首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We have determined the physical and genetic map of the 73,000 base-pair mitochondrial genome of a novel yeast species Saccharomyces douglasii. Most of the protein and RNA-coding genes known to be present in the mitochondrial DNA of Saccharomyces cerevisiae have been identified and located on the S. douglasii mitochondrial genome. The nuclear genomes of the two species are thought to have diverged some 50 to 80 million years ago and their nucleo-mitochondrial hybrids are viable but respiratorily deficient. The mitochondrial genome of S. douglasii displays many interesting features in comparison with that of S. cerevisiae. The three mosaic genes present in both genomes are quite different with regard to their structure. The S. douglasii COXI gene has two new introns and is missing the five introns of the S. cerevisiae gene. The S. douglasii cytochrome b gene has one new intron and lacks two introns of the S. cerevisiae gene. Finally, the L-rRNA gene of S. douglasii, like that of S. cerevisiae, has one intron of which the structure is different. Another salient feature of the S. douglasii mitochondrial genome reported here is that the gene order is different in comparison with S. cerevisiae mitochondrial DNA. In particular, a segment of approximately 15,000 base-pairs including the genes coding for COXIII and S-rRNA has been translocated to a position between the genes coding for varl and L-rRNA.  相似文献   

4.
5.
We have analyzed existing methodologies and created novel methodologies for the automatic assignment of S-adenosylmethionine (AdoMet)-dependent methyltransferase functionality to genomic open reading frames based on predicted protein sequences. A large class of the AdoMet-dependent methyltransferases shares a common binding motif for the AdoMet cofactor in the form of a seven-strand twisted beta-sheet; this structural similarity is mirrored in a degenerate sequence similarity that we refer to as methyltransferase signature motifs. These motifs are the basis of our assignments. We find that simple pattern matching based on the motif sequence is of limited utility and that a new method of "sensitized matrices for scoring methyltransferases" (SM2) produced with modified versions of the MEME and MAST tools gives greatly improved results for the Saccharomyces cerevisiae yeast genome. From our analysis, we conclude that this class of methyltransferases makes up approximately 0.6-1.6% of the genes in the yeast, human, mouse, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana, and Escherichia coli genomes. We provide lists of unidentified genes that we consider to have a high probability of being methyltransferases for future biochemical analyses.  相似文献   

6.
7.
8.
9.
Regulatory sites that control gene expression are essential to the proper functioning of cells, and identifying them is critical for modeling regulatory networks. We have developed Magma (Multiple Aligner of Genomic Multiple Alignments), a software tool for multiple species, multiple gene motif discovery. Magma identifies putative regulatory sites that are conserved across multiple species and occur near multiple genes throughout a reference genome. Magma takes as input multiple alignments that can include gaps. It uses efficient clustering methods that make it about 70 times faster than PhyloNet, a previous program for this task, with slightly greater sensitivity. We ran Magma on all non-coding DNA conserved between Caenorhabditis elegans and five additional species, about 70 Mbp in total, in <4 h. We obtained 2,309 motifs with lengths of 6-20 bp, each occurring at least 10 times throughout the genome, which collectively covered about 566 kbp of the genomes, approximately 0.8% of the input. Predicted sites occurred in all types of non-coding sequence but were especially enriched in the promoter regions. Comparisons to several experimental datasets show that Magma motifs correspond to a variety of known regulatory motifs.  相似文献   

10.
Cbf1p is a basic-helix-loop-helix-zipper protein of Saccharomyces cerevisiae required for the function of centromeres and MET gene promoters, where it binds DNA via the consensus core motif CACRTG (R = A or G). At MET genes Cbf1p appears to function in both activator recruitment and chromatin-remodeling. Cbf1p has been implicated in the regulation of other genes, and CACRTG motifs are common in potential gene regulatory DNA. A recent genome-wide location analysis showed that the majority of intergenic CACGTG palindromes are bound by Cbf1p. Here we tested whether all potential Cbf1p binding motifs in the yeast genome are likely to be bound by Cbf1p using chromatin immunoprecipitation. We also tested which of the motifs are actually functional by assaying for Cbf1p-dependent chromatin remodeling. We show that Cbf1p binding and activity is restricted to palindromic CACGTG motifs in promoter-proximal regions. Cbf1p does not function through CACGTG motifs that occur in promoter-distal locations within coding regions nor where CACATG motifs occur alone except at centromeres. Cbf1p can be made to function at promoter-distal CACGTG motifs by overexpression, suggesting that the concentration of Cbf1p is normally limiting for binding and is biased to gene regulatory DNA by interactions with other factors. We conclude that Cbf1p is required for normal nucleosome positioning wherever the CACGTG motif occurs in gene regulatory DNA. Cbf1p has been shown to interact with the chromatin-remodeling ATPase Isw1p. Here we show that recruitment of Isw1p by Cbf1p is likely to be general but that Isw1p is only partially required for Cbf1p-dependent chromatin structures.  相似文献   

11.
We developed an algorithm, Lever, that systematically maps metazoan DNA regulatory motifs or motif combinations to sets of genes. Lever assesses whether the motifs are enriched in cis-regulatory modules (CRMs), predicted by our PhylCRM algorithm, in the noncoding sequences surrounding the genes. Lever analysis allows unbiased inference of functional annotations to regulatory motifs and candidate CRMs. We used human myogenic differentiation as a model system to statistically assess greater than 25,000 pairings of gene sets and motifs or motif combinations. We assigned functional annotations to candidate regulatory motifs predicted previously and identified gene sets that are likely to be co-regulated via shared regulatory motifs. Lever allows moving beyond the identification of putative regulatory motifs in mammalian genomes, toward understanding their biological roles. This approach is general and can be applied readily to any cell type, gene expression pattern or organism of interest.  相似文献   

12.
An increasing number of studies report that functional divergence in duplicated genes is accompanied by gene expression changes, although the evolutionary mechanism behind this process remains unclear. Our genomic analysis on the yeast Saccharomyces cerevisiae shows that the number of shared regulatory motifs in the duplicates decreases with evolutionary time, whereas the total number of regulatory motifs remains unchanged. Moreover, genes with numerous paralogs in the yeast genome do not have especially low number of regulatory motifs. These findings indicate that degenerative complementation is not the sole mechanism behind expression divergence in yeast. Moreover, we found some evidence for the action of positive selection on cis-regulatory motifs after gene duplication. These results suggest that the evolution of functional novelty has a substantial role in yeast duplicate gene evolution.  相似文献   

13.
In this study, I searched for fungal-specific proteins in the genome of the budding yeast Saccharomyces cerevisiae, inferred from a comparison of amino acid sequences. I used the GTOP (Genomes to Protein structures and functions) database of the DDBJ (DNA Data Bank of Japan), which consists of 21 genomes from Archaea, 203 genomes from Bacteria, and 50 genomes from Eucarya (including 18 fungal genomes). Among 5,874 proteins of S. cerevisiae, 1,551 have homologs only in Eucarya, and 504 of the 1,551 have homologs only in fungi. To find fungal-specific proteins, homologs of the homologs have been searched repeatedly. As a result, 132 of the 504 are characterized as fungal-specific proteins. The genes encoding the 132 fungal-specific proteins are not included in the list of essential genes for viability in the S. cerevisiae genome deletion project. Among the 132 proteins, 99 are S. cerevisiae-specific, and no protein that is distributed among 10 or more of the 18 fungal species exists. In addition, most of the fungal-specific proteins are very small and functionally unknown. My results show that the fungal-specific proteins have short evolutionary histories, suggesting that S. cerevisiae produces novel proteins and that ancestral fungi also produced small proteins most of which have disappeared or have been combined with other proteins during fungal evolution.  相似文献   

14.
We have evaluated the degree of gene redundancy in the nuclear genomes of 13 hemiascomycetous yeast species. Saccharomyces cerevisiae singletons and gene families appear generally conserved in these species as singletons and families of similar size, respectively. Variations of the number of homologues with respect to that expected affect from 7 to less than 24% of each genome. Since S. cerevisiae homologues represent the majority of the genes identified in the genomes studied, the overall degree of gene redundancy seems conserved across all species. This is best explained by a dynamic equilibrium resulting from numerous events of gene duplication and deletion rather than by a massive duplication event occurring in some lineages and not in others.  相似文献   

15.
16.
17.
18.
The available genomic sequences of five closely related hemiascomycetous yeast species (Kluyveromyces lactis, Kluyveromyces waltii, Candida glabrata, Ashbya (Eremothecium) gossypii with Saccharomyces cerevisiae as a reference) were analysed to identify multidrug resistance (MDR) transport proteins belonging to the ATP-binding cassette (ABC) and major facilitator superfamilies (MFS), respectively. The phylogenetic trees clearly demonstrate that a similar set of gene (sub)families already existed in the common ancestor of all five fungal species studied. However, striking differences exist between the two superfamilies with respect to the evolution of the various subfamilies. Within the ABC superfamily all six half-size transporters with six transmembrane-spanning domains (TMs) and most full-size transporters with 12 TMs have one and only one gene per genome. An exception is the PDR family, in which gene duplications and deletions have occurred independently in individual genomes. Among the MFS transporters, the DHA2 family (TC 2.A.1.3) is more variable between species than the DHA1 family (TC 2.A.1.2). Conserved gene order relationships allow to trace the evolution of most (sub)families, for which the Kluyveromyces lactis genome can serve as an optimal scaffold. Cross-species sequence alignment of orthologous upstream gene sequences led to the identification of conserved sequence motifs ("phylogenetic footprints"). Almost half of them match known sequence motifs for the MDR regulators described in S. cerevisiae. The biological significance of those and of the novel predicted motifs awaits to be confirmed experimentally.  相似文献   

19.
20.
The cis-regulatory map of Shewanella genomes   总被引:2,自引:1,他引:1       下载免费PDF全文
Liu J  Xu X  Stormo GD 《Nucleic acids research》2008,36(16):5376-5390
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号