p inhibited apoptosis of monocytes by down-regulating FOXO1 expression and might play an important role in regulating anti-M. tuberculosis directed immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号