首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fourier transform infrared spectroscopy was used to characterize the lamellar phases of 1,3-dipalmitoyl-sn-glycero-2-phosphocholine (1,3-DPPC), a positional isomer of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (1,2-DPPC). The molecule exists in three distinct phases over the temperature interval 0-70 degrees C. In the low-temperature (LC) phase, the spectra are indicative of acyl chains packed in an orthorhombic subcell, while the carbonyl groups and phosphate ester at the head group show evidence of only partial hydration. The transition from the low-temperature (LC) phase to the intermediate-temperature (L beta) phase at 25 degrees C corresponds to a temperature-induced head-group hydration in which the hydration of the phosphate and carbonyl ester groups results in the reorganization of the hydrocarbon chain-packing subcell from orthorhombic to hexagonal. The transition from the intermediate (L beta) to the high-temperature (L alpha) phase at 37 degrees C is a gel-to-liquid-crystalline phase transition analogous to the 41.5 degrees C transition of 1,2-DPPC. The spectra of the acyl-chain carbonyl groups show evidence of significant differences in molecular conformation at the carbonyl esters in the LC phase. In the L beta and L alpha phases, the carbonyl band contour becomes much more symmetric. However, two components are clearly present in the spectra indicating that the sn-1 and sn-3 carbonyls experience slightly different environments. The observed differences are likely due to a preferred conformation of the phosphocholine group relative to the glycerol backbone. Indications from the infrared spectra of differences in the structure of the C = O groups provide a possible explanation for the selection of the sn-1 chain of 1,3-DPPC by phospholipase A2 on the basis of a preferred head group conformation.  相似文献   

2.
Fourier transform infrared spectroscopy was used to characterize the lamellar phases of 1,3-dipalmitoyl-sn-glycero-2-phosphocholine (1,3-DPPC), a positional isomer of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (1,2-DPPC). The molecule exists in three distinct phases over the temperature interval 0–70°C. In the low-temperature (Lc) phase, the spectra are indicative of acyl chains packed in an orthorhombic subcell, while the carbonyl groups and phosphate ester at the head group show evidence of only partial hydration. The transition from the low-temperature (Lc) phase to the intermediate-temperature (Lβ) phase at 25°C corresponds to a temperature-induced head-group hydration in which the hydration of the phosphate and carbonyl ester groups results in the reorganization of the hydrocarbon chain-packing subcell from orthorhombic to hexagonal. The transition from the intermediate (Lβ) to the high-temperature (Lα) phase at 37°C is a gel-to-liquid-crystalline phase transition analogous to the 41.5°C transition of 1,2-DPPC. The spectra of the acyl-chain carbonyl groups show evidence of significant differences in molecular conformation at the carbonyl esters in the Lc phase. In the Lβ and Lα phases, the carbonyl band contour becomes much more symmetric. However, two components are clearly present in the spectra indicating that the sn-1 and sn-3 carbonyls experience slightly different environments. The observed differences are likely due to a preferred conformation of the phosphocholine group relative to the glycerol backbone. Indications from the infrared spectra of differences in the structure of the C=O groups provide a possible explanation for the selection of the sn-1 chain of 1,3-DPPC by phospholipase A2 on the basis of a preferred head group conformation.  相似文献   

3.
Sonicated dispersions of 1,2-dipalmitoylsn-glycero-3-phosphorylcholine and of 1,3-dipalmitoylglycero-2-phosphorylcholine were examined by proton nuclear magnetic resonance (NMR) as a function of temperature. The —(CH2)n)— peak in the spectrum of the sn-3-isomer of dipalmitoylphosphatidylcholine showed the characteristic dramatic changes in the peak intensity and width associated with the phase transition between the liquid crystalline and gel states of the phospholipid. This occurred over a 2–3°C temperature range with the midpoint of the transition at 38.5°C. With the 2-isomer the change in phase took place over a similar temperature range but the midpoint was at 33.8°C. This lower phase transition temperature is presumably the result of increased acyl chain mobility caused by the increased separation of the two acyl chains by the centre carbon of the glycerol backbone. The effect of sonication of the broadening of the range and lowering of the midpoint temperature of the phase transition from that of the corresponding unsonicated dispersions was similar with each isomer. This suggests that the overall geometry of the sonicated vesicles of the isomers is similar.  相似文献   

4.
The interaction of cholesterol with the glycerol backbone segments of phospholipids was studied in bilayers of phosphatidylethanolamine containing equimolar amounts of cholesterol. Glycerol selectively deuterated at various positions was supplied to the growth medium of Escherichia coli strain 131 GP which is defective in endogeneous glycerol synthesis. The procedure enables the stereospecific labeling of the three glycerol backbone segments of the membrane phospholipids. Phosphatidylethanolamine with wild-type fatty acid composition was purified from E. coli cells and deuterium magnetic resonance spectra were obtained either from dispersions of pure phosphatidylethanolamine or from equimolar mixtures of phosphatidylethanolamine with cholesterol. For comparative purposes 1,2-di[9,10-2H2]elaidoyl-sn-glycero-3-phosphoethanolamine and [3-α-2H]cholesterol were synthesized in order to monitor the behavior of the fatty acyl chains and of the cholesterol molecule itself. For all deuterated segments the deuterium quadrupole splittings as well as the deuterium spin-lattice (T1) relaxation times were measured as a function of temperature. The glycerol backbone was found to be a remarkably stable structural element of the phospholipid molecule. The quadrupole splittings of the backbone segments changed only by at most 2 kHz upon incorporation of 50 mol % cholesterol. This was in contrast to the fatty acyl chains where the same amount of cholesterol increased the quadrupole splitting by more than 20 kHz. The glycerol segments exhibited the shortest T1 relaxation times of all CH2 segments indicating that the glycerol backbone is the slowest motional moiety of the lipid molecule. Addition of cholesterol has no effect on the backbone motion but the fast reorientation rate of the trans-double bonds in 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine is increased dramatically.  相似文献   

5.
The reactions leading to triacylglycerol (TAG) synthesis in oilseeds have been well characterized. However, quantitative analyses of acyl group and glycerol backbone fluxes that comprise extraplastidic phospholipid and TAG synthesis, including acyl editing and phosphatidylcholine-diacylglycerol interconversion, are lacking. To investigate these fluxes, we rapidly labeled developing soybean (Glycine max) embryos with [14C]acetate and [14C]glycerol. Cultured intact embryos that mimic in planta growth were used. The initial kinetics of newly synthesized acyl chain and glycerol backbone incorporation into phosphatidylcholine (PC), 1,2-sn-diacylglycerol (DAG), and TAG were analyzed along with their initial labeled molecular species and positional distributions. Almost 60% of the newly synthesized fatty acids first enter glycerolipids through PC acyl editing, largely at the sn-2 position. This flux, mostly of oleate, was over three times the flux of nascent [14C]fatty acids incorporated into the sn-1 and sn-2 positions of DAG through glycerol-3-phosphate acylation. Furthermore, the total flux for PC acyl editing, which includes both nascent and preexisting fatty acids, was estimated to be 1.5 to 5 times the flux of fatty acid synthesis. Thus, recycled acyl groups (16:0, 18:1, 18:2, and 18:3) in the acyl-coenzyme A pool provide most of the acyl chains for de novo glycerol-3-phosphate acylation. Our results also show kinetically distinct DAG pools. DAG used for TAG synthesis is mostly derived from PC, whereas de novo synthesized DAG is mostly used for PC synthesis. In addition, two kinetically distinct sn-3 acylations of DAG were observed, providing TAG molecular species enriched in saturated or polyunsaturated fatty acids.  相似文献   

6.
We studied secretory phospholipase A2 type IIA (sPLA2) activity toward phospholipids that are derivatized in the sn-1 position of the glycerol backbone. We explored what type of side group (small versus bulky groups, hydrophobic versus polar groups) can be introduced at the sn-1 position of the glycerol backbone of glycerophospholipids and at the same time be hydrolyzed by sPLA2. The biophysical characterization revealed that the modified phospholipids can form multilamellar vesicles, and several of the synthesized sn-1 functionalized phospholipids were hydrolyzed by sPLA2. Molecular dynamics simulations provided detailed insight on an atomic level that can explain the observed sPLA2 activity toward the different phospholipid analogs. The simulations revealed that, depending on the nature of the side chain located at the sn-1 position, the group may interfere with an incoming water molecule that acts as the nucleophile in the enzymatic reaction. The simulation results are in agreement with the experimentally observed sPLA2 activity toward the different phospholipid analogs.  相似文献   

7.
The effect of nonionic detergents of the n-alkyl-β-D-glucopyranoside class on the ordering of lipid bilayers and the dynamics of membrane-embedded peptides were investigated with 2H- and 31P-NMR. 1,2-dipalmitoyl-sn-glycero-3-phosphocholine was selectively deuterated at methylene segments C-2, C-7, and C-16 of the two fatty acyl chains. Two trans-membrane helices, WALP-19 and glycophorin A71-98, were synthesized with Ala-d3 in the central region of the α-helix. n-Alkyl-β-D-glucopyranosides with alkyl chains with 6, 7, 8, and 10 carbon atoms were added at increasing concentrations to the lipid membrane. The bilayer structure is retained up to a detergent/lipid molar ratio of 1:1. The insertion of the detergents leads to a selective disordering of the lipids. The headgroup region remains largely unaffected; the fatty acyl chain segments parallel to the detergent alkyl chain are only modestly disordered (10-20%), whereas lipid segments beyond the methyl terminus of the detergent show a decrease of up to 50%. The change in the bilayer order profile corresponds to an increase in bilayer entropy. Insertion of detergents into the lipid bilayers is completely entropy-driven. The entropy change accompanying lipid disorder is equivalent in magnitude to the hydrophobic effect. Ala-d3 deuterated WALP-19 and GlycA71-97 were incorporated into bilayers of 1,2-dimyristoyl-sn-glycero-3-phosphocholine at a peptide/lipid molar ratio of 1:100 and measured above the 1,2-dimyristoyl-sn-glycero-3-phosphocholine gel/liquid-crystal phase transition. Well-resolved 2H-NMR quadrupole splittings were observed for the two trans-membrane helices, revealing a rapid rotation of the CD3 methyl rotor superimposed on an additional rotation of the whole peptide around the bilayer normal. The presence of detergent fluidizes the membrane and produces magnetic alignment of bilayer domains but does not produce essential changes in the peptide conformation or dynamics.  相似文献   

8.
The phosphatidylinositol (PI) cycle mediates many cellular events by controlling the metabolism of many lipid second messengers. Diacylglycerol kinase ϵ (DGKϵ) has an important role in this cycle. DGKϵ is the only DGK isoform to show inhibition by its product phosphatidic acid (PA) as well as substrate specificity for sn-2 arachidonoyl-diacylglycerol (DAG). Here, we show that this inhibition and substrate specificity are both determined by selectivity for a combination of the sn-1 and sn-2 acyl chains of PA or DAG, respectively, preferring the most prevalent acyl chain composition of lipids involved specifically in the PI cycle, 1-stearoyl-2-arachidonoyl. Although the difference in rate for closely related lipid species is small, there is a significant enrichment of 1-stearoyl-2-arachidonoyl PI because of the cyclical nature of PI turnover. We also show that the inhibition of DGKϵ by PA is competitive and that the deletion of the hydrophobic segment and cationic cluster of DGKϵ does not affect its selectivity for the acyl chains of PA or DAG. Thus, this active site not only recognizes the lipid headgroup but also a combination of the two acyl chains in PA or DAG. We propose a mechanism of DGKϵ regulation where its dual acyl chain selectivity is used to negatively regulate its enzymatic activity in a manner that ensures DGKϵ remains committed to the PI turnover cycle. This novel mechanism of enzyme regulation within a signaling pathway could serve as a template for the regulation of enzymes in other pathways in the cell.  相似文献   

9.
The conformation of phosphatidylcholine in liquid-crystalline bilayers was studied with a novel, high-resolution method employing phosphatidylcholine species containing pyrenyl moieties in both acyl chains of variable length. Analysis of the intramolecular pyrene-pyrene collision data obtained for 30 such species in terms of a simple geometrical model showed that the sn-1 acyl chain penetrates, on the average, 0.84 +/- 0.11 methylene units (0.8 A) deeper into the bilayer than the sn-2 chain at 22 degrees C. A similar value was obtained at 37 degrees C. Since the penetration difference of the sn-1 and sn-2 acyl chains is inherently coupled to the conformation of the glycerol moiety, these data mean that the glycerol moiety of phosphatidylcholine is, on the average, only moderately tilted with respect to the bilayer plane in the liquid-crystalline state. This contrasts the perpendicular orientation observed previously for phosphatidylcholine crystals [Pearson, R. H., & Pascher, I. (1979) Nature 281, 499-501]. Importantly, addition of 50 mol % cholesterol, which is known to reduce dramatically the interactions between phosphatidylcholine molecules in bilayers, had only a small effect on the penetration difference of the acyl chains, strongly suggesting that the conformation of phosphatidylcholine in the liquid-crystalline state is determined largely by intramolecular, rather than intermolecular, interactions.  相似文献   

10.
Glycerophospholipids (GPs) that differ in the relative position of the two fatty acyl chains on the glycerol backbone (i.e., sn-positional isomers) can have distinct physicochemical properties. The unambiguous assignment of acyl chain position to an individual GP represents a significant analytical challenge. Here we describe a workflow where phosphatidylcholines (PCs) are subjected to ESI for characterization by a combination of differential mobility spectrometry and MS (DMS-MS). When infused as a mixture, ions formed from silver adduction of each phospholipid isomer {e.g., [PC (16:0/18:1) + Ag]+ and [PC (18:1/16:0) + Ag]+} are transmitted through the DMS device at discrete compensation voltages. Varying their relative amounts allows facile and unambiguous assignment of the sn-positions of the fatty acyl chains for each isomer. Integration of the well-resolved ion populations provides a rapid method (< 3 min) for relative quantification of these lipid isomers. The DMS-MS results show excellent agreement with established, but time-consuming, enzymatic approaches and also provide superior accuracy to methods that rely on MS alone. The advantages of this DMS-MS method in identification and quantification of GP isomer populations is demonstrated by direct analysis of complex biological extracts without any prior fractionation.  相似文献   

11.
The bilayer phase transitions of six kinds of mixed-chain phosphatidylcholines (PCs) with an unsaturated acyl chain in the sn-1 or sn-2 position, 1-oleoyl-2-stearoyl- (OSPC), 1-stearoyl-2-oleoyl- (SOPC), 1-oleoyl-2-palmitoyl- (OPPC), 1-palmitoyl-2-oleoyl- (POPC), 1-oleoyl-2-myristoyl- (OMPC) and 1-myristoyl-2-oleoyl-sn-glycero-3-phosphocholine (MOPC), were observed by means of differential scanning calorimetry (DSC) and high-pressure light transmittance measurements. Bilayer membranes of SOPC, POPC and MOPC with an unsaturated acyl chain in the sn-2 position exhibited only one phase transition, which was identified as the main transition between the lamellar gel (Lβ) and liquid crystalline (Lα) phases. On the other hand, the bilayer membranes of OSPC, OPPC and OMPC with an unsaturated acyl chain in the sn-1 position exhibited not only the main transition but also a transition from the lamellar crystal (Lc) to the Lβ (or Lα) phase. The stability of their gel phases was markedly affected by pressure and chain length of the saturated acyl chain in the sn-2 position. Considering the effective chain lengths of unsaturated mixed-chain PCs, the difference in the effective chain length between the sn-1 and sn-2 acyl chains was proven to be closely related to the temperature difference of the main transition. That is, a mismatch of the effective chain length promotes a temperature difference of the main transition between the positional isomers. Anomalously small volume changes of the Lc/Lα transition for the OPPC and OMPC bilayers were found despite their large enthalpy changes. This behavior is attributable to the existence of a cis double bond and to significant inequivalence between the sn-1 and sn-2 acyl chains, which brings about a small volume change for chain melting due to loose chain packing, corresponding to a large partial molar volume, even in the Lc phase. Further, the bilayer behavior of unsaturated mixed-chain PCs containing an unsaturated acyl chain in the sn-1 or sn-2 position was well explained by the chemical-potential diagram of a lipid in each phase.  相似文献   

12.
When the lysoglycerophospholipid (GPL) acyltransferase At1g78690 from Arabidopsis thaliana is over-expressed in Escherichiacoli a headgroup acylated GPL, acyl phosphatidylglycerol (PG), accumulates despite that in vitro this enzyme catalyzes the transfer of an acyl chain from acyl-CoA to the sn-2 position of 1-acyl phosphatidylethanolamine (PE) or 1-acyl PG to form the sn-1, sn-2, di acyl PE and PG respectively; it does not acylate PG to form acyl PG. To begin to understand why the overexpression of a lyso GPL acyltransferase leads to the accumulation of a headgroup acylated GPL in E. coli we investigated the headgroup specificity of At1g78690. Using membranes prepared from E. coli overexpressing At1g78690, we assessed the ability of At1g78690 to catalyze the transfer of acyl chains from acyl-coenzyme A to a variety of lyso GPL acyl acceptors including lyso-phosphatidic acid (PA), -phosphatidylcholine (PC), -phosphatidylserine (PC), -phosphatidylinositol (PI) and three stereoisoforms of bis(monoacylglycero)phosphate (BMP). The predicted products were formed when lyso PI and lyso PC were used as the acyl acceptor but not with lyso PC or lyso PA. In addition, At1g78690 robustly acylates two BMP isoforms with sn-2 and/or sn-2′ hydroxyls in the R-stereoconfiguration, but not the BMP isoform with the sn-2 and sn-2′ hydroxyls in the S-stereoconfiguration. This strongly suggests that At1g78690 is stereoselective for hydroxyls with R-stereochemistry. In addition, this robust acylation of BMPs by At1g78690, which yields acyl PG like molecules, may explain the mechanism by which At1g78690 so strikingly alters the lipid composition of E. coli.  相似文献   

13.
It has been proposed that palmitoylation of the N-terminal segment of surfactant protein SP-C is important for maintaining association of pulmonary surfactant complexes with interfacial films compressed to high pressures at the end of expiration. In this study, we examined surfactant membrane models containing palmitoylated and nonpalmitoylated synthetic peptides, based on the N-terminal SP-C sequence, in dipalmitoylphosphatidylcholine (DPPC)/egg phosphatidylglycerol (7:3, w/w) by 2H-NMR. Perturbations of lipid properties by the peptide versions were compared in samples containing chain- and headgroup-deuterated lipid (DPPC-d62 and DPPC-d4 respectively). Also, deuterated peptide palmitate chains were compared with those of DPPC in otherwise identical lipid-protein mixtures. Palmitoylated peptide increased average DPPC-d62 chain orientational order slightly, particularly for temperatures spanning gel and liquid crystalline coexistence, implying penetration of palmitoylated peptide into ordered membrane. In contrast, the nonpalmitoylated peptide had a small disordering effect in this temperature range. Both peptide versions perturbed DPPC-d4 headgroup orientation similarly, suggesting little effect of palmitoylation on the largely electrostatic peptide-headgroup interaction. Deuterated acyl chains attached to the SP-C N-terminal segment displayed a qualitatively different distribution of chain order, and lower average order, than DPPC-d62 in the same membranes. This likely reflects local perturbation of lipid headgroup spacing by the peptide portion interacting with the bilayer near the peptide palmitate chains. This study suggests that SP-C-attached acyl chains could be important for coupling of lipid and protein motions in surfactant bilayers and monolayers, especially in the context of ordered phospholipid structures such as those potentially formed during exhalation, when stabilization of the respiratory surface by surfactant is the most crucial.  相似文献   

14.
Deuterium nuclear magnetic resonance (2H-NMR) was used to investigate the structure and dynamics of the sn-2 hydrocarbon chain of semi-synthetical choline and ethanolamine plasmalogens in bilayers containing 0, 30, and 50 mol% cholesterol. The deuterium NMR spectra of the choline plasmalogen yielded well-resolved quadrupolar splittings which could be assigned to the corresponding hydrocarbon chain deuterons. The sn-2 acyl chain was found to adopt a similar conformation as observed in the corresponding diacyl phospholipid, however, the flexibility at the level of the C-2 methylene segment of the plasmalogen was increased. Deuterium NMR spectra of bilayers composed of the ethanolamine plasmalogen yielded quadrupolar splittings of the C-2 segment much larger than those of the corresponding diacyl lipids, suggesting that the sn-2 chain is oriented perpendicular to the membrane surface at all segments. Cholesterol increased the ordering of the choline plasmalogen acyl chain to the same extent as in diacyl lipid bilayers. T1 relaxation time measurements demonstrated only minor dynamical differences between choline plasmalogen and diacyl lipids in model membranes.  相似文献   

15.
In the yeast Saccharomyces cerevisiae, the molecular species profile of the major membrane glycerophospholipid phosphatidylcholine (PC) is determined by the molecular species-selectivity of the biosynthesis routes and by acyl chain remodeling. Overexpression of the glycerol-3-phosphate acyltransferase Sct1p was recently shown to induce a strong increase in the cellular content of palmitate (C16:0). Using stable isotope labeling and mass spectrometry, the present study shows that wild type yeast overexpressing Sct1p incorporates excess C16:0 into PC via the methylation of PE, the CDP-choline route, and post-synthetic acyl chain remodeling. Overexpression of Sct1p increased the extent of remodeling of PE-derived PC, providing a novel tool to perform mechanistic studies on PC acyl chain exchange. The exchange of acyl chains occurred at both the sn-1 and sn-2 positions of the glycerol backbone of PC, and required the phospholipase B Plb1p for optimal efficiency. Sct1p-catalyzed acyl chain exchange, the acyl-CoA binding protein Acb1p, the Plb1p homologue Plb2p, and the glycerophospholipid:triacylglycerol transacylase Lro1p were not required for PC remodeling. The results indicate that PC serves as a buffer for excess cellular C16:0.  相似文献   

16.
Most mammalian phospholipids contain a saturated fatty acid at the sn-1 carbon atom and an unsaturated fatty acid at the sn-2 carbon atom of the glycerol backbone group. While the sn-2 linked chains undergo extensive remodeling by deacylation and reacylation (Lands cycle), it is not known how the composition of saturated fatty acids is controlled at the sn-1 position. Here, we demonstrate that lysophosphatidylglycerol acyltransferase 1 (LPGAT1) is an sn-1 specific acyltransferase that controls the stearate/palmitate ratio of phosphatidylethanolamine (PE) and phosphatidylcholine. Bacterially expressed murine LPGAT1 transferred saturated acyl-CoAs specifically into the sn-1 position of lysophosphatidylethanolamine (LPE) rather than lysophosphatidylglycerol and preferred stearoyl-CoA over palmitoyl-CoA as the substrate. In addition, genetic ablation of LPGAT1 in mice abolished 1-LPE:stearoyl-CoA acyltransferase activity and caused a shift from stearate to palmitate species in PE, dimethyl-PE, and phosphatidylcholine. Lysophosphatidylglycerol acyltransferase 1 KO mice were leaner and had a shorter life span than their littermate controls. Finally, we show that total lipid synthesis was reduced in isolated hepatocytes of LPGAT1 knockout mice. Thus, we conclude that LPGAT1 is an sn-1 specific LPE acyltransferase that controls the stearate/palmitate homeostasis of PE and the metabolites of the PE methylation pathway and that LPGAT1 plays a central role in the regulation of lipid biosynthesis with implications for body fat content and longevity.  相似文献   

17.
An enzyme preparation was isolated from rat lung cytosol with the capability to transfer the fatty acyl chain from 1-acyl-sn-glycero-3-phosphocholine to water and to another molecule of 1-acyl-sn-glycero-3-phosphocholine. The evidence presented to indicate that a single protein confers both activities includes: (a) both normal and sodium dodecyl sulfate polyacrylamide disc gel electrophoresis showed a single protein band, and (b) heat treatment and preincubation with increasing amounts of diisopropylfluorophosphate resulted in concomitant loss of fatty acid and phosphatidylcholine formation. The enzyme converted 1-[9,10-3H2]stearoyl-sn-glycero-3-phospho[14C-methyl]choline into phosphatidylcholine with an isotopic 3H/14C ratio twice that of the substrate, even when an excess of unlabeled fatty acid was present. The acyl group from palmitoyl-propanediol (1,3)-phosphocholine and palmitoyl-propanediol (1,3)-phosphoethanolamine could be transferred to lysophosphatidylcholine acceptor to yield phosphatidylcholine. Neither acylglycerols and cholesterol nor glycero-3-phosphate and glycero-3-phosphocholine served as acyl acceptors. Lysophosphatidylethanolamine and lysophosphatidyglycerol were converted also into the corresponding diacylphospholipids. Palmitoyllysophosphatidylcholine is preferentially converted into phosphatidylcholine when compared with stearoyllysophosphatidylcholine. The possible involvement of the enzyme in the synthesis of dipalmitoylphosphatidylcholine for the production of lung surfactant is discussed.  相似文献   

18.
By using neutron diffraction, the headgroup conformation of purified phosphatidylglycerol from Escherichia coli membranes has been investigated. Measurements at 25 degrees C and 15% relative humidity on oriented multilayers of lipid selectively deuterated at the sn-3-position of the glycerol backbone and of the gamma-position of the glycerol headgroup show that the labels are at a mean distance of 23.0 A and 27.6 A from the centre of the hydrocarbon chain region. This suggests that the negatively charged headgroup is oriented at about 30 degrees to the membrane surface. The orientation of the phosphatidylglycerol headgroup makes the negatively charged phosphate group easily accessible to cations present in the adjacent water layer.  相似文献   

19.
A. K. Stobart  S. Stymne 《Planta》1985,163(1):119-125
The utilisation of [14C]glycerol 3-phosphate and [14C]linoleoyl-CoA in the synthesis of triacylglycerol has been studied in the microsomal preparations of developing cotyledons of safflower seed. The results confirm that the glycerol backbone, which flows towards triacylglycerol from phosphatidic acid through the Kennedy pathway, can enter phosphatidylcholine from diacylglycerol. The equilibration between diacylglycerol and phosphatidylcholine offers a mechanism for the return of oleate to phosphatidylcholine for desaturation to linoleate. We have established that the oleate entering position 1 of sn-phosphatidylcholine from diacylglycerol is desaturated in situ to linoleate. The results indicate that the diacylglycerol phosphatidylcholine interconvertion coupled to the acyl exchange between acyl-CoA and position 2 of sn-phosphatidylcholine brings about the continuous enrichment of the glycerol backbone with C18-polyunsaturated fatty acids and hence these enzymes are of major importance in regulating the acyl quality of the accumulating triacylglycerols. Microsomal preparations from avocado mesocarp, however, did not have detectable acyl exchange between acyl-CoA and phosphatidylcholine or diacylglycerol phosphatidylcholine interconversion despite the high activity of the enzymes of the Kennedy pathway. A scheme is presented which incorporates many of the observations on triacylglycerol synthesis and provides a working model for the regulation of acyl quality in linoleate-rich vegetable oils.Abbreviation BSA bovine serum albumin  相似文献   

20.
Lysophospholipids (LysoGPs) serve as lipid mediators and precursors for synthesis of diacyl phospholipids (GPs). LysoGPs detected in cells have various acyl chains attached at either the sn-1 or sn-2 position of the glycerol backbone. In general, acyl chains at the sn-2 position of 2-acyl-1-LysoGPs readily move to the sn-1 position, generating 1-acyl-2-lyso isomers by a nonenzymatic reaction called intra-molecular acyl migration, which has hampered the detection of 2-acyl-1-LysoGPs in biological samples. In this study, we developed a simple and versatile method to separate and quantify 2-acyl-1- and 1-acyl-2-LysoGPs. The main point of the method was to extract LysoGPs at pH 4 and 4°C, conditions that were found to completely eliminate the intra-molecular acyl migration. Under the present conditions, the relative amounts of 2-acyl-1-LysoGPs and 1-acyl-2-LysoGPs did not change at least for 1 week. Further, in LysoGPs extracted from cells and tissues under the present conditions, most of the saturated fatty acids (16:0 and 18:0) were found in the sn-1 position of LysoGPs, while most of the PUFAs (18:2, 20:4, 22:6) were found in the sn-2 position. Thus the method can be used to elucidate the in vivo role of 2-acyl-1-LysoGPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号