首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Putative PISTILLATA genes were generated in nine species of Neillia, to examine the phylogenetic relationships among the species, and to test the hypothesis of hybrid origin within the genus. The PI genes determined in Neillia have two introns in the I-box region, which is consistent with PI genes in other Rosaceae. Phylogenetic analyses of the I-box region, including the introns, indicated that the species formerly classified in Stephanandra were nested within Neillia, supporting the taxonomic merger of the two genera. The PI data do not have a sufficiently strong signal to reject the hypothesis that Stephanandra is a hybrid in origin. The PI data, in conjunction with nuclear LEAFY, ribosomal DNA, and chloroplast DNA data, suggest that N. affinis might have been derived from hybridization between N. thibetica and N. gracilis. The phylogenetic position of N. affinis in the N. thibetica clade is supported by the PI and rDNA data, whereas N. affinis is also supported as a sister to N. gracilis in the LEAFY and cpDNA data. The pattern of phylogenetic placements of N. affinis in two different clades in two different sets of data suggests that the genome of the species might be comprised of a combination of the putative parental species.  相似文献   

2.
FLORICAULA/LEAFY (FLO/LFY) is a single-copy nuclear-encoded homeotic gene containing two introns. We have investigated the utility of the second intron of FLO/LFY (FLint2) as a tool for phylogeny reconstruction at lower taxonomic levels. As an example, the phylogeny of 46 Amorphophallus, two Pseudodracontium, and four outgroup species is reconstructed using maximum parsimony and maximum likelihood analyses of FLint2 sequences. We designed new primers based on conserved sequences of the second and third exon for use in a range of Aroid taxa to amplify and sequence the second intron. In Amorphophallus FLint2 proved to be rather short (143-222 bp), highly variable and unsaturated. In all but two species a single amplification product was found. Results from phylogenetic analysis of FLint2 are largely congruent with results using the chloroplast regions rbcL, matK, and trnL, and compare favorably in percentage of informative characters, overall homoplasy levels, number of well-supported clades in consensus trees and resolution of ingroup relationships within Amorphophallus. When amplification products are not too large, alignment is relatively straightforward, and sequences are used in combination with other fast evolving markers, the FLint2 intron may be a valuable new tool for phylogenetic studies at lower taxonomic levels.  相似文献   

3.
4.
The phylogeny of Nolana (Solanaceae), a genus primarily distributed in the coastal Atacama and Peruvian deserts with a few species in the Andes and one species endemic to the Galápagos Islands, was reconstructed using sequences of four plastid regions (ndhF, psbA-trnH, rps16-trnK and trnC-psbM) and the nuclear LEAFY second intron. The monophyly of Nolana was strongly supported by all molecular data. The LEAFY data suggested that the Chilean species, including Nolana sessiliflora, the N. acuminata group and at least some members of the Alona group, are basally diverged, supporting the Chilean origin of the genus. Three well-supported clades in the LEAFY tree were corroborated by the SINE (short interspersed elements) or SINE-like insertions. Taxa from Peru are grouped roughly into two clades. Nolana galapagensis from the Galápagos Island is most likely to have derived from a Peruvian ancestor. The monophyly of the morphologically well-diagnosed Nolana acuminata group (N. acuminata, N. baccata, N. paradoxa, N. parviflora, N. pterocarpa, N. rupicola and N. elegans) was supported by both plastid and LEAFY data. Incongruence between the plastid and the LEAFY data was detected concerning primarily the positions of N. sessiliflora, N. galapagensis, taxa of the Alona group and the two Peruvian clades. Such incongruence may be due to reticulate evolution or in some cases lineage sorting of plastid DNA. Incongruence between our previous GBSSI trees and the plastid-LEAFY trees was also detected concerning two well-supported major clades in the GBSSI tree. Duplication of the GBSSI gene may have contributed to this incongruence.  相似文献   

5.
The nuclear-encoded chloroplast-expressed glycerol-3-phosphate acyltransferase (GPAT) gene has been found to be single-copy in a number of angiosperm families. In this study we investigated the phylogenetic utility of the GPAT gene at the interspecific level using the genus Paeonia (Paeoniaceae) as an example. An approximately 2.3- to 2.6-kb fragment of the GPAT gene, containing a large intron of more than 2 kb, was amplified, cloned, and sequenced from 19 accessions representing 13 Paeonia species. The GPAT gene phylogeny inferred by parsimony analysis supported interspecific relationships that were previously unresolved, suggesting that large introns of low-copy nuclear genes are particularly informative in the resolution of close relationships at low taxonomic levels. Whereas the GPAT phylogeny is largely congruent with the previous phylogenetic hypothesis of Paeonia, it shows a significant discordance involving the paraphyly of section Paeonia. Given evidence of an ancient duplication and the subsequent silencing of one GPAT locus in P. anomala, this discordance is most likely the result of paralogy. Two distinct genomic clones containing partial GPAT genes were isolated from P. anomala. The GPAT sequence from one clone corresponded to the functional copy of the gene, and the second genomic clone was determined to contain a GPAT pseudogene. The insertion of a retrotransposon in an intron of this pseudogene may have been responsible for the silencing of this GPAT locus in P. anomala. This study suggests that, although it is unlikely that universal nuclear gene markers free from paralogy are usually available, low-copy nuclear genes can be very useful in plant phylogenetic reconstruction, especially at low taxonomic levels, as long as the evolutionary dynamics of the genes are carefully examined.  相似文献   

6.
7.

Background  

The origin of spliceosomal introns is the central subject of the introns-early versus introns-late debate. The distribution of intron phases is non-uniform, with an excess of phase-0 introns. Introns-early explains this by speculating that a fraction of present-day introns were present between minigenes in the progenote and therefore must lie in phase-0. In contrast, introns-late predicts that the nonuniformity of intron phase distribution reflects the nonrandomness of intron insertions.  相似文献   

8.
9.
利用核基因LEAFY第二个内含子片段对中国现存中华水韭(Isoetes sinensis Palmer)的遗传多样性进行分析,探讨了中华水韭自然居群的遗传多样性结构及其形成机制。结果显示:现存中华水韭7个自然居群共105个样本中存在78个单倍型,单倍型多样性(Hd)为0.989,核苷酸多样性(π)为0.021,遗传差异主要存在于居群内(72%),且存在较高的基因流(Nm=0.59)。同时,居群遗传学分析结果发现中华水韭居群不存在明显的谱系地理格局(GST>NST);Mantel检验中Rxy值为-0.286,P(rxy-rand≥rxy-data)值为0.370,表明居群遗传距离和地理距离之间没有明显相关性;UPGMA聚类分析显示处于海拔较高位置的2个居群与其它5个居群遗传关系较远;中性检验(Taijima's D、Fu & Li's D*和F*)检测结果均为负值,基于稳定模型的失配分布检测显示为多峰。根据中华水韭居群的地理位置,推测中华水韭的遗传结构可能与水系、海拔分布及其杂交后代多倍化的物种形成过程相关。  相似文献   

10.
Tribe Spiraeeae has generally been defined to include Aruncus, Kelseya, Luetkea, Pentactina, Petrophyton, Sibiraea, and Spiraea. Recent phylogenetic analyses have supported inclusion of Holodiscus in this group. Spiraea, with 50-80 species distributed throughout the north temperate regions of the world, is by far the largest and most widespread genus in the tribe; the remaining genera have one to several species each. Phylogenetic analyses of nuclear ITS and chloroplast trnL-trnF nucleotide sequences for 33 species representing seven of the aforementioned genera plus Xerospiraea divided the tribe into two well supported clades, one including Aruncus, Luetkea, Holodiscus, and Xerospiraea, the second including the other genera. Within Spiraea, none of the three sections recognized by Rehder based on inflorescence morphology is supported as monophyletic. Our analyses suggest a western North American origin for the tribe, with several biogeographic events involving vicariance or dispersal between the Old and New Worlds having occurred within this group.  相似文献   

11.
Sequences of the chloroplast ndhF gene and the nuclear ribosomal ITS regions are employed to reconstruct the phylogeny of Prunus (Rosaceae), and evaluate the classification schemes of this genus. The two data sets are congruent in that the genera Prunus s.l. and Maddenia form a monophyletic group, with Maddenia nested within Prunus. However, the ndhF data set is incongruent with the ITS data supporting two major groups within Prunus one consisting of subgenera Laurocerasus (including Pygeum) and Padus as well as the genus Maddenia and another of subgenera Amygdalus, Cerasus, and Prunus. The ITS data, on the other hand, support a clade composed of subgenera Amygdalus and Prunus and Prunus sect. Microcerasus in addition to a paraphyletic grade of subgenera Laurocerasus and Padus (and the genus Maddenia) taxa. In general, the subgeneric classifications of Prunus s.l. are not supported. The ITS and ndhF phylogenies differ mainly in interspecific relationships and the relative position of the Padus/Laurocerasus group. Both ITS and ndhF data sets suggest that the formerly recognized genus Pygeum is polyphyletic and that the distinction of the subgenera Padus and Laurocerasus is not supported. The biogeographic interactions of the temperate and tropical members in the Padus/Laurocera- sus/Maddenia alliance including Pygeum are shown to be highly dynamic and complex.  相似文献   

12.
The genus Rosa (Rosaceae) is a remarkable genus with respect to systematic biology. Multiple reproductive strategies ranging from apomixis to outcrossing including hybridisation, as well as different modes of character inheritance like matroclinal, paternal or sex unrelated ones. This complexity makes the genus a model in which simple concepts of radiation, speciation and taxonomy come to their limits. Analyses of the evolutionary patterns and processes in Rosa give clear evidence for the stochastic character of this specific evolutionary scenario.  相似文献   

13.
? Premise of the study: Primers were designed for amplifying intron 1 of the single-copy nuclear LEAFY gene for species of Davalliaceae. ? Methods and Results: New primer sets were designed and successfully amplified for intron 1 of the LEAFY gene in 13 species representing the five genera of Davalliaceae. The orthology of these sequences was further confirmed by phylogenetic analyses. Site variation in LEAFY intron 1 sequences across genera of the Davalliaceae and among accessions of the Humata repens complex were 18% and 8%, respectively. Such variation was greater than that for the cpDNA atpB-rbcL intergenic spacer region across the same taxa and accessions. ? Conclusions: Using our newly designed primers, intron 1 of the LEAFY gene could be amplified for all species tested. In addition, this single-copy, biparentally inherited, and quickly evolving region showed considerable potential for addressing infraspecific-level questions.  相似文献   

14.
We sampled the 5' end of the granule-bound starch synthase gene (GBSSI or waxy) in Rosaceae, sequencing 108 clones from 18 species in 14 genera representing all four subfamilies (Amygdaloideae, Maloideae, Rosoideae, and Spiraeoideae), as well as four clones from Rhamnus catharticus (Rhamnaceae). This is the first phylogenetic study to use the 5' portion of this nuclear gene. Parsimony and maximum-likelihood analyses of 941 bases from seven complete and two partial exons demonstrate the presence of two loci (GBSSI-1 and GBSSI-2) in the Rosaceae. Southern hybridization analyses with locus-specific probes confirm that all four Rosaceae subfamilies have at least two GBSSI loci, even though only one locus has been reported in all previously studied diploid flowering plants. Phylogenetic analyses also identify four clades representing four loci in the Maloideae. Phylogenetic relationships inferred from GBSSI sequences are largely compatible with those from chloroplast (cpDNA: ndhF, rbcL) and nuclear ribosomal internal transcribed spacer (nrITS) DNA. Large clades are marked by significant intron variation: a long first intron plus no sixth intron in Maloideae GBSSI-1, a long fourth intron in Rosoideae GBSSI-1, and a GT to GC mutation in the 5' splice site of the fourth intron in all GBSSI-2 sequences. Our data do not support the long-held hypothesis that Maloideae originated from an ancient hybridization between amygdaloid and spiraeoid ancestors. Instead, Spiraeoideae genera (Kageneckia and Vauquelinia) are their closest relatives in all four GBSSI clades.  相似文献   

15.
This study provides pollen data for 38 representative taxa belonging to all nine genera in the current classification of the tribe Spiraeeae (Rosaceae) including the monotypic Korean endemic genus Pentactina, and considers the distribution of orbicules for the first time. Pollen morphology and wall stratification were investigated using light, scanning electron and transmission electron microscopy. Spiraeeae pollen grains are small to medium in size (P = 6.9–34.0 μm, E = 7.1–28.0 μm), oblate to prolate in shape (P/E = 0.66–1.48) and tri-colporate. Spiraeeae pollen is generally characterised by striate sexine ornamentation, but four ornamentation types are recognised based on the length and direction of the ridge patterns. The observed variation in sexine ornamentation is particularly valuable at the generic level. The exine stratification of the representative Spiraeeae studied is similar and characterised by unbranched columellae and a continuous endexine. Orbicules are present in three genera of the tribe (Luetkea, Sibiraea and Xerospiraea). Orbicule distribution patterns indicate that the absence of orbicules is a synapomorphic condition of the more derived clade, comprising Pentactina + Petrophytum + Kelseya + Spiraea.  相似文献   

16.
A phylogeny of the tribe Neillieae (Rosaceae), which comprises Neillia, Stephanandra, and Physocarpus, was reconstructed based on nucleotide sequences of several regions of cpDNA, the ITS and ETS regions of rDNA, and the second intron of LEAFY, to elucidate relationships among genera and species in Neillieae and to assess the historical biogeography of the tribe. Phylogenetic analyses indicated that Physocarpus and Neillia-Stephanandra were strongly supported as monophyletic and suggested that Stephanandra may have originated by hybridization between two lineages of Neillia. Dispersal-vicariance analyses suggested that the most recent common ancestor of Neillieae may have occupied eastern Asia and western North America and that Physocarpus and Neillia-Stephanandra may have been split by an intercontinental vicariance event in the early Miocene. The biogeographic analyses also suggested that species of Neillia and Stephanandra diversified in eastern Asia, whereas in Physocarpus one dispersal event from western North America to eastern Asia occurred. Two divergent types of LEAFY sequences were found in the eastern North American species, P. opulifolius, but only one type was present in each plant. The two types of sequences may represent homeologous genes that originated by hybridization between P. capitatus and P. monogynus, both western North American species.  相似文献   

17.
18.
Sequences from s6pdh, a gene that encodes sorbitol-6-phosphate dehydrogenase in the Rosaceae, are used to reconstruct the phylogeny of 22 species of Prunus. The s6pdh sequences alone and in combination with previously published sequences of the internal transcribed spacer (ITS) and the cpDNA trnL-trnF spacer are analyzed using parsimony and maximum likelihood methods. Both methods reconstructed the same phylogeny when s6pdh sequences are used alone and in combination with ITS and trnL-trnF, and the topology is in agreement with previous studies that used a larger sample size. The s6pdh sequences have about twice as many informative sites as ITS. A molecular clock is rejected for s6pdh, most likely due to greater rates of evolution in subgenera Padus and Laurocerasus than in the rest of the genus. Phylogenetic reconstruction of Prunus as determined by analysis of the combined data set suggests an early split into two clades. One is composed of subgenera Cerasus, Laurocerasus, and Padus. The second includes subgenera Amygdalus, Emplectocladus, and Prunus. Species of section Microcerasus (formerly in subgenus Cerasus) are nested within subgenus Prunus. The order of branching and relationships among early diverging lineages is weakly supported, as a result of very short branches that may indicate rapid radiation.  相似文献   

19.
There is currently a shortage of DNA regions known to be useful for phylogenetic research in palms (Arecaceae). We report the development and use of primers for amplifying and sequencing regions of the nuclear gene malate synthase. In palms the gene appears to be single-copy, with exon regions that are phylogenetically informative within the family. We constructed a phylogeny of 45 palms and five outgroup taxa using 428 bp of malate synthase exon regions. We found that some major clades within the family were recovered, but there was a lack of resolution among the genera in subfamilies Arecoideae, Ceroxyloideae, Coryphoideae, and Phytelephantoideae. In a second analysis, malate synthase exon regions totaling 1002 bp were sequenced for 16 palms and two outgroup taxa. There was increased bootstrap support for some groups and for the placement of the monotypic genus Nypa as sister to the rest of the family. A comparison with data sets from noncoding regions of the chloroplast genome indicates that malate synthase sequences are more variable and potentially contain more phylogenetic information. We found no evidence of multiple copies of the malate synthase gene in palm genomes.  相似文献   

20.
A representative sample of 69 species from all recognized infrafamilial taxa of the family Aizoaceae (angiosperms, eudicotyledons, Caryophyllales) was surveyed for the presence/absence of the rpoC1 intron. PCR fragments of the samples fall into two size classes: a long fragment of approximately 1200 bp, and a short fragment of approximately 500 bp which was found in all samples from the tribes Drosanthemeae and Ruschieae of subfamily Ruschioideae. The length difference of about 700 bp corresponds to the length of the intron (738 bp in tobacco). Sequencing of the short fragment from Monilaria moniliformis revealed the precise excision of the intron as found in a previous study of the cactus family. It is concluded that the intron lacks in all samples from the clade including the tribes Drosanthemeae and Ruschieae of subfamily Ruschioideae, thus providing valuable PCR-based, sequence- and morphology-independent evidence for the monophyly of this lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号