首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Magnetotactic bacterium, Magnetospirillum magneticum, produces biogenic magnetic nanoparticles termed magnetosomes, which are primarily composed of a magnetite core and a surrounding lipid bilayer membrane. We have fabricated human transmembrane protein-magnetosome complexes by genetic engineering with embedding the transmembrane proteins of interest, in particular G protein-coupled receptors (GPCRs), in the magnetosome membrane. The magnetosomes provide a promising platform for high throughput ligand screening towards drug discovery, and this is a critical advantage of the magnetosome display system beyond conventional membrane platforms such as liposomes and lipid nano-discs. However, the human GPCRs expressed on the magnetosomes were not fully functionalized in bacterial membranes the most probably due to the lack of essential phospholipids such as phosphatidylcholine (PC) for GPCR functionalization. To overcome this issue, we expressed two types of PC-producing enzymes, phosphatidylcholine synthase (PCS) and phosphatidylethanolamine N-methyltransferase (PMT) in M. magneticum. As a result, generation and incorporation of PC in cell- and magnetosome-membranes were demonstrated. To the best of our knowledge, M. magneticum is the second bacterial species which had the PC-incorporated lipid membrane by genetic engineering. Subsequently, a GPCR, thyroid-stimulating hormone receptor (TSHR) and PCS were simultaneously expressed. We found that PC in the magnetosome membrane assisted the binding of TSHR and its ligand, indicating that the genetic approach demonstrated in this study is useful to enhance the function of the GPCRs displayed on the magnetosomes.  相似文献   

2.
Magnetotactic bacteria synthesize intracellular magnetosomes that are comprised of membrane‐enveloped magnetic crystals. In this study, to identify the early stages of magnetosome formation, we isolated magnetosomes containing small magnetite crystals and those containing regular‐sized magnetite crystals from Magnetospirillum magneticum AMB‐1. This was achieved by using a novel size fractionation technique, resulting in the identification of a characteristic protein (Amb1018/MamY) from the small magnetite crystal fraction. The gene encoding MamY was located in the magnetosome island. Like the previously reported membrane deformation proteins, such as bin/amphiphysin/Rvs (BAR) and the dynamin family proteins, recombinant MamY protein bound directly to the liposomes, causing them to form long tubules. We established a mamY gene deletion mutant (ΔmamY) and analysed MamY protein localization in it for functional characterization of the protein in vivo. The ΔmamY mutant was found to have expanded magnetosome vesicles and a greater number of small magnetite crystals relative to the wild‐type strain, suggesting that the function of the MamY protein is to constrict the magnetosome membrane during magnetosome vesicle formation, following which, the magnetite crystals grow to maturity within them.  相似文献   

3.
Magnetotactic bacteria are a diverse group of prokaryotes that biomineralize intracellular magnetosomes, composed of magnetic (Fe3O4) crystals each enveloped by a lipid bilayer membrane that contains proteins not found in other parts of the cell. Although partial roles of some of these magnetosome proteins have been determined, the roles of most have not been completely elucidated, particularly in how they regulate the biomineralization process. While studies on the localization of these proteins have been focused solely on Magnetospirillum species, the goal of the present study was to determine, for the first time, the localization of the most abundant putative magnetosome membrane protein, MamC, in Magnetococcus marinus strain MC-1. MamC was expressed in Escherichia coli and purified. Monoclonal antibodies were produced against MamC and immunogold labeling TEM was used to localize MamC in thin sections of cells of M. marinus. Results show that MamC is located only in the magnetosome membrane of Mc. marinus. Based on our findings and the abundance of this protein, it seems likely that it is important in magnetosome biomineralization and might be used in controlling the characteristics of synthetic nanomagnetite.  相似文献   

4.
The magnetosomes of magnetotactic bacteria are prokaryotic organelles consisting of a magnetite crystal bounded by a phospholipid bilayer that contains a distinct set of proteins with various functions. Because of their unique magnetic and crystalline properties, magnetosome particles are potentially useful as magnetic nanoparticles in a number of applications, which in many cases requires the coupling of functional moieties to the magnetosome membrane. In this work, we studied the use of green fluorescent protein (GFP) as a reporter for the magnetosomal localization and expression of fusion proteins in the microaerophilic Magnetospirillum gryphiswaldense by flow cytometry, fluorescence microscopy, and biochemical analysis. Although optimum conditions for high fluorescence and magnetite synthesis were mutually exclusive, we established oxygen-limited growth conditions, which supported growth, magnetite biomineralization, and GFP fluorophore formation at reasonable rates. Under these optimized conditions, we studied the subcellular localization and expression of the GFP-tagged magnetosome proteins MamC, MamF, and MamG by fluorescence microscopy and immunoblotting. While all fusions specifically localized at the magnetosome membrane, MamC-GFP displayed the strongest expression and fluorescence. MamC-GFP-tagged magnetosomes purified from cells displayed strong fluorescence, which was sensitive to detergents but stable under a wide range of temperature and salt concentrations. In summary, our data demonstrate the use of GFP as a reporter for protein localization under magnetite-forming conditions and the utility of MamC as an anchor for magnetosome-specific display of heterologous gene fusions.  相似文献   

5.
Magnetotactic bacteria synthesize uniform-sized and regularly shaped magnetic nanoparticles in their organelles termed magnetosomes. Homeostasis of the magnetosome lumen must be maintained for its role accomplishment. Here, we developed a method to estimate the pH of a single living cell of the magnetotactic bacterium Magnetospirillum magneticum AMB-1 using a pH-sensitive fluorescent protein E2GFP. Using the pH measurement, we estimated that the cytoplasmic pH was approximately 7.6 and periplasmic pH was approximately 7.2. Moreover, we estimated pH in the magnetosome lumen and cytoplasmic surface using fusion proteins of E2GFP and magnetosome-associated proteins. The pH in the magnetosome lumen increased during the exponential growth phase when magnetotactic bacteria actively synthesize magnetite crystals, whereas pH at the magnetosome surface was not affected by the growth stage. This live-cell pH measurement method will help for understanding magnetosome pH homeostasis to reveal molecular mechanisms of magnetite biomineralization in the bacterial organelle.  相似文献   

6.
Magnetosomes are prokaryotic organelles produced by magnetotactic bacteria that consist of nanometer-sized magnetite (Fe3O4) or/and greigite (Fe3S4) magnetic crystals enveloped by a lipid bilayer membrane. In magnetite-producing magnetotactic bacteria, proteins present in the magnetosome membrane modulate biomineralization of the magnetite crystal. In these microorganisms, genes that encode for magnetosome membrane proteins as well as genes involved in the construction of the magnetite magnetosome chain, the mam and mms genes, are organized within a genomic island. However, partially because there are presently no greigite-producing magnetotactic bacteria in pure culture, little is known regarding the greigite biomineralization process in these organisms including whether similar genes are involved in the process. Here using culture-independent techniques, we now show that mam genes involved in the production of magnetite magnetosomes are also present in greigite-producing magnetotactic bacteria. This finding suggest that the biomineralization of magnetite and greigite did not have evolve independently (that is, magnetotaxis is polyphyletic) as once suggested. Instead, results presented here are consistent with a model in which the ability to biomineralize magnetosomes and the possession of the mam genes was acquired by bacteria from a common ancestor, that is, the magnetotactic trait is monophyletic.  相似文献   

7.
We examined the structure and biomineralization of prismatic magnetosomes in the magnetotactic marine vibrio Magnetovibrio blakemorei strain MV-1 and a non-magnetotactic mutant derived from it, using a combination of cryo-electron tomography and freeze-fracture. The vesicles enveloping the Magnetovibrio magnetosomes were elongated and detached from the cell membrane. Magnetosome crystal formation appeared to be initiated at a nucleation site on the membrane inner surface. Interestingly, while scattered filaments were observed in the surrounding cytoplasm, their association with the magnetosome chains could not be unequivocally established. Our data suggest fundamental differences between prismatic and octahedral magnetosomes in their mechanisms of nucleation and crystal growth as well as in their structural relationships with the cytoplasm and plasma membrane.  相似文献   

8.
Recent molecular studies on magnetotactic bacteria have identified a number of proteins associated with bacterial magnetites (magnetosomes) and elucidated their importance in magnetite biomineralisation. However, these analyses were limited to magnetotactic bacterial strains belonging to the α‐subclass of Proteobacteria. We performed a proteomic analysis of magnetosome membrane proteins in Desulfovibrio magneticus strain RS‐1, which is phylogenetically classified as a member of the δ‐Proteobacteria. In the analysis, the identified proteins were classified based on their putative functions and compared with the proteins from the other magnetotactic bacteria, Magnetospirillum magneticum AMB‐1 and M. gryphiswaldense MSR‐1. Three magnetosome‐specific proteins, MamA (Mms24), MamK, and MamM, were identified in strains RS‐1, AMB‐1, and MSR‐1. Furthermore, genes encoding ten magnetosome membrane proteins, including novel proteins, were assigned to a putative magnetosome island that contains subsets of genes essential for magnetosome formation. The collagen‐like protein and putative iron‐binding proteins, which are considered to play key roles in magnetite crystal formation, were identified as specific proteins in strain RS‐1. Furthermore, genes encoding two homologous proteins of Magnetococcus MC‐1 were assigned to a cryptic plasmid of strain RS‐1. The newly identified magnetosome membrane proteins might contribute to the formation of the unique irregular, bullet‐shaped crystals in this microorganism.  相似文献   

9.
Magnetospirillum gryphiswaldense and related magnetotactic bacteria form magnetosomes, which are membrane-enclosed organelles containing crystals of magnetite (Fe3O4) that cause the cells to orient in magnetic fields. The characteristic sizes, morphologies, and patterns of alignment of magnetite crystals are controlled by vesicles formed of the magnetosome membrane (MM), which contains a number of specific proteins whose precise roles in magnetosome formation have remained largely elusive. Here, we report on a functional analysis of the small hydrophobic MamGFDC proteins, which altogether account for nearly 35% of all proteins associated with the MM. Although their high levels of abundance and conservation among magnetotactic bacteria had suggested a major role in magnetosome formation, we found that the MamGFDC proteins are not essential for biomineralization, as the deletion of neither mamC, encoding the most abundant magnetosome protein, nor the entire mamGFDC operon abolished the formation of magnetite crystals. However, cells lacking mamGFDC produced crystals that were only 75% of the wild-type size and were less regular than wild-type crystals with respect to morphology and chain-like organization. The inhibition of crystal formation could not be eliminated by increased iron concentrations. The growth of mutant crystals apparently was not spatially constrained by the sizes of MM vesicles, as cells lacking mamGFDC formed vesicles with sizes and shapes nearly identical to those formed by wild-type cells. However, the formation of wild-type-size magnetite crystals could be gradually restored by in-trans complementation with one, two, and three genes of the mamGFDC operon, regardless of the combination, whereas the expression of all four genes resulted in crystals exceeding the wild-type size. Our data suggest that the MamGFDC proteins have partially redundant functions and, in a cumulative manner, control the growth of magnetite crystals by an as-yet-unknown mechanism.  相似文献   

10.
We analyzed the biochemical composition of the magnetosome membrane (MM) in Magnetospirillum gryphiswaldense. Isolated magnetosomes were associated with phospholipids and fatty acids which were similar to phospholipids and fatty acids from other subcellular compartments (i.e., outer and cytoplasmic membranes) but were present in different proportions. The binding characteristics of MM-associated proteins were studied by selective solubilization and limited proteolysis. The MM-associated proteins were further analyzed by various proteomic approaches, including one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by Edman and mass spectrometric (electrospray ionization-mass spectrometry-mass spectrometry) sequencing, as well as capillary liquid chromatography-mass spectrometry-mass spectrometry of total tryptic digests of the MM. At least 18 proteins were found to constitute the magnetosome subproteome, and most of these proteins are novel for M. gryphiswaldense. Except for MM22 and Mms16, all bona fide MM proteins (MMPs) were encoded by open reading frames in the mamAB, mamDC, and mms6 clusters in the previously identified putative magnetosome island. Eight of the MMPs display homology to known families, and some of them occur in the MM in multiple homologues. Ten of the MMPs have no known homologues in nonmagnetic organisms and thus represent novel, magnetotactic bacterium-specific protein families. Several MMPs display repetitive or highly acidic sequence patterns, which are known from other biomineralizing systems and thus may have relevance for magnetite formation.  相似文献   

11.
The ability of magnetotactic bacteria (MTB) to orient and migrate along magnetic field lines is based on magnetosomes, which are membrane-enclosed intracellular crystals of a magnetic iron mineral. Magnetosome biomineralization is achieved by a process involving control over the accumulation of iron and deposition of the magnetic particle, which has a specific morphology, within a vesicle provided by the magnetosome membrane. In Magnetospirillum gryphiswaldense, the magnetosome membrane has a distinct biochemical composition and comprises a complex and specific subset of magnetosome membrane proteins (MMPs). Classes of MMPs include those with presumed function in magnetosome-directed uptake and binding of iron, nucleation of crystal growth, and the assembly of magnetosome membrane multiprotein complexes. Other MMPs comprise protein families of so far unknown function, which apparently are conserved between all other MTB. The mam and mms genes encode most of the MMPs and are clustered within several operons, which are part of a large, unstable genomic region constituting a putative magnetosome island. Current research is directed towards the biochemical and genetic analysis of MMP functions in magnetite biomineralization as well as their expression and localization during growth.Abbreviations MM Magnetosome membrane - MMP Magnetosome membrane protein - MTB Magnetotactic bacteria  相似文献   

12.
Tropomyosin receptor kinase A (TrkA), a receptor tyrosine kinase, is known to be associated with various diseases. Thus, TrkA has become a major drug-screening target for these diseases. Despite the fact that the production of recombinant proteins by prokaryotic hosts has advantages, such as fast growth and ease of genetic engineering, the efficient production of functional receptor tyrosine kinase by prokaryotic hosts remains a major experimental challenge. Here, we report the functional expression of full-length TrkA on magnetosomes in Magnetospirillum magneticum AMB-1 by using a magnetosome display system. TrkA was fused with the magnetosome-localized protein Mms13 and expressed on magnetosome surfaces. Recombinant TrkA showed both nerve growth factor (NGF)-binding and autophosphorylation activities. TrkA expressed on magnetosomes has the potential to be used, not only for further functional analysis of TrkA, but also for ligand screening.  相似文献   

13.
The presence of a narrow shape and size distribution for magnetite crystals within magnetotactic organisms suggests strongly that there are species-specific mechanisms that control the process of biomineralization. In order to explore the extent of this control, cultures of Aquaspirillum magnetotacticum in the exponential growth phase were exposed to increasing magnetic pulses with the aim of separating cell populations on the basis of their magnetic coercivities. Isothermal remanent magnetization and anhysteretic remanent magnetization studies were performed with freeze-dried magnetic cells after the remagnetization treatment. Subpopulations of A. magnetotacticum that showed an increase in coercivity correlated with the intensity of the magnetic pulses were isolated. After successive subcultures of the remaining north-seeking cells, a maximum bulk coercivity (Hbmax) of 40 mT was obtained after treatment with a 55-mT pulse. Although we obtained A. magnetotacticum variants displaying higher coercivities than the wild-type strain, changes in crystal size or shape of the magnetite crystals were below reliable detection limits with transmission electron microscopy. Attempts to shift the coercivity towards higher values caused it to decrease, a change which was accompanied by an increase in magnetostatic interactions of the magnetosome chains as well as an increase in the cell population displaying an abnormal distribution of the magnetosome chains. Ultrastructural analyses of cells and magnetosomes revealed the appearance of cystlike bodies which occasionally contained magnetosomes. The increase in cystlike cells and abnormal magnetosome chains when higher magnetic pulses were used suggested that magnetosomes were collapsing because of stronger interparticle magnetostatic forces.  相似文献   

14.
Magnetospirillum gryphiswaldense MSR‐1 synthesizes membrane‐enclosed magnetite (Fe3O4) nanoparticles, magnetosomes, for magnetotaxis. Formation of these organelles involves a complex process comprising key steps which are governed by specific magnetosome‐associated proteins. MamB, a cation diffusion facilitator (CDF) family member has been implicated in magnetosome‐directed iron transport. However, deletion mutagenesis studies revealed that MamB is essential for the formation of magnetosome membrane vesicles, but its precise role remains elusive. In this study, we employed a multi‐disciplinary approach to define the role of MamB during magnetosome formation. Using site‐directed mutagenesis complemented by structural analyses, fluorescence microscopy and cryo‐electron tomography, we show that MamB is most likely an active magnetosome‐directed transporter serving two distinct, yet essential functions. First, MamB initiates magnetosome vesicle formation in a transport‐independent process, probably by serving as a landmark protein. Second, MamB transport activity is required for magnetite nucleation. Furthermore, by determining the crystal structure of the MamB cytosolic C‐terminal domain, we also provide mechanistic insight into transport regulation. Additionally, we present evidence that magnetosome vesicle growth and chain formation are independent of magnetite nucleation and magnetic interactions respectively. Together, our data provide novel insight into the role of the key bifunctional magnetosome protein MamB, and the early steps of magnetosome formation.  相似文献   

15.
The ultrastructure of the greigite magnetosome membrane in the multicellular magnetotactic bacteria 'Candidatus Magnetoglobus multicellularis' was studied. Each cell contains 80 membrane-enclosed iron-sulfide magnetosomes. Cytochemistry methods showed that the magnetosomes are enveloped by a structure whose staining pattern and dimensions are similar to those of the cytoplasmic membrane, indicating that the magnetosome membrane likely originates from the cytoplasmic membrane. Freeze-fracture showed intramembrane particles in the vesicles surrounding each magnetosome. Observations of cell membrane invaginations, the trilaminar membrane structure of immature magnetosomes, and empty vesicles together suggested that greigite magnetosome formation begins by invagination of the cell membrane, as has been proposed for magnetite magnetosomes.  相似文献   

16.
Numerous applications of conventional and biogenic magnetic nanoparticles (MNPs), such as in diagnostics, immunomagnetic separations, and magnetic cell labeling, require the immobilization of antibodies. This is usually accomplished by chemical conjugation, which, however, has several disadvantages, such as poor efficiency and the need for coupling chemistry. Here, we describe a novel strategy to display a functional camelid antibody fragment (nanobody) from an alpaca (Lama pacos) on the surface of bacterial biogenic magnetic nanoparticles (magnetosomes). Magnetosome-specific expression of a red fluorescent protein (RFP)-binding nanobody (RBP) in vivo was accomplished by genetic fusion of RBP to the magnetosome protein MamC in the magnetite-synthesizing bacterium Magnetospirillum gryphiswaldense. We demonstrate that isolated magnetosomes expressing MamC-RBP efficiently recognize and bind their antigen in vitro and can be used for immunoprecipitation of RFP-tagged proteins and their interaction partners from cell extracts. In addition, we show that coexpression of monomeric RFP (mRFP or its variant mCherry) and MamC-RBP results in intracellular recognition and magnetosome recruitment of RFP within living bacteria. The intracellular expression of a functional nanobody targeted to a specific bacterial compartment opens new possibilities for in vivo synthesis of MNP-immobilized nanobodies. Moreover, intracellular nanotraps can be generated to manipulate bacterial structures in live cells.  相似文献   

17.
Magnetotactic bacteria are able to swim navigating along geomagnetic field lines. They synthesize ferromagnetic nanocrystals that are embedded in cytoplasmic membrane invaginations forming magnetosomes. Regularly aligned in the cytoplasm along cytoskeleton filaments, the magnetosome chain effectively forms a compass needle bestowing on bacteria their magnetotactic behaviour. A large genomic island, conserved among magnetotactic bacteria, contains the genes potentially involved in magnetosome formation. One of the genes, mamK has been described as encoding a prokaryotic actin-like protein which when it polymerizes forms in the cytoplasm filamentous structures that provide the scaffold for magnetosome alignment. Here, we have identified a series of genes highly similar to the mam genes in the genome of Magnetospirillum magneticum AMB-1. The newly annotated genes are clustered in a genomic islet distinct and distant from the known magnetosome genomic island and most probably acquired by lateral gene transfer rather than duplication. We focused on a mamK-like gene whose product shares 54.5% identity with the actin-like MamK. Filament bundles of polymerized MamK-like protein were observed in vitro with electron microscopy and in vivo in E. coli cells expressing MamK-like-Venus fusions by fluorescence microscopy. In addition, we demonstrate that mamK-like is transcribed in AMB-1 wild-type and ΔmamK mutant cells and that the actin-like filamentous structures observed in the ΔmamK strain are probably MamK-like polymers. Thus MamK-like is a new member of the prokaryotic actin-like family. This is the first evidence of a functional mam gene encoded outside the magnetosome genomic island.  相似文献   

18.
Magnetotactic bacteria (MTB) synthesize intracellular magnetic nanocrystals called magnetosomes, which are composed of either magnetite (Fe3O4) or greigite (Fe3S4) and covered with lipid membranes. The production of magnetosomes is achieved by the biomineralization process with strict control over the formation of magnetosome membrane vesicles, uptake and transport of iron ions, and synthesis of mature crystals. These magnetosomes have high potential for both biotechnological and nanotechnological applications, but it is still extremely difficult to grow MTB and produce a large amount of magnetosomes under the conventional cultural conditions. Here, we investigate as a first attempt the effect of polyethylene glycol (PEG) added to the culture medium on the increase in the yield of magnetosomes formed in Magnetospirillum magnetotacticum MS-1. We find that the yield of the formation of magnetosomes can be increased up to approximately 130 % by adding PEG200 to the culture medium. We also measure the magnetization of the magnetosomes and find that the magnetosomes possess soft ferromagnetic characteristics and the saturation mass magnetization is increased by 7 %.  相似文献   

19.
The ability of magnetotactic bacteria (MTB) to orient in magnetic fields is based on the synthesis of magnetosomes, which are unique prokaryotic organelles comprising membrane-enveloped, nano-sized crystals of a magnetic iron mineral that are aligned in well-ordered intracellular chains. Magnetosome crystals have species-specific morphologies, sizes, and arrangements. The magnetosome membrane, which originates from the cytoplasmic membrane by invagination, represents a distinct subcellular compartment and has a unique biochemical composition. The roughly 20 magnetosome-specific proteins have functions in vesicle formation, magnetosomal iron transport, and the control of crystallization and intracellular arrangement of magnetite particles. The assembly of magnetosome chains is under genetic control and involves the action of an acidic protein that links magnetosomes to a novel cytoskeletal structure, presumably formed by a specific actin-like protein. A total of 28 conserved genes present in various magnetic bacteria were identified to be specifically associated with the magnetotactic phenotype, most of which are located in the genomic magnetosome island. The unique properties of magnetosomes attracted broad interdisciplinary interest, and MTB have recently emerged as a model to study prokaryotic organelle formation and evolution.  相似文献   

20.
Magnetospirillum magnetotacticum are magnetotactic bacteria that form a single chain of magnetite magnetosomes within its cytoplasm. Here, we studied the ultrastructure of M. magnetotacticum by freeze-fracture and deep-etching to understand the spatial correlation between the magnetosome chain and the cell envelope and its possible implications for magnetotaxis. Magnetosomes were found mainly near the cell envelope, forming chains that were closely associated with the granular cytoplasmic material. The membrane surrounding the magnetosomes could be visualized in deep-etching preparations. Thin connections between magnetosome chains and the cell envelope were observed in deep-etching images. These results strengthen the hypothesis for the existence of structures that transfer the torque from the magnetosome chains to the whole cell during the orientation of magnetotactic bacteria to a magnetic field lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号