首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclopentenyl cytosine (CPEC) is cytotoxic to several tumor cell lines. CPEC inhibits CTP synthesis resulting in depletion of cytidylate pools. The aim of this study was to examine CPEC's cytotoxic and antitumor activity in vitro and in vivo against human colon carcinoma HT-29, and to relate its action on CTP synthesis. CPEC exhibits potent cytotoxicity in vitro to HT-29 cells with an LC50 (concentration that is lethal to the survival of 50% cell colonies) of 2.4 microM and 0.46 microM following 2 h and 24 h exposure, respectively. Incubation of cells with CPEC for 2 h resulted in a dose-dependent decrease in cytidylate pools. The in vivo antitumor activity of CPEC in athymic mice transplanted subcutaneously (s.c.) with 3 million HT-29 cells was examined. Antitumor activity of CPEC was elucidated in early-staged tumor, wherein CPEC (1.5 mg/kg, QD x 9 or 3 mg/kg, QOD x 9) was administered intraperitoneally (i.p.) 24 h after tumor implantation and it resulted in a significant reduction in tumor weight to 48% of control. The effect of CPEC on established solid tumors in vivo was examined in athymic mice transplanted s.c. 14 days earlier with HT-29 cells and treated i.p. with 1.5 mg/kg CPEC, QD x 5 for 4 courses, with a 10 day-interval between courses. This treatment resulted in a significant reduction in tumor weight (72%) in the treated group. HPLC analysis of HT-29 tumor obtained from mice after treatment with CPEC showed a depletion of the CTP concentration reaching a nadir at 8 h. In conclusion, the present studies demonstrate potent antitumor activity of CPEC against freshly transplanted and established human colon carcinoma which can be corroborated with the drug's biochemical actions.  相似文献   

2.
The URA7-encoded CTP synthetase [EC 6.3.4.2, UTP:ammonia ligase (ADP-forming)] in the yeast Saccharomyces cerevisiae is phosphorylated on a serine residue and stimulated by cAMP-dependent protein kinase (protein kinase A) in vitro. In vivo, the phosphorylation of CTP synthetase is mediated by the RAS/cAMP pathway. In this work, we examined the hypothesis that amino acid residue Ser424 contained in a protein kinase A sequence motif in the URA7-encoded CTP synthetase is the target site for protein kinase A. A CTP synthetase synthetic peptide (SLGRKDSHSA) containing the protein kinase A motif was a substrate (Km = 30 microM) for protein kinase A. This peptide also inhibited (IC50 = 45 microM) the phosphorylation of purified wild-type CTP synthetase by protein kinase A. CTP synthetase with a Ser424 --> Ala (S424A) mutation was constructed by site-directed mutagenesis. The mutated enzyme was not phosphorylated in response to the activation of protein kinase A activity in vivo. Purified S424A mutant CTP synthetase was not phosphorylated and stimulated by protein kinase A. The S424A mutant CTP synthetase had reduced Vmax and elevated Km values for ATP and UTP when compared with the protein kinase A-phosphorylated wild-type enzyme. The specificity constants for ATP and UTP for the S424A mutant CTP synthetase were 4.2- and 2.9-fold lower, respectively, when compared with that of the phosphorylated enzyme. In addition, the S424A mutant enzyme was 2.7-fold more sensitive to CTP product inhibition when compared with the phosphorylated wild-type enzyme. These data indicated that the protein kinase A target site in CTP synthetase was Ser424 and that the phosphorylation of this site played a role in the regulation of CTP synthetase activity.  相似文献   

3.
CTP synthetase is an essential enzyme that generates the CTP required for the synthesis of nucleic acids and membrane phospholipids. In this study, we examined the phosphorylation of the human CTPS1-encoded CTP synthetase 1 by protein kinase A. CTP synthetase 1 was expressed and purified from a Saccharomyces cerevisiae ura7Delta ura8Delta double mutant that lacks CTP synthetase activity. Using purified CTP synthetase 1 as a substrate, protein kinase A activity was time- and dose-dependent. The phosphorylation, which primarily occurred on a threonine residue, was accompanied by a 50% decrease in CTP synthetase 1 activity. The synthetic peptide LGKRRTLFQT that contains the protein kinase A motif for Thr(455) was a substrate for protein kinase A. A Thr(455) to Ala (T455A) mutation in CTP synthetase 1 was constructed by site-directed mutagenesis and was expressed and purified from the S. cerevisiae ura7Delta ura8Delta mutant. The T455A mutation caused a 78% decrease in protein kinase A phosphorylation and the loss of the phosphothreonine residue and a major phosphopeptide that were present in the purified wild type enzyme phosphorylated by protein kinase A. The CTP synthetase 1 activity of the T455A mutant enzyme was 2-fold higher than the wild type enzyme. In addition, the T455A mutation caused a 44% decrease in the amount of human CTP synthetase 1 that was phosphorylated in S. cerevisiae cells, and this was accompanied by a 2.5-fold increase in the cellular concentration of CTP and a 1.5-fold increase in the choline-dependent synthesis of phosphatidylcholine.  相似文献   

4.
The Saccharomyces cerevisiae URA7-encoded CTP synthetase is phosphorylated and stimulated by protein kinases A and C. Previous studies have revealed that Ser424 is the target site for protein kinase A. Using a purified S424A mutant CTP synthetase enzyme, we examined the effect of Ser424 phosphorylation on protein kinase C phosphorylation. The S424A mutation in CTP synthetase caused a 50% decrease in the phosphorylation of the enzyme by protein kinase C and an 80% decrease in the stimulatory effect on CTP synthetase activity by protein kinase C. The S424A mutation caused increases in the apparent Km values of CTP synthetase and ATP of 20-and 2-fold, respectively, in the protein kinase C reaction. The effect of the S424A mutation on the phosphorylation reaction was dependent on time and protein kinase C concentration. A CTP synthetase synthetic peptide (SLGRKDSHSA) containing Ser424 was a substrate for protein kinase C. Comparison of phosphopeptide maps of the wild type and S424A mutant CTP synthetase enzymes phosphorylated by protein kinases A and C indicated that Ser424 was also a target site for protein kinase C. Phosphorylation of Ser424 accounted for 10% of the total phosphorylation of CTP synthetase by protein kinase C. The incorporation of [methyl-3H]choline into phosphocholine, CDP-choline, and phosphatidylcholine in cells carrying the S424A mutant CTP synthetase enzyme was reduced by 48, 32, and 46%, respectively, when compared with control cells. These data indicated that phosphorylation of Ser424 by protein kinase A or by protein kinase C was required for maximum phosphorylation and stimulation of CTP synthetase and that the phosphorylation of this site played a role in the regulation of phosphatidylcholine synthesis by the CDP-choline pathway.  相似文献   

5.
The Saccharomyces cerevisiae URA7-encoded CTP synthetase is phosphorylated and stimulated by protein kinase C. We examined the hypothesis that Ser36, Ser330, Ser354, and Ser454, contained in a protein kinase C sequence motif in CTP synthetase, were target sites for the kinase. Synthetic peptides containing a phosphorylation motif at these serine residues served as substrates for protein kinase C in vitro. Ser --> Ala (S36A, S330A, S354A, and S454A) mutations in CTP synthetase were constructed by site-directed mutagenesis and expressed normally in a ura7 ura8 double mutant that lacks CTP synthetase activity. The CTP synthetase activity in extracts from cells bearing the S36A, S354A, and S454A mutant enzymes was reduced when compared with cells bearing the wild type enzyme. Kinetic analysis of purified mutant enzymes showed that the S36A and S354A mutations caused a decrease in the Vmax of the reaction. This regulation could be attributed in part by the effects phosphorylation has on the nucleotide-dependent oligomerization of CTP synthetase. In contrast, CTP synthetase activity in cells bearing the S330A mutant enzyme was elevated, and kinetic analysis of purified enzyme showed that the S330A mutation caused an elevation in the Vmax of the reaction. In vitro data indicated that phosphorylation of CTP synthetase at Ser330 affected the phosphorylation of the enzyme at another site. The phosphorylation of CTP synthetase at Ser36, Ser330, Ser354, and Ser454 residues was physiologically relevant. Cells bearing the S36A, S354A, and S454A mutations had reduced CTP levels, whereas cells with the S330A mutation had elevated CTP levels. The alterations in CTP levels correlated with the regulatory effects CTP has on the pathways responsible for the synthesis of the membrane phospholipid phosphatidylcholine.  相似文献   

6.
Cytotoxic mechanisms of glutamine antagonists in mouse L1210 leukemia   总被引:1,自引:0,他引:1  
The glutamine antagonists, acivicin (NSC 163501), azaserine (NSC 742), and 6-diazo-5-oxo-L-norleucine (DON) (NSC 7365), are potent inhibitors of many glutamine-dependent amidotransferases in vitro. Experiments performed with mouse L1210 leukemia growing in culture show that each antagonist has different sites of inhibition in nucleotide biosynthesis. Acivicin is a potent inhibitor of CTP and GMP synthetases and partially inhibits N-formylglycineamidine ribotide (FGAM) synthetase of purine biosynthesis. DON inhibits FGAM synthetase, CTP synthetase, and glucosamine-6-phosphate isomerase. Azaserine inhibits FGAM synthetase and glucosamine-6-phosphate isomerase. Large accumulations of FGAR and its di- and triphosphate derivatives were observed for all three antagonists which could interfere with the biosynthesis of nucleic acids, providing another mechanism of cytotoxicity. Acivicin, azaserine, and DON are not potent inhibitors of carbamyl phosphate synthetase II (glutamine-hydrolyzing) and amidophosphoribosyltransferase in leukemia cells growing in culture although there are reports of such inhibitions in vitro. Blockade of de novo purine biosynthesis by these three antagonists results in a "complementary stimulation" of de novo pyrimidine biosynthesis.  相似文献   

7.
Phosphorylation of human CTP synthetase 1 by mammalian protein kinase C was examined. Using purified Escherichia coli-expressed CTP synthetase 1 as a substrate, protein kinase C activity was time- and dose-dependent and dependent on the concentrations of ATP and CTP synthetase 1. The protein kinase C phosphorylation of the recombinant enzyme was accompanied by a 95-fold increase in CTP synthetase 1 activity. Phosphopeptide mapping and phosphoamino acid analyses showed that CTP synthetase 1 was phosphorylated on multiple serine and threonine residues. The induction of PKC1(R398A)-encoded protein kinase C resulted in a 50% increase for human CTP synthetase 1 phosphorylation in the Saccharomyces cerevisiae ura7Delta ura8Delta mutant lacking yeast CTP synthetase activity. Synthetic peptides that contain the protein kinase C motif for Ser(462) and Thr(455) were substrates for mammalian protein kinase C, and S462A and T455A mutations resulted in decreases in the extent of CTP synthetase 1 phosphorylation that occurred in vivo. Phosphopeptide mapping analysis of S. cerevisiae-expressed CTP synthetase 1 mutant enzymes phosphorylated with mammalian protein kinase C confirmed that Ser(462) and Thr(455) were phosphorylation sites. The S. cerevisiae-expressed and purified S462A mutant enzyme exhibited a 2-fold reduction in CTP synthetase 1 activity, whereas the purified T455A mutant enzyme exhibited a 2-fold elevation in CTP synthetase 1 activity (Choi, M.-G., and Carman, G.M. (2006) J. Biol. Chem. 282, 5367-5377). These data indicated that protein kinase C phosphorylation at Ser(462) stimulates human CTP synthetase 1 activity, whereas phosphorylation at Thr(455) inhibits activity.  相似文献   

8.
CTP synthetase (EC 6.3.4.2, UTP:ammonia ligase (ADP-forming)) is an essential enzyme in all organisms; it generates the CTP required for the synthesis of nucleic acids and membrane phospholipids. In this work we showed that the human CTP synthetase genes, CTPS1 and CTPS2, were functional in Saccharomyces cerevisiae and complemented the lethal phenotype of the ura7Delta ura8Delta mutant lacking CTP synthetase activity. The expression of the CTPS1- and CTPS2-encoded human CTP synthetase enzymes in the ura7Delta ura8Delta mutant was shown by immunoblot analysis of CTP synthetase proteins, the measurement of CTP synthetase activity, and the synthesis of CTP in vivo. Phosphoamino acid and phosphopeptide mapping analyses of human CTP synthetase 1 isolated from (32)P(i)-labeled cells revealed that the enzyme was phosphorylated on multiple serine residues in vivo. Activation of protein kinase A activity in yeast resulted in transient increases (2-fold) in the phosphorylation of human CTP synthetase 1 and the cellular level of CTP. Human CTP synthetase 1 was also phosphorylated by mammalian protein kinase A in vitro. Using human CTP synthetase 1 purified from Escherichia coli as a substrate, protein kinase A activity was dose- and time-dependent, and dependent on the concentrations of CTP synthetase 1 and ATP. These studies showed that S. cerevisiae was useful for the analysis of human CTP synthetase phosphorylation.  相似文献   

9.
Incubation of L1210 murine leukemia cells in vitro with 10 microM of the bifunctional alkylating agent bis(2-chloroethyl)methylamine (nitrogen mustard, HN2) for 10 min brought about a fall of more than 99.9% in their ability to form colonies when the cells were suspended in 0.5% nutrient agar. Incubation with HN2 also inhibited the influx of the potassium congener 86Rb+ to exponentially proliferating L1210 cells in a concentration-dependent manner. This inhibition was specific and was accounted for by a reduction of a diuretic-sensitive component of 86Rb+ influx, identified in the preceding paper (Wilcock, C. and Hickman, J.A. (1988) Biochim. Biophys. Acta 946, 359-367) as being mediated by a Na+/K+/Cl- cotransporter. Inhibition by 10 microM HN2 was complete after a 3-h incubation. There was no inhibition at this time of the ouabain-sensitive component of 86Rb+ influx, mediated by Na+/K+-ATPase. After 3 h of incubation with 10 microM HN2 there was also no change in the membrane potential of the treated cells as measured by the distribution of the [3H]TPMP+, no decrease in cellular ATP concentration and no change in intracellular pH, and the ability of the cells to exclude the vital dye Trypan blue was not significantly different from control values. These effects of HN2, therefore, appeared to follow lethal damage, but precede cell death. In the stationary phase of L1210 cell growth, the component of HN2 and diuretic-sensitive K+ influx to L1210 cells was reduced, whilst the component constituting the HN2-insensitive ouabain-sensitive sodium pump was increased. The monofunctional alkylating agent MeHN1 (2-chloroethyldimethylamine) which cannot cross-link cellular targets and has no antitumor activity, did not inhibit 86Rb+ influx to L1210 cells when incubated at equimolar or equitoxic concentrations to HN2. Intracellular potassium concentration was maintained close to control values of 138 +/- 10 mM in HN2-treated cells because of an approx. 35% fall in cell volume. The results suggest that the Na+/K+/Cl- cotransporter is a selectively inhibitable target for HN2, and the lesion is discussed with reference to the cytotoxic effects of this agent.  相似文献   

10.
Effect of specific inhibitors of extracellular-signal regulated protein kinase (ERK) pathway, PD98059 and U0126, on P-glycoprotein (Pgp)-mediated vincristine resistance of L1210/VCR cells was investigated. Both test inhibitors significantly reduced the survival of L1210/VCR cells in the presence of vincristine and this was associated with a decrease of LC50 values to vincristine from 2.65+/-0.43 to 0.67+/-0.28 micromol/l and to 0.69+/-0.09 micromol/l after treatment with 50 micromol/l PD98059 and 25 micromol/l UO126, respectively. Moreover, the effects of PD98059 are connected also with an increased intracellular accumulation of radiolabeled vincristine in resistant L1210/VCR cells in concentration dependent manner. The results of this study demonstrate that inhibitors of ERK signaling pathway are reversal agents of vincristine resistance in L1210/VCR cells. The precise mechanism of PD98059 and U0126 action in modulation of MDR is not resolved yet, but the role of ERK-mediated phosphorylation cascade could be considered.  相似文献   

11.
Earlier studies from our laboratory (Dembo, M., Sirotnak F. M., and Moccio, D. M. (1984) J. Membr. Biol. 78, 9-17) suggested that methotrexate (MTX) efflux from L1210 cells was mediated predominantly by an ATP-dependent, outwardly directed, mechanism. To examine this process further, we utilized predominantly (74%) inside-out plasma membrane vesicle preparations derived from an L1210 cell variant (L1210/R24) with 15-fold reduced Vmax for [3H]MTX influx. Efflux of [3H]MTX, under nonionic buffer conditions, in these inside-out membrane vesicles was temperature and ATP dependent (apparent Km = 0.40 +/- 0.06 mM), osmotically sensitive, and unaffected by protonophores. The presence of K+, Na+, Cl-, and HCO3- at their physiological concentrations had no effect on [3H]MTX efflux. Other triphosphonucleotides (GTP and CTP), but not a nonhydrolyzable analogue, adenosine-5'-O-(3-thiotriphosphate) (ATP gamma S), could also stimulate efflux, but to a lesser extent. Also, ATP gamma S and orthovanadate were potent inhibitors of ATP-dependent efflux of [3H]MTX. Other experiments revealed a system with low saturability for [3H]MTX during efflux (apparent Km = 46 +/- 7 microM), but extremely high capacity (106 +/- 15 pmol/min/mg protein), and a pH optimum in the range of 5.5-6. However, appreciable efflux was measured in the physiological range of pH 6.7-6.9. A number of inhibitors or copermeants for ATP-dependent [3H]MTX efflux in intact L1210 cells were inhibitors of ATP-dependent efflux in inside-out plasma membrane vesicles, including, cholate, bromosulfophthalein, verapamil, quinidine, and reserpine. These findings and other results showing that bromosulfophthalein will completely inhibit efflux are consistent with a role for an ATPase in [3H]MTX efflux, and suggest that the process under study is the bromosulfophthalein-sensitive, ATP-dependent route responsible for the majority of [3H]MTX efflux in intact L1210 cells.  相似文献   

12.
Glycinamide ribonucleotide (GAR) transformylase from HeLa cells has been purified 200-fold to apparent homogeneity with a procedure using two affinity resins. The activities glycinamide ribonucleotide synthetase and aminoimidazole ribonucleotide synthetase were found to copurify with GAR transformylase. Glycinamide ribonucleotide synthetase and GAR transformylase were separable only after exposure to chymotrypsin. Antibodies raised to pure L1210 cell GAR transformylase were able to precipitate the glycinamide ribonucleotide transformylase and GAR synthetase activities from HeLa and L1210 cells both in their native and in their proteolytically shortened forms. The compound N-10-(bromoacetyl)-5,8-dideazafolate was found to inhibit formylation but to leave the ATP-requiring synthetase activities intact.  相似文献   

13.
The in vitro modulating effect of Cyclopentenyl cytosine (CPEC) on the metabolism of gemcitabine was studied in lymphocytic and myeloid leukemic cell-lines. In MOLT-3 cells, that were pretreated with CPEC, the incorporation of 2',2'-difluoro-2'-deoxycytidine triphosphate (dFdCTP) into DNA was significantly increased by 57-99% in comparison with cells that were only treated with gemcitabine. The increased incorporation of dFdCTP into DNA in CPEC pretreated cells was paralleled by an increase in apoptotic and necrotic cells of 17-34%. In HL-60 cells that were preincubated with CPEC, increased concentrations of the mono-/di- and triphosphate form of gemcitabine were observed, as well as an increased incorporation of dFdCTP into DNA (+773%). This increased incorporation was paralleled by a significant increase in apoptosis and necrosis. We conclude that CPEC enhances the incorporation of dFdCTP into DNA and thus increases the cytotoxicity of gemcitabine in lymphocytic and myeloid leukemic cell-lines.  相似文献   

14.
Serine hydroxymethyltransferase and the trifunctional enzyme C1-tetrahydrofolate synthase have been purified to near homogeneity from L1210 cells. Kinetic constants (Km and kcat) have been determined for both folate and non-folate substrates. The effect of increasing glutamate chain length on affinity and catalytic efficiency were determined for the four activities. The studies show that the structural and catalytic properties of the two L1210 enzymes are very similar to the corresponding enzymes purified from rabbit liver. Antibodies to both rabbit serine hydroxymethyltransferase and C1-tetrahydrofolate synthase cross-react with the corresponding L1210 enzymes. The intracellular concentration of active sites of serine hydroxymethyltransferase and C1-tetrahydrofolate synthase in L1210 cells are both 9 microM. The combined concentration of these two enzymes exceeds the previously reported concentration of 10 microM for total intracellular folates. A network thermodynamic computer model of one carbon metabolism (Seither, R. L., Trent, D. F., Mikulecky, D. C., Rape, T. J., and Goldman, I. D. (1989) J. Biol. Chem. 264, 17016-17023) suggests that complete inhibition of cytosolic serine hydroxymethyltransferase would neither significantly decrease the rates of biosynthesis of purines and thymidylate nor significantly alter the rate of interconversion of tetrahydrofolate cofactors to dihydrofolate with subsequent inhibition of dihydrofolate reductase.  相似文献   

15.
The regulatory role of the allosteric site of CTP synthetase on flux through the enzyme in situ and on pyrimidine nucleotide triphosphate (NTP) pool balance was investigated using a mutant mouse T lymphoblast (S49) cell line which contains a CTP synthetase refractory to complete inhibition by CTP. Measurements of [3H]uridine incorporation into cellular pyrimidine NTP pools as a function of time indicated that CTP synthesis in intact wild type cells was markedly inhibited in a cooperative fashion by small increases in CTP pools, whereas flux across the enzyme in mutant cells was much less affected by changes in CTP levels. The cooperativity of the allosteric inhibition of the enzyme was greater in situ than in vitro. Exogenous manipulation of levels of GTP, an activator of the enzyme, indicated that GTP had a moderate effect on enzyme activity in situ, and changes in pools of ATP, a substrate of the enzyme, had small effects on CTP synthetase activity. The consequences of incubation with actinomycin D, cycloheximide, dibutyryl cyclic AMP, and 6-azauridine on the flux across CTP synthetase and on NTP pools differed considerably between wild type and mutant cells. Under conditions of growth arrest, an intact binding site for CTP on CTP synthetase was required to maintain a balance between the CTP and UTP pools in wild type cells. Moreover, wild type cells failed to incorporate H14CO3- into pyrimidine pools following growth arrest. In contrast, mutant cells incorporated the radiolabel at a high rate indicating loss of a regulatory function. These results indicated that uridine nucleotides are important regulators of pyrimidine nucleotide synthesis in mouse S49 cells, and CTP regulates the balance between UTP and CTP pools.  相似文献   

16.
Rat liver microsomes show a capacity to synthesize [1-3H]dolichyl phosphate from [1-3H]-dolichol. Formation of [1-3H]dolichyl phosphate increased continuously over 15 min although the reaction rate was never completely linear. Product formation was directly proportional to microsomal protein concentration between 1.1 mg/mL and the highest concentration tested, 5.5 mg/mL. The reaction rate was linear with respect to the dolichol content of the assay mixture to a saturation point (120 microM). An apparent Km of 50 microM was established for dolichol. The normal phosphate donor for the reaction is CTP and not ATP. The optimum concentration of CTP was 10 mM, and an apparent Km of 4 mM was calculated for this nucleoside triphosphate. The reaction was totally dependent on divalent metal ion, magnesium being more effective than calcium. The optimum concentration of magnesium ion and CTP were the same (10 mM), suggesting that MgCTP2- is utilized as the normal enzyme substrate. Activity measured in the absence of Triton X-100 was only 5% of the activity observed at the optimum (0.5% w/v) detergent concentration. The measurable levels of dolichol phosphokinase could be doubled by the inclusion of 10-15 mM NaF as phosphatase inhibitor. Optimal enzymatic activity was obtained between pH 7.0 and pH 7.5 and could be inhibited by EDTA. The sulfhydryl reagent DTT was slightly stimulatory while the product of the reaction, dolichyl phosphate, was noninhibitory at the highest concentration tested (13.8 microM). The second reaction product (CDP) inhibits the enzymatic phosphorylation of dolichol.  相似文献   

17.
Streptococcus pneumoniae is a member of a small group of bacteria that display phosphocholine on the cell surface, covalently attached to the sugar groups of teichoic acid and lipoteichoic acid. The putative pathway for this phosphocholine decoration is, in its first two enzymes, functionally similar to the CDP-choline pathway used for phosphatidylcholine biosynthesis in eukaryotes. We show that the licC gene encodes a functional CTP:phosphocholine cytidylyltransferase (CCT). The enzyme has been expressed and purified to homogeneity. Assay conditions were optimized, particularly with respect to linearity with time, pH, Mg(2+), and ammonium sulfate concentration. The pure enzyme has K(M) values of 890+/-240 microM for CTP, and 390+/-170 microM for phosphocholine. The k(cat) is 17.5+/-4.0 s(-1). S. pneumoniae CTP:phosphocholine cytidylyltransferase (SpCCT) is specific for CTP or dCTP as the nucleotide substrate. SpCCT is strongly inhibited by Ca(2+). The IC(50) values for recombinant and native SpCCT are 0.32+/-0.04 and 0.27+/-0.03 mM respectively. The enzyme is also inhibited by all other tested divalent cations, including Mg(2+) at high concentrations. The cloning and expression of this enzyme sets the stage for design of inhibitors as possible antipneumococcal drugs.  相似文献   

18.
Exposure of mouse L1210 leukemia cells to 25 microM brequinar for 4 h results in large accumulations of N-carbamyl-L-aspartate and L-dihydroorotate to cellular concentrations of 8.5 mM and 0.8 mM, respectively, while UTP and CTP decrease to 4% of their initial levels; incorporation of [14C]bicarbonate into nucleic acids (DNA and RNA) was decreased to 47%. These data provide direct evidence for inhibition of DHO dehydrogenase by brequinar in growing cells. Exposure of leukemia cells to 200 microM ciprofloxacin for 4 h did not affect de novo pyrimidine nucleotide biosynthesis or the incorporation of [14C]bicarbonate into nucleic acids but resulted in a general decrease in nucleoside triphosphates, with concomitant accumulation of nucleoside mono- and diphosphates (the adenylate energy charge decreased from 0.89 to 0.69), consistent with inhibition of the electron transport chain or uncoupling of oxidative phosphorylation.  相似文献   

19.
The mode of influx of 86Rb+, a K+ congener, to exponentially proliferating L1210 murine leukemia cells, incubated in a Krebs-Ringer buffer, has been characterised. The influx was composed of a ouabain-sensitive fraction (approx. 40%), a loop diuretic-sensitive fraction (approx. 40%) and a fraction which was insensitive to both types of inhibitor (approx. 15%). The fraction of ouabain-insensitive 86Rb+ influx, which was fully inhibited by furosemide (1 mM) or bumetanide (100 microM), was completely inhibited when Cl- was completely substituted by nitrate or gluconate ions, but was slightly (29 +/- 12%) stimulated if the Cl- was substituted by Br-. The substitution of Na+ by Li+, choline or tetramethylammonium ions inhibited the loop diuretic-sensitive fraction of 86Rb+ uptake. These results suggested that a component of 86Rb+ influx to L1210 cells was mediated via a Na+/K+/Cl- cotransporter. 86Rb+ efflux from L1210 cells which had been equilibrated with 86Rb+ and incubated in the presence or absence of 1 mM ouabain, was insensitive to the loop diuretics. Additionally, efflux rates were found to be independent of the external concentration of K+, suggesting that efflux was not mediated by K+-K+ exchange. The initial rate of 86Rb+ influx to L1210 cells in the plateau phase of growth was reduced to 44% of that of exponentially dividing cells, the reduction being accounted for by significant decreases in both ouabain- and loop diuretic-sensitive influx; these cells were reduced in volume compared to cells in the exponential phase of cell growth. In cells which had been deprived of serum for 18 h, and which showed an increase of the proportion of cells in the G1 phase of the cell cycle, the addition of serum stimulated an immediate increase in the furosemide-sensitive component of 86Rb+ influx. Diuretic-sensitive 86Rb+ influx was not altered by the incubation of the cells with 100 microM dibutyryl cyclic AMP, but was inhibited by 10 microM of the cross-linking agent nitrogen mustard (bis(2-chloro-ethyl)methylamine, HN2).  相似文献   

20.
A mouse leukemic cell line L1210 Sg with a low sensitivity to interferon-γ (IFN-γ) was described. On the nature of the antiviral action and binding of IFN, L1210 Sg cells were compared with L1210m cell line which is sensitive to IFN-γ. For a half reduction of the vesicular stomatitis virus-RNA synthesis, L1210 Sg cells required 500–fold more IFN-γ than L1210m cells did. However, both cell lines were induced to the antiviral state to the same extent with IFN-α or -β. L1210 Sg and L1210m cells were sensitive to the anti-proliferative action of IFN-α and -β, but insensitive to IFN-γ. (2′-5′)Oligoadenylate synthetase was induced in these cell lines by IFN-β, but not by IFN-γ, which suggests that the induction of this synthetase may not be responsible for the antiviral action of IFN-γ. No substantial difference between L1210 Sg and L1210m cells was found in IFN receptors for IFN-γ and IFN-β either in number per cell or in their affinity to corresponding IFN type. However, differences were noted in time course profiles of cell-associated IFN-γ at 37 C: in L1210m cells, a rise-and-decay profile of IFN-γ bound to cells was observed at 37 C, but in L1210 Sg cells, rise and slight decay was observed. On the other hand, a similar rise-and-decay curve of IFN-β bound to these cells was observed. These results indicated that the low sensitivity of L1210 Sg cells to IFN-γ may be due to this slight decay of receptor-bound IFN-γ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号