首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
We investigated the genetic interactions between mutations affecting chromosome structure and partitioning in Bacillus subtilis. Loss-of-function mutations in spoIIIE (encoding a putative DNA translocase) and smc (involved in chromosome structure and partitioning) caused a synthetic lethal phenotype. We constructed a conditional mutation in smc and found that many of the spoIIIE smc double-mutant cells had a chromosome bisected by a division septum. The growth defect of the double mutant was exacerbated by a null mutation in the chromosome partitioning gene spo0J. These results suggest that mutants defective in nucleoid structure are unable to move chromosomes out of the way of the invaginating septum and that SpoIIIE is involved in repositioning these bisected chromosomes during vegetative growth.  相似文献   

2.
Structural maintenance of chromosomes (SMC) proteins are found in nearly all organisms. Members of this protein family are involved in chromosome condensation and sister chromatid cohesion. Bacillus subtilis SMC protein (BsSMC) plays a role in chromosome organization and partitioning. To better understand the function of BsSMC, we studied the effects of an smc null mutation on DNA supercoiling in vivo. We found that an smc null mutant was hypersensitive to the DNA gyrase inhibitors coumermycin A1 and norfloxacin. Furthermore, depleting cells of topoisomerase I substantially suppressed the partitioning defect of an smc null mutant. Plasmid DNA isolated from an smc null mutant was more negatively supercoiled than that from wild-type cells. In vivo cross-linking experiments indicated that BsSMC was bound to the plasmid. Our results indicate that BsSMC affects supercoiling in vivo, most likely by constraining positive supercoils, an activity which contributes to chromosome compaction and organization.  相似文献   

3.
We have analysed the function of a gene of Bacillus subtilis , the product of which shows significant homology with eukaryotic SMC proteins essential for chromosome condensation and segregation. Two mutant strains were constructed; in one, the expression was under the control of the inducible spac promoter (conditional null) and, in the other, the gene was disrupted by insertion (disrupted null). Both could form colonies at 23°C but not at 37°C in the absence of the expression of the Smc protein, indicating that the B. subtilis smc gene was essential for cell growth at higher temperatures. Microscopic examination revealed the formation of anucleate and elongated cells and diffusion of nucleoids within the elongated cells in the disrupted null mutant grown at 23°C and in the conditional null mutant grown in low concentrations of IPTG at 37°C. In addition, immunofluorescence microscopy showed that subcellular localization of the Spo0J partition protein was irregular in the smc disrupted null mutant, compared with bipolar localization in wild-type cells. These results indicate that the B. subtilis smc gene is essential for chromosome partition. The role of B. subtilis Smc protein in chromosome partition is discussed.  相似文献   

4.
Soj (ParA) and Spo0J (ParB) of Bacillus subtilis belong to a conserved family of proteins required for efficient plasmid and chromosome partitioning in many bacterial species. Unlike most Par systems, for which intact copies of both parA and parB are required for the Par system to function, inactivating soj does not cause a detectable chromosome partitioning phenotype whereas inactivating spo0J leads to a 100-fold increase in the production of anucleate cells. This suggested either that Soj does not function like other ParA homologues, or that a cellular factor might compensate for the absence of soj. We found that inactivating smc, the gene encoding the structural maintenance of chromosomes (SMC) protein, unmasked a role for Soj in chromosome partitioning. A soj null mutation dramatically enhanced production of anucleate cells in an smc null mutant. To look for effects of a soj null on other phenotypes perturbed in a spo0J null mutant, we analysed replication initiation and origin positioning in (soj-spo0J)+, Deltasoj, Deltaspo0J and Delta(soj-spo0J) cells. All of the mutations caused increased initiation of replication and, to varying extents, affected origin positioning. Using a new assay to measure separation of the chromosomal origins, we found that inactivating soj, spo0J or both led to a significant defect in separating replicated sister origins, such that the origins remain too close to be spatially resolved. Separation of a region outside the origin was not affected. These results indicate that there are probably factors helping to pair sister origin regions for part of the replication cycle, and that Soj and Spo0J may antagonize this pairing to contribute to timely separation of replicated origins. The effects of Deltasoj, Deltaspo0J and Delta(soj-spo0J) mutations on origin positioning, chromosome partitioning and replication initiation may be a secondary consequence of a defect in separating replicated origins.  相似文献   

5.
Structure chromosome (SMC) proteins organize the core of cohesin, condensin and Smc5-Smc6 complexes. The Smc5-Smc6 complex is required for DNA repair, as well as having another essential but enigmatic function. Here, we generated conditional mutants of SMC5 and SMC6 in budding yeast, in which the essential function was affected. We show that mutant smc5-6 and smc6-9 cells undergo an aberrant mitosis in which chromosome segregation of repetitive regions is impaired; this leads to DNA damage and RAD9-dependent activation of the Rad53 protein kinase. Consistent with a requirement for the segregation of repetitive regions, Smc5 and Smc6 proteins are enriched at ribosomal DNA (rDNA) and at some telomeres. We show that, following Smc5-Smc6 inactivation, metaphase-arrested cells show increased levels of X-shaped DNA (Holliday junctions) at the rDNA locus. Furthermore, deletion of RAD52 partially suppresses the temperature sensitivity of smc5-6 and smc6-9 mutants. We also present evidence showing that the rDNA segregation defects of smc5/smc6 mutants are mechanistically different from those previously observed for condensin mutants. These results point towards a role for the Smc5-Smc6 complex in preventing the formation of sister chromatid junctions, thereby ensuring the correct partitioning of chromosomes during anaphase.  相似文献   

6.
The uvrD gene in Escherichia coli encodes a 720-amino-acid 3'-5' DNA helicase which, although nonessential for viability, is required for methyl-directed mismatch repair and nucleotide excision repair and furthermore is believed to participate in recombination and DNA replication. We have shown in this study that null mutations in uvrD are incompatible with lon, the incompatibility being a consequence of the chronic induction of SOS in uvrD strains and the resultant accumulation of the cell septation inhibitor SulA (which is a normal target for degradation by Lon protease). uvrD-lon incompatibility was suppressed by sulA, lexA3(Ind(-)), or recA (Def) mutations. Other mutations, such as priA, dam, polA, and dnaQ (mutD) mutations, which lead to persistent SOS induction, were also lon incompatible. SOS induction was not observed in uvrC and mutH (or mutS) mutants defective, respectively, in excision repair and mismatch repair. Nor was uvrD-mediated SOS induction abolished by mutations in genes that affect mismatch repair (mutH), excision repair (uvrC), or recombination (recB and recF). These data suggest that SOS induction in uvrD mutants is not a consequence of defects in these three pathways. We propose that the UvrD helicase participates in DNA replication to unwind secondary structures on the lagging strand immediately behind the progressing replication fork, and that it is the absence of this function which contributes to SOS induction in uvrD strains.  相似文献   

7.
8.
Bacillus subtilis mutants with lesions in PBSX prophage genes have been isolated. One of these appears to be a regulatory mutant and is defective for mitomycin C-induced derepression of PBSX; the others are defective for phage capsid formation. All of the PBSX structural proteins are synthesized during induction of the capsid defective mutants; however, several of these proteins exhibit abnormal serological reactivity with anti-PBSX antiserum. The two head proteins X4 and X7 are not immunoprecipitable in a mutant which fails to assemble phage head structures. In the tail mutant, proteins X5 and X6 are not immunoprecipitable, tails are not assembled, and a possible tail protein precursor remains uncleaved. The noninducible mutant does not synthesize any PBSX structural proteins after exposure to mitomycin C. The mutation is specific for PBSX since ø105 and SPO2 lysogens of the mutant are inducible. All of the known PBSX-specific mutations were shown to be clustered between argC and metC on the host chromosome. In addition, the metC marker was shown to be present in multiple copies in cells induced for PBSX replication. This suggests that the derepressed prophage replicates while still integrated and that replication extends into the adjacent regions of the host chromosome.  相似文献   

9.
10.
We have identified a new class of DNA gyrase mutants of Salmonella typhimurium that show chronic derepression of the SOS regulon. Thus, these mutants mimic the response of wild-type cells to gyrase inhibitors of the quinolone family. SOS induction by conditional lethal mutations gyrA208 or gyrB652, like that mediated by quinolones, is completely dependent on the function of the recB gene product. Introduction of recA or recB null mutations into these strains exacerbates their temperature-sensitive phenotype and prevents growth at the otherwise permissive temperature of 37°C. Selection of suppressors that concomitantly restore growth at 37°C and SOS induction in a recB? background yielded mutations that relieve the RecB requirement for homologous recombination; namely, sbcB mutations as well as mutations at a new locus that was named sbcE. Such mutations also restore SOS induction in quinolone-treated gyr+recB? strains. These findings indicate that Rec functions are needed for growth of the gyrase mutants at 37°C and suggest that recombinational repair intermediates constitute the SOS-inducing signal in the mutants as well as in quinolone-treated wild-type bacteria. Unlike quinolones, however, the gyr mutations described in this study do not cause detectable accumulation of ‘cleavable’ gyrase–DNA complexes in plasmid or chromosomal DNA. Yet gyrA208 (the only allele tested) was found to trigger RecB-mediated reckless degradation of chromosomal DNA in recA? cells at restrictive temperatures. Indirect evidence suggests that double-stranded DNA ends, entry sites for the RecBCD enzyme, are generated in the gyr mutants by the breakage of DNA-replication forks. We discuss how this could occur and how recombinational rescue of collapsed replication forks could account for cell survival (and SOS induction) in the gyr mutants as well as in quinolone-treated bacteria.  相似文献   

11.
We analyzed the Bacillus subtilis SOS response using Escherichia coli LexA protein as a probe to measure the kinetics of SOS activation and DNA repair in wild-type and DNA repair-deficient strains. By examining the effects of DNA-damaging agents that produce the SOS inducing signal in E. coli by three distinct pathways, we obtained evidence that the nature of the SOS inducing signal has been conserved in B. subtilis. In particular, we used the B. subtilis DNA polymerase III inhibitor, 6-(p-hydroxyphenylazo)-uracil, to show that DNA replication is required to generate the SOS inducing signal following UV irradiation. We also present evidence that single-stranded gaps, generated by excision repair, serve as part of the UV inducing signal. By assaying the SOS response in B. subtilis dinA, dinB, and dinC mutants, we identified distinct deficiencies in SOS activation and DNA repair that suggest roles for the corresponding gene products in the SOS response.  相似文献   

12.
T. Asai  T. Kogoma 《Genetics》1994,137(4):895-902
Induction of the SOS response in Escherichia coli activates normally repressed DNA replication which is termed inducible stable DNA replication (iSDR). We previously demonstrated that initiation of iSDR requires the products of genes, such as recA, recB and recC, that are involved in the early stages of homologous recombination. By measuring the copy number increase of the origin (oriM1) region on the chromosome, we show, in this study, that initiation of iSDR is stimulated by mutations in the ruvA, ruvC and recG genes which are involved in the late stages of homologous recombination. Continuation of iSDR, on the other hand, is inhibited by these mutations. The results suggest that Holliday recombination intermediates, left on the chromosome due to abortive recombination, arrest replication fork movement. Low levels of iSDR and sfiA (sulA) gene expression were also observed in exponentially growing ruvA, ruvC and recG mutants, suggesting that the SOS response is chronically induced in these mutants. We propose that replication forks are arrested in these mutants, albeit at a low frequency, even under the normal (uninduced) conditions.  相似文献   

13.
14.
DNA double-strand breaks are particularly deleterious lesions that can lead to genomic instability and cell death. We investigated the SOS response to double-strand breaks in both Escherichia coli and Bacillus subtilis. In E. coli, double-strand breaks induced by ionizing radiation resulted in SOS induction in virtually every cell. E. coli strains incapable of SOS induction were sensitive to ionizing radiation. In striking contrast, we found that in B. subtilis both ionizing radiation and a site-specific double-strand break causes induction of prophage PBSX and SOS gene expression in only a small subpopulation of cells. These results show that double-strand breaks provoke global SOS induction in E. coli but not in B. subtilis. Remarkably, RecA-GFP focus formation was nearly identical following ionizing radiation challenge in both E. coli and B. subtilis, demonstrating that formation of RecA-GFP foci occurs in response to double-strand breaks but does not require or result in SOS induction in B. subtilis. Furthermore, we found that B. subtilis cells incapable of inducing SOS had near wild-type levels of survival in response to ionizing radiation. Moreover, B. subtilis RecN contributes to maintaining low levels of SOS induction during double-strand break repair. Thus, we found that the contribution of SOS induction to double-strand break repair differs substantially between E. coli and B. subtilis.  相似文献   

15.
16.
17.
The inducible SOS response for DNA repair and mutagenesis in the bacterium Bacillus subtilis resembles the extensively characterized SOS system of Escherichia coli. In this report, we demonstrate that the cellular repressor of the E. coli SOS system, the LexA protein, is specifically cleaved in B. subtilis following exposure of the cells to DNA-damaging treatments that induce the SOS response. The in vivo cleavage of LexA is dependent upon the functions of the E. coli RecA protein homolog in B. subtilis (B. subtilis RecA) and results in the same two cleavage fragments as produced in E. coli cells following the induction of the SOS response. We also show that a mutant form of the E. coli RecA protein (RecA430) can partially substitute for the nonfunctional cellular RecA protein in the B. subtilis recA4 mutant, in a manner consistent with its known activities and deficiencies in E. coli. RecA430 protein, which has impaired repressor cleaving (LexA, UmuD, and bacteriophage lambda cI) functions in E.coli, partially restores genetic exchange to B. subtilis recA4 strains but, unlike wild-type E. coli RecA protein, is not capable of inducing SOS functions (expression of DNA damage-inducible [din::Tn917-lacZ] operons or RecA synthesis) in B. subtilis in response to DNA-damaging agents or those functions that normally accompany the development of physiological competence. Our results provide support for the existence of a cellular repressor in B. subtilis that is functionally homologous to the E. coli LexA repressor and suggest that the mechanism by which B. subtilis RecA protein (like RecA of E. coli) becomes activated to promote the induction of the SOS response is also conserved.  相似文献   

18.
Summary Incubation of thermosensitive dna mutants of Bacillus subtilis at the non-permissive temperature leads in some instances to induction of defective prophage PBSX and cell lysis. A clear distinction can be made between mutants affected in DNA replication at the growing point (extension mutants) and those unable to initiate new rounds of replication (initiation mutants). The former promote PBSX induction to a variable and mutation-specific extent, whereas the latter do not exhibit any signs of induction. Analysis of mutants carrying two dna mutations suggests that products of some dna genes involved in initiation and in extension are not essential for induction but can substantially amplify its extent. However, mitomycin C treatment of dna mutants which have completed their residual DNA synthesis leads to a PBSX induction essentially identical to that obtained by mitomycin C treatment of the wild-type strain, which precludes an essential role for any of the mutated proteins in this induction process. On the basis of our observations we propose that the induction signal is related to the number of blocked replication forks: the larger that number, the higher the proportion of induced cells within the population.  相似文献   

19.
20.
We investigated the Escherichia coli mutants carrying the parB, parA, and gyrB mutations, all of which display faulty chromosome partitioning at the nonpermissive temperature, to see whether their phenotype reflected a defect in the termination of DNA replication. In the parB strain DNA synthesis slowed down at 42 degrees C and the SOS response was induced, whereas in the parA strain DNA synthesis continued normally for 120 min and there was no SOS induction. To see whether replication forks accumulated in the vicinity of terC at the nonpermissive temperature, the mutants were incubated for 60 min at 42 degrees C and then returned to low temperature and pulse-labeled with [3H]thymidine. In all cases the restriction pattern of the labeled DNA was incompatible with that of the terC region, suggesting that replication termination was normal. In the parA mutant no DNA sequences were preferentially labeled, whereas in the parB and gyrB strains there was specific labeling of sequences whose restriction pattern resembled that of oriC. In the case of parB this was confirmed by DNA-DNA hybridization with appropriate probes. This test further revealed that the parB mutant over initiates at oriC after the return to the permissive temperature. Like dna(Ts) strains, the parB mutant formed filaments at 42 degrees C in the absence of SOS-associated division inhibition, accompanied by the appearance of anucleate cells of nearly normal size (28% of the population after 3 h), as revealed by autoradiography. The DNA in the filaments was either centrally located or distributed throughout. The parB mutation lies at 67 min, and the ParB- phenotype is corrected by a cloned dnaG gene or by a plasmid primase, strongly suggesting that parB is an allele of dnaG, the structural gene of the E. coli primase. It is thus likely that the parB mutant possesses an altered primase which does not affect replication termination but causes a partial defect in replication initiation and elongation and in chromosome distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号