首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 2-carboxy-6-hydroxyoctahydroindole (Choi) moiety is a hallmark of aeruginosins, a class of cyanobacterial derived bioactive linear tetrapeptides that possess antithrombotic activity. The biosynthetic pathway of Choi has yet to be resolved. AerE is a cupin superfamily enzyme that was shown to be involved in the biosynthesis of Choi, but its exact role remains unclear. This study reports the functional characterization and structural analyses of AerE. Enzymatic observation reveals that AerE can dramatically accelerate 1,3-allylic isomerization of the non-aromatic decarboxylation product of prephenate, dihydro-4-hydroxyphenylpyruvate (H2HPP). This olefin isomerization reaction can occur non-enzymatically and is the second step of the biosynthetic pathway from prephenate to Choi. The results of comparative structural analysis and substrate analogue binding geometry analysis combined with the results of mutational studies suggest that AerE employs an induced fit strategy to bind and stabilize the substrate in a particular conformation that is possibly favorable for 1,3-allylic isomerization of H2HPP through coordinate bonds, hydrogen bonds, π–π conjugation interaction and hydrophobic interactions. All of these interactions are critical for the catalytic efficiency.  相似文献   

2.
l-Sorbose reductase from Gluconobacter frateurii (SR) is an NADPH-dependent oxidoreductase. SR preferentially catalyzes the reversible reaction between d-sorbitol and l-sorbose with high substrate specificity. To elucidate the structural basis of the catalytic mechanism and the substrate specificity of SR, we have determined the structures of apo-SR, SR in complex with NADPH, and the inactive mutant (His116Leu) of SR in complex with NADPH and l-sorbose at 2.83 Å, 1.90 Å, and 1.80 Å resolutions, respectively. Our results show that SR belongs to the short-chain dehydrogenase/reductase (SDR) family and forms a tetrameric structure. Although His116 is not conserved among SDR family enzymes, the structures of SR have revealed that His116 is important for the stabilization of the proton relay system and for active-site conformation as a fourth catalytic residue. In the ternary complex structure, l-sorbose is recognized by 11 hydrogen bonds. Site-directed mutagenesis of residues around the l-sorbose-binding site has shown that the loss of almost full enzymatic activity was caused by not only the substitution of putative catalytic residues but also the substitution of the residue used for the recognition of the C4 hydroxyl groups of l-sorbose (Glu154) and of the residues used for the construction of the substrate-binding pocket (Cys146 and Gly188). The recognition of the C4 hydroxyl group of l-sorbose would be indispensable for the substrate specificity of SR, which recognizes only l-sorbose and d-sorbitol but not other sugars. Our results indicated that these residues were crucial for the substrate recognition and specificity of SR.  相似文献   

3.
Yeast xylose reductases are hypothesized as hybrid enzymes as their primary sequences contain elements of both the aldo-keto reductases (AKR) and short chain dehydrogenase/reductase (SDR) enzyme families. During catalysis by members of both enzyme families, an essential Lys residue H-bonds to a Tyr residue that donates proton to the aldehyde substrate. In the Saccharomyces cerevisiae xylose reductase, Tyr49 has been identified as the proton donor. However, the primary sequence of the enzyme contains two Lys residues, Lys53 and Lys78, corresponding to the conserved motifs for SDR and AKR enzyme families, respectively, that may H-bond to Tyr49. We used site-directed mutagenesis to substitute each of these Lys residues with Met. The activity of the K53M variant was slightly decreased as compared to the wild-type, while that of the K78M variant was negligible. The results suggest that Lys78 is the essential residue that H-bonds to Tyr49 during catalysis and indicate that the active site residues of yeast xylose reductases match those of the AKR, rather than SDR, enzymes. Intrinsic enzyme fluorescence spectroscopic analysis suggests that Lys78 may also contribute to the efficient binding of NADPH to the enzyme.  相似文献   

4.
Isoflavonoids are commonly found in leguminous plants, where they play important roles in plant defense and have significant health benefits for animals and humans. Vestitone reductase catalyzes a stereospecific NADPH-dependent reduction of (3R)-vestitone in the biosynthesis of the antimicrobial isoflavonoid phytoalexin medicarpin. The crystal structure of alfalfa (Medicago sativa L.) vestitone reductase has been determined at 1.4 A resolution. The structure contains a classic Rossmann fold domain in the N terminus and a small C-terminal domain. Sequence and structural analysis showed that vestitone reductase is a member of the short-chain dehydrogenase/reductase (SDR) superfamily despite the low levels of sequence identity, and the prominent structural differences from other SDR enzymes with known structures. The putative binding sites for the co-factor NADPH and the substrate (3R)-vestitone were defined and located in a large cleft formed between the N and C-terminal domains of enzyme. Potential key residues for enzyme activity were also identified, including the catalytic triad Ser129-Tyr164-Lys168. A molecular docking study showed that (3R)-vestitone, but not the (3S) isomer, forms favored interactions with the co-factor and catalytic triad, thus providing an explanation for the enzyme's strict substrate stereo-specificity.  相似文献   

5.
Homodimeric proton-translocating pyrophosphatase (H+-PPase; EC 3.6.1.1) is indispensable for many organisms in maintaining organellar pH homeostasis. This unique proton pump couples the hydrolysis of PPi to proton translocation across the membrane. H+-PPase consists of 14–16 relatively hydrophobic transmembrane domains presumably for proton translocation and hydrophilic loops primarily embedding a catalytic site. Several highly conserved polar residues located at or near the entrance of the transport pathway in H+-PPase are essential for proton pumping activity. In this investigation single molecule FRET was employed to dissect the action at the pathway entrance in homodimeric Clostridium tetani H+-PPase upon ligand binding. The presence of the substrate analog, imidodiphosphate mediated two sites at the pathway entrance moving toward each other. Moreover, single molecule FRET analyses after the mutation at the first proton-carrying residue (Arg-169) demonstrated that conformational changes at the entrance are conceivably essential for the initial step of H+-PPase proton translocation. A working model is accordingly proposed to illustrate the squeeze at the entrance of the transport pathway in H+-PPase upon substrate binding.  相似文献   

6.
Joachim Reimann  Pia Ädelroth 《BBA》2007,1767(5):362-373
Nitric oxide reductase (NOR) from P. denitrificans is a membrane-bound protein complex that catalyses the reduction of NO to N2O (2NO + 2e + 2H+ → N2O + H2O) as part of the denitrification process. Even though NO reduction is a highly exergonic reaction, and NOR belongs to the superfamily of O2-reducing, proton-pumping heme-copper oxidases (HCuOs), previous measurements have indicated that the reaction catalyzed by NOR is non-electrogenic, i.e. not contributing to the proton electrochemical gradient. Since electrons are provided by donors in the periplasm, this non-electrogenicity implies that the substrate protons are also taken up from the periplasm. Here, using direct measurements in liposome-reconstituted NOR during reduction of both NO and the alternative substrate O2, we demonstrate that protons are indeed consumed from the ‘outside’. First, multiple turnover reduction of O2 resulted in an increase in pH on the outside of the NOR-vesicles. Second, comparison of electrical potential generation in NOR-liposomes during oxidation of the reduced enzyme by either NO or O2 shows that the proton transfer signals are very similar for the two substrates proving the usefulness of O2 as a model substrate for these studies. Last, optical measurements during single-turnover oxidation by O2 show electron transfer coupled to proton uptake from outside the NOR-liposomes with a τ = 15 ms, similar to results obtained for net proton uptake in solubilised NOR [U. Flock, N.J. Watmough, P. Ädelroth, Electron/proton coupling in bacterial nitric oxide reductase during reduction of oxygen, Biochemistry 44 (2005) 10711-10719]. NOR must thus contain a proton transfer pathway leading from the periplasmic surface into the active site. Using homology modeling with the structures of HCuOs as templates, we constructed a 3D model of the NorB catalytic subunit from P. denitrificans in order to search for such a pathway. A plausible pathway, consisting of conserved protonatable residues, is suggested.  相似文献   

7.
8.
L-Xylulose reductase (XR), an enzyme in the uronate cycle of glucose metabolism, belongs to the short-chain dehydrogenase/reductase (SDR) superfamily. Among the SDR enzymes, XR shows the highest sequence identity (67%) with mouse lung carbonyl reductase (MLCR), but the two enzymes show different substrate specificities. The crystal structure of human XR in complex with reduced nicotinamide adenine dinucleotide phosphate (NADPH) was determined at 1.96 A resolution by using the molecular replacement method and the structure of MLCR as the search model. Features unique to human XR include electrostatic interactions between the N-terminal residues of subunits related by the P-axis, termed according to SDR convention, and an interaction between the hydroxy group of Ser185 and the pyrophosphate of NADPH. Furthermore, identification of the residues lining the active site of XR (Cys138, Val143, His146, Trp191, and Met200) together with a model structure of XR in complex with L-xylulose, revealed structural differences with other members of the SDR family, which may account for the distinct substrate specificity of XR. The residues comprising a recently proposed catalytic tetrad in the SDR enzymes are conserved in human XR (Asn107, Ser136, Tyr149, and Lys153). To examine the role of Asn107 in the catalytic mechanism of human XR, mutant forms (N107D and N107L) were prepared. The two mutations increased K(m) for the substrate (>26-fold) and K(d) for NADPH (95-fold), but only the N107L mutation significantly decreased k(cat) value. These results suggest that Asn107 plays a critical role in coenzyme binding rather than in the catalytic mechanism.  相似文献   

9.
Chu BC  Lee H 《Current microbiology》2006,53(2):118-123
All yeast xylose reductases, with the exception of that from Schizosaccharomyces pombe, possess the catalytic and coenzyme-binding elements from both the aldo–keto reductase and short-chain dehydrogenase–reductase (SDR) enzyme families in their primary sequences. In the Saccharomyces cerevisiae xylose reductase (XR), the SDR-like coenzyme-binding GXXXGXG motif (Gly motif) is located between residues 128 and 134, with the third Gly residue being replaced by an Asp. We used site-directed mutagenesis to study the role of this SDR-like Gly motif in the S. cerevisiae xylose reductase. Site-directed mutagenesis of the individual conserved Gly residue positions (G128A, G132A, D134G, and D134A) did not significantly affect the specific activity, kinetic constants (Km, Kcat, and Kcat/Km), or dissociation constants (Kd) in any of the variants compared with the wild type. Deletion of the entire Gly motif produced an unstable protein that could not be purified. These results indicate that the SDR-like Gly motif likely provides support to the overall structure of the enzyme, but it does not contribute directly to coenzyme binding in this XR.  相似文献   

10.
Leucoanthocyanidin reductase (LAR) catalyzes the NADPH-dependent reduction of 2R,3S,4S-flavan-3,4-diols into 2R,3S-flavan-3-ols, a subfamily of flavonoids that is important for plant survival and for human nutrition. LAR1 from Vitis vinifera has been co-crystallized with or without NADPH and one of its natural products, (+)-catechin. Crystals diffract to a resolution between 1.75 and 2.72 Å. The coenzyme and substrate binding pocket is preformed in the apoprotein and not markedly altered upon NADPH binding. The structure of the abortive ternary complex, determined at a resolution of 2.28 Å, indicates the ordering of a short 310 helix associated with substrate binding and suggests that His122 and Lys140 act as acid-base catalysts. Based on our 3D structures, a two-step catalytic mechanism is proposed, in which a concerted dehydration precedes an NADPH-mediated hydride transfer at C4. The dehydration step involves a Lys-catalyzed deprotonation of the phenolic OH7 through a bridging water molecule and a His-catalyzed protonation of the benzylic hydroxyl at C4. The resulting quinone methide serves as an electrophilic target for hydride transfer at C4. LAR belongs to the short-chain dehydrogenase/reductase superfamily and to the PIP (pinoresinol-lariciresinol reductase, isoflavone reductase, and phenylcoumaran benzylic ether reductase) family. Our data support the concept that all PIP enzymes reduce a quinone methide intermediate and that the major role of the only residue that has been conserved from the short-chain dehydrogenase/reductase catalytic triad (Ser…TyrXXXLys), that is, lysine, is to promote the formation of this intermediate by catalyzing the deprotonation of a phenolic hydroxyl. For some PIP enzymes, this lysine-catalyzed proton abstraction may be sufficient to trigger the extrusion of the leaving group, whereas in LAR, the extrusion of a hydroxide group requires a more sophisticated mechanism of concerted acid-base catalysis that involves histidine and takes advantage of the OH4, OH5, and OH7 substituents of leucoanthocyanidins.  相似文献   

11.
Perakine reductase (PR) catalyzes an NADPH-dependent step in a side-branch of the 10-step biosynthetic pathway of the alkaloid ajmaline. The enzyme was cloned by a “reverse-genetic” approach from cell suspension cultures of the plant Rauvolfia serpentina (Apocynaceae) and functionally expressed in Escherichia coli as the N-terminal His6-tagged protein. PR displays a broad substrate acceptance, converting 16 out of 28 tested compounds with reducible carbonyl function which belong to three substrate groups: benzaldehyde, cinnamic aldehyde derivatives and monoterpenoid indole alkaloids. The enzyme has an extraordinary selectivity in the group of alkaloids. Sequence alignments define PR as a new member of the aldo-keto reductase (AKR) super family, exhibiting the conserved catalytic tetrad Asp52, Tyr57, Lys84, His126. Site-directed mutagenesis of each of these functional residues to an alanine residue results in >97.8% loss of enzyme activity, in compounds of each substrate group. PR represents the first example of the large AKR-family which is involved in the biosynthesis of plant monoterpenoid indole alkaloids. In addition to a new esterase, PR significantly extends the Rauvolfia alkaloid network to the novel group of peraksine alkaloids. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. The nucleotide sequences reported in this article have been submitted to the Gene Bank under Accession No: AY766462.  相似文献   

12.
Homodimeric proton-translocating pyrophosphatase (H+-PPase; EC 3.6.1.1) maintains the cytoplasmic pH homeostasis of many bacteria and higher plants by coupling pyrophosphate (PPi) hydrolysis and proton translocation. H+-PPase accommodates several essential motifs involved in the catalytic mechanism, including the PPi binding motif and Acidic I and II motifs. In this study, 3 intrinsic tryptophan residues, Trp-75, Trp-365, and Trp-602, in H+-PPase from Clostridium tetani were used as internal probes to monitor the local conformational state of the periplasm domain, transmembrane region, and cytoplasmic domain, respectively. Upon binding of the substrate analog Mg-imidodiphosphate (Mg-IDP), local structural changes prevented the modification of tryptophan residues by N-bromosuccinimide (NBS), especially at Trp-602. Following Mg-Pi binding, Trp-75 and Trp-365, but not Trp-602, were slightly protected from structural modifications by NBS. These results reveal the conformation of H+-PPase is distinct in the presence of different ligands. Moreover, analyses of the Stern-Volmer relationship and steady-state fluorescence anisotropy also indicate that the local structure around Trp-602 is more exposed to solvent and varied under different environments. In addition, Trp-602 was identified to be a crucial residue in the H+-PPase that may potentially be involved in stabilizing the structure of the catalytic region by site-directed mutagenesis analysis.  相似文献   

13.
The NADP-dependent glycerol dehydrogenase (EC 1.1.1.72) from Gluconobacter oxydans is a member of family 11 of the aldo-keto reductase (AKR) enzyme superfamily; according to the systematic nomenclature within the AKR superfamily, the term AKR11B4 has been assigned to the enzyme. AKR11B4 is a biotechnologically attractive enzyme because of its broad substrate spectrum, combined with its distinctive regioselectivity and stereoselectivity. These features can be partially rationalized based on a 2-Å crystal structure of apo-AKR11B4, which we describe and interpret here against the functional complex structures of other members of family 11 of the AKR superfamily. The structure of AKR11B4 shows the AKR-typical (β/α)8 TIM-barrel fold, with three loops and the C-terminal tail determining the particular enzymatic properties. In comparison to AKR11B1 (its closest AKR relative), AKR11B4 has a relatively broad binding cleft for the cosubstrate NADP/NADPH. In the crystalline environment, it is completely blocked by the C-terminal segment of a neighboring protomer. The structure reveals a conspicuous tryptophan residue (Trp23) that has to adopt an unconventional and strained side-chain conformation to permit cosubstrate binding. We predict and confirm by site-directed mutagenesis that Trp23 is an accelerator of (co)substrate turnover. Furthermore, we show that, simultaneously, this tryptophan residue is a critical determinant for substrate binding by the enzyme, while enantioselectivity is probably governed by a methionine residue within the C-terminal tail. We present structural reasons for these notions based on ternary complex models of AKR11B4, NADP, and either octanal, d-glyceraldehyde, or l-glyceraldehyde.  相似文献   

14.
Enzymes that modulate the level of circulating steroid hormone can be used to combat steroid-dependent disorders. Members of the NADPH-dependent short chain dehydrogenase/reductase (SDR) family control blood pressure, fertility, and natural and neoplastic growth. Despite the fact that only one amino acid residue is strictly conserved in the 60 known members of the family, all appear to have the dinucleotide-binding Rossmann fold and homologous catalytic residues containing the conserved tyrosine. Variation in the amino acid composition of the substrate binding pocket creates specificity of binding for steroids, prostaglandins, sugars and alcohols. Licorice induces high blood pressure by inhibiting an SDR in the kidney, and appears to combat ulcers by inhibiting another in the stomach. Detailed X-ray analyses of various members of the family should allow the design of potent, tissue-specific, highly selective inhibitors.  相似文献   

15.
Site-directed mutagenesis has been used to change one amino acid residue considered non essential (Phe91Asn) to catalysis in carbonic anhydrase (CA, EC 4.2.1.1) isozyme I (hCA I), but which is near the substrate binding pocket of the enzyme. This change led to a steady increase of 16% of the catalytic activity of the mutant hCA I over the wild type enzyme, which is a gain of 50% catalytic efficiency if one compares hCA I and hCA II as catalysts for CO2 hydration. This effect may be due to the bigger hydrophobic pocket in the mutant enzyme compared to the wild type one, which probably leads to the reorganization of the solvent molecules present in the cavity and to a diverse proton transfer pathway in the mutant over the non mutated enzyme. To our surprise, the mutant CA I was not only a better catalyst for the physiologic reaction, but in many cases also showed higher affinity (2.6–15.9 times) for sulfonamide/sulfamate inhibitors compared to the wild type enzyme. As the residue in position 91 is highly variable among the 13 catalytically active CA isoforms, this study may shed a better understanding of catalysis/inhibition by this superfamily of enzymes.  相似文献   

16.
Besides residue of the catalytic triad that is conserved in the short-chain dehydrogenase/reductase (SDR) superfamily, a Cys side chain reportedly plays functional roles in NADP-dependent 15-hydroxyprostaglandin dehydrogenase and human carbonyl reductase (CR). The three-dimensional structure of porcine 3alpha/beta,20beta-hydroxysteroid dehydrogenase, also known as porcine testicular carbonyl reductase, demonstrates the proximity of the Cys 226 side chain to the bound NADP. However, no clear explanation with respect to the basis of the catalytic function of the Cys residue is yet available. By chemical modification, point mutation, and kinetic analysis, we determine that two Cys residues, Cys 149 and Cys 226, are involved in the enzyme activity. Furthermore, we found that pretreatment with NADP markedly protects the enzyme from inactivation by 4-(hydroxyl mercury) benzoic acid (4-HMB), thereby confirming that Cys 226 is involved in binding of the cofactor. On the basis of the tertiary structure of 3alpha/beta,20beta-HSD, the possible roles of Cys residues, especially that of Cys 226, in enzyme action and in the binding of cofactor NADPH are discussed.  相似文献   

17.
Here, we report the 1.53-Å crystal structure of the enzyme 7-cyano-7-deazaguanine reductase (QueF) from Vibrio cholerae, which is responsible for the complete reduction of a nitrile (C  N) bond to a primary amine (H2C-NH2). At present, this is the only example of a biological pathway that includes reduction of a nitrile bond, establishing QueF as particularly noteworthy. The structure of the QueF monomer resembles two connected ferrodoxin-like domains that assemble into dimers. Ligands identified in the crystal structure suggest the likely binding conformation of the native substrates NADPH and 7-cyano-7-deazaguanine. We also report on a series of numerical simulations that have shed light on the mechanism by which this enzyme affects the transfer of four protons (and electrons) to the 7-cyano-7-deazaguanine substrate. In particular, the simulations suggest that the initial step of the catalytic process is the formation of a covalent adduct with the residue Cys194, in agreement with previous studies. The crystal structure also suggests that two conserved residues (His233 and Asp102) play an important role in the delivery of a fourth proton to the substrate.  相似文献   

18.
19.
20.
An aldo‐keto reductase AKR5C3 from Gluconobacter oxydans (designated as Gox0644) is a useful enzyme with various substrates, including aldehydes, diacetyl, keto esters, and α‐ketocarbonyl compounds. The crystal structures of AKR5C3 in apoform in complex with NADPH and the D53A mutant (AKR5C3‐D53A) in complex with NADPH are presented herein. Structure comparison and site‐directed mutagenesis combined with biochemical kinetics analysis reveal that the conserved Asp53 in the AKR5C3 catalytic tetrad has a crucial role in securing active pocket conformation. The gain‐of‐function Asp53 to Ala mutation triggers conformational changes on the Trp30 and Trp191 side chains, improving NADPH affinity to AKR5C3, which helps increase catalytic efficiency. The highly conserved Trp30 and Trp191 residues interact with the nicotinamide moiety of NADPH and help form the NADPH‐binding pocket. The AKR5C3‐W30A and AKR5C3‐W191Y mutants show decreased activities, confirming that both residues facilitate catalysis. Residue Trp191 is in the loop structure, and the AKR5C3‐W191Y mutant does not react with benzaldehyde, which might also determine substrate recognition. Arg192, which is involved in the substrate binding, is another important residue. The introduction of R192G increases substrate‐binding affinity by improving hydrophobicity in the substrate‐binding pocket. These results not only supplement the AKRs superfamily with crystal structures but also provide useful information for understanding the catalytic properties of AKR5C3 and guiding further engineering of this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号