首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rat brain phospholipase D1 (rPLD1) has two highly conserved motifs [H(X)K(X)4D, denoted HKD] located at the N-terminal and C-terminal halves, which are required for activity. Association of the two halves is essential for rPLD1 activity, which probably brings the two HKD domains together to form a catalytic center. In the present study, we find that an intact C-terminus is also essential for the catalytic activity of rPLD1. Serial deletion of the last four amino acids, EVWT, which are conserved in all mammalian PLD isoforms, abolished the catalytic activity of rPLD1. This loss of catalytic activity was not due to a lack of association of the N-terminal and C-terminal halves. Mutations of the last three amino acids showed that substitutions with charged or less hydrophobic amino acids all reduced PLD activity. For example, mutations of Thr1036 and Val1034 to Asp or Lys caused marked inactivation, whereas mutation to other amino acids had less effect. Mutation of Trp1035 to Leu, Ala, His or Tyr caused complete inactivation, whereas mutation of Glu1033 to Ala enhanced activity. The size of the amino acids at the C-terminus also affected the catalytic activity of PLD, reduced activity being observed with conservative mutations within the EVWT sequence (such as T/S, V/L or W/F). The enzyme was also inactivated by the addition of Ala or Val to the C-terminus of this sequence. Interestingly, the inactive C-terminal mutants could be complemented by cotransfection with a wild-type C-terminal half to restore PLD activity in vivo. These data demonstrate that the integrity of the C-terminus of rPLD1 is essential for its catalytic activity. Important features are the hydrophobicity, charge and size of the four conserved C-terminal amino acids. It is proposed that these play important roles in maintaining a functional catalytic structure by interacting with a specific domain within rPLD1.  相似文献   

2.
Kang H  Sayner SL  Gross KL  Russell LC  Chinkers M 《Biochemistry》2001,40(35):10485-10490
Protein phosphatase 5 (PP5) exhibits low basal activity due to the autoinhibitory properties of its N-terminal and C-terminal domains but can be activated approximately 40-fold in vitro by polyunsaturated fatty acids. To identify residues involved in regulating PP5 activity, we performed scanning mutagenesis of its N-terminal tetratricopeptide repeat (TPR) domain and deletion mutagenesis of its C-terminal domain. Mutating residues in a groove of the TPR domain that binds to heat shock protein 90 had no effect on basal phosphatase activity. Mutation of Glu-76, however, whose side chain projects away from this groove, resulted in a 10-fold elevation of basal activity without affecting arachidonic acid-stimulated activity. Thus, the interface of the TPR domain involved in PP5 autoinhibition appears to be different from that involved in heat shock protein 90 binding. We also observed a 10-fold elevation of basal phosphatase activity upon removing the C-terminal 13 amino acids of PP5, with a concomitant 50% decrease in arachidonic acid-stimulated activity. These two effects were accounted for by two distinct amino acid deletions: deleting the four C-terminal residues (496-499) of PP5 had no effect on its activity, but removing Gln-495 elevated basal activity 10-fold. Removal of a further three amino acids had no additional effect, but deleting Asn-491 resulted in a 50% reduction in arachidonic acid-stimulated activity. Thus, Glu-76 in the TPR domain and Gln-495 at the C-terminus were implicated in maintaining the low basal activity of PP5. While the TPR domain alone has been thought to mediate fatty acid activation of PP5, our data suggest that Asn-491, near its C-terminus, may also be involved in this process.  相似文献   

3.
The nucleotide sequence of human thyroid stimulating hormone (hTSH) gene can encode a protein of 138 amino acids. However, the mature polypeptide is lacking 6 amino acids of the carboxyl-terminus (C-terminus), suggesting posttranslational cleavage of these residues. To analyze a possible function of these 6 amino acids, we expressed two hTSH beta cDNAs with or without the 6 codons for C-terminal extension, together with alpha subunit cDNA in CHO cells, and determined the amino acid sequence of C-terminus of hTSH beta. hTSH beta propeptides without C-terminal extension were glycosylated, associated with alpha subunit and secreted, as normal propeptides were, and its heterodimer with alpha subunit showed normal TSH bioactivity in FRTL-5 bioassay. These data indicate that the 6 amino acid C-terminal extension is not necessary for the hTSH maturation in the process of the biosynthesis and for its bioactivity.  相似文献   

4.
Two murine interleukin-6 (mIL-6) variants were constructed using the polymerase chain reaction (PCR), one lacking the last five residues (183-187) at the C-terminus (pMC5) and another with the last five residues of mIL-6 substituted by the corresponding residues of human IL-6 (pMC5H). The growth stimulatory activity of pMC5 on the mouse hybridoma cell line 7TD1 was < 0.05% of mIL-6, whereas pMC5H and mIL-6 were equipotent. The loss of biological activity of pMC5 correlated with its negligible receptor binding affinity on 7TD1 cells, while the binding of pMC5H was comparable to that of mIL-6. Both pMC5 and pMC5H, like mIL-6, failed to interact with recombinant soluble human IL-6 receptor when assayed by surface plasmon resonance-based biosensor analysis. These studies suggest that the C-terminal seven amino acids of human IL-6, alone, do not define species specificity for receptor binding. A variety of biophysical techniques, as well as the binding of a conformational-specific monoclonal antibody, indicated that the global fold of the mIL-6 variants was similar to that of mIL-6, although small changes in the NMR spectra, particularly for pMC5, were observed. Some of these changes involved residues widely separated in the primary structure. For instance, interactions involving Tyr-22 were influenced by the C-terminal amino acids suggesting that the N- and C-termini of mIL-6 are in close proximity. Equilibrium unfolding experiments indicated that pMC5 was 0.8 kcal/mol less stable than mIL-6, whereas pMC5H was 1.4 kcal/mol more stable. These studies emphasize the structural importance of the C-terminal amino acids of IL-6 and suggest that truncation or mutation of this region could lead to small but significant alterations in other regions of the molecule.  相似文献   

5.
M Faelen  M J Gama  A Toussaint 《Biochimie》1990,72(9):697-701
We show that a mutation in bacteriophage Mu transposase (pA) which was isolated as a deletion of the C-terminal end of the protein actually consists of the replacement of the last 16 amino acids (which are mostly hydrophilic) by 26 mostly hydrophobic amino acids. This change almost completely inactivates the in vivo enzyme activity as well as its capacity to bind Mu ends in vitro, although the end-binding domain of the protein resides at least 150 amino acids from the C-terminus. This sharply contrasts with the properties of a series of missense mutations and short C-terminal deletions in pA described earlier which only slightly decrease the overall transposase activity.  相似文献   

6.
We engineered the GLUT1 cDNA to delete C-terminal 12 amino acids of encoded GLUT1 protein. This mutated GLUT1 protein expressed in CHO cells by transfection of its cDNA was demonstrated to reside on the plasma membrane by cell surface labeling technique, and retain the transport activity, similar to that of the wild-type GLUT1. In addition, metabolic labeling of the intact cells with 35S indicated that the half-life of the mutated GLUT1 was not significantly different from that of the wild-type GLUT1. These results suggest that C-terminal 12 amino acids of GLUT1 are not important for the transport activity and the stability of the protein. Taken together with our previous results on the mutant without C-terminal 37 amino acids, the amino acids between the 37th and the 13th from the C-terminus appear to be essential for the transport activity.  相似文献   

7.
The significance of the C-terminal part of human interferon gamma (hIFNgamma) for its biological activity was studied by 3(')-end gene mutagenesis. A series of nine derivative genes obtained by systemic deletion of three codons was constructed and expressed in Escherichia coli LE392. It was shown that the yield of recombinant protein gradually decreased and the solubility gradually increased with truncation of the C terminus. To avoid artifacts related to the imperfect folding of the proteins during purification, the biological activity of the hIFNgamma proteins was measured in clear cell lysates containing the soluble fractions only. The deletion of the C terminus had a two-step effect on both hIFNgamma antiviral and antiproliferative activities. Whereas the removal of the last 3, 6, and 9 C-terminal amino acids led to a gradual increase (up to 10 times) in biological activity of hIFNgamma, the deletion of more than 9 amino acids had an opposite effect. The truncation of the whole unstructured C-terminal domain resulted in a 10-fold decrease (but not in a complete loss) in biological activity of hIFNgamma. The latter was sequestered upon deletion of 24 amino acids, 3 of which belonged to the alpha-helical domain F.  相似文献   

8.
We previously showed that bovine apolipoprotein A-II (apoA-II) has antimicrobial activity against Escherichia coli in PBS, and its C-terminal residues 49-76 are responsible for the activity using synthetic peptides. In order to understand the structural requirements of peptide 49-76 for the antimicrobial activity, the N- or C-terminus was truncated and then the charged (Lys or Asp) or Ser residues were replaced by Ala. Deletion of the first or last three amino acids and replacement of Lys-54/55 or 71/72 by Ala caused a substantial decreases in alpha-helical content in 50% TFE, showing the possible presence of helices in N- and C-terminal regions, respectively. The anti-Escherichia coli activity of the peptide correlated with its liposome-binding activity. Replacement of Lys-54/55 or 71/72 by Ala resulted in an almost complete loss of anti-E. coli activity with a substantial decrease in liposome-binding activity. Moreover, deletion of the last three amino acids caused a reduction to 1/17 of the original anti-E. coli activity with a moderate decrease in liposome-binding activity. In contrast, replacement of Ser-65/66, Asp-59, or Asp-69 by Ala hardly affected the anti-E. coli activity. These findings suggest that Lys-54/55 and Lys-71/72 on the putative helices are critical for antimicrobial activity, and the C-terminal 3 amino acids are important for the structural integrity of the C-terminal region for effective antimicrobial activity.  相似文献   

9.
Abstract Cell binding of pneumolysin to target cells is an important step in the lysis of cells by this toxin. We sought to locate the cell-binding region of pneumolysin. Deletion of the six C-terminal amino acids decreased cell-binding activity by 98%. Furthermore mutagenesis of an amino acid near the C-terminus decreased the cell-binding activity of full-length pneumolysin by 90%. The C-terminus of pneumolysin has an important role in cell-binding activity.  相似文献   

10.
To investigate the functional domains involved in the biological activity of staphylococcal enterotoxin (SEC2), a series of SEC2 mutants were constructed. Deletion of the last 77 amino acids at the C-terminus of SEC2 did not affect its native superantigen and fever activities, and further removal of the C-terminal residues reduced SEC2 activities significantly. On the other hand, the mutants lacking 18 or more N-terminal residues severely impaired superantigen activity. These data indicated that the functional regions for the biological activities of SEC2 were confined to N-terminal domain, further implied that the proper three-dimensional structure of SEC2 is not needed for its biological activities. Our results deliver valuable information that it is possible to design new SEC2 immunotherapeutic agents which have the superantigen activity and low molecular weight for permeability.  相似文献   

11.
Glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD) (EC 3.1.4.50) from mammalian serum is a 115 kDa glycoprotein consisting of 816 amino acids. We found that C-terminal deletions of only two to five amino acids reduced GPI-PLD enzymatic activity by roughly 70% as compared to wild-type protein. C-terminal deletions of more than five amino acids resulted in a complete loss of GPI-PLD enzymatic activity. Point mutations at position 811 indicate that Tyr-811 may play a major role in maintaining the biological activity of GPI-PLD.  相似文献   

12.
A high proportion of peptide transmitters and peptide hormones terminate their peptide chain in a C-terminal amide group which is essential for their biological activity. The specificity of an enzyme that catalyses the formation of the amide was investigated with the aid of synthetic peptide substrates. With peptides containing l-amino acids the enzyme exhibited an essential requirement for glycine in the C-terminal position; amidation did not take place with peptides that had leucine, alanine, glutamic acid, lysine or N-methylglycine at the C-terminus and a peptide extended by the attachment of lysine to the C-terminal glycine did not act as a substrate. Amidation did occur with a peptide containing C-terminal D-alanine but no reaction was detected with peptides having C-terminal, D-serine or D-leucine. In tripeptides with a neutral amino acid in the penultimate position, amidation, took place readily but the reaction was slower when this position was occupied by an acidic or a basic residue. A series of overlapping peptides with C-terminal glycine, based on partial sequences of calcitonin, underwent amidation at similar rates, indicating that the amidating enzyme recognizes only a limited sequence at the C-terminus of its substrates. The results provide evidence that the amidating enzyme has a highly compact substrate binding site.  相似文献   

13.
Gite S  Li Y  Ramesh V  RajBhandary UL 《Biochemistry》2000,39(9):2218-2226
The formylation of initiator methionyl-tRNA by methionyl-tRNA formyltransferase (MTF) is important for the initiation of protein synthesis in eubacteria. We are studying the molecular mechanisms of recognition of the initiator tRNA by Escherichia coli MTF. MTF from eubacteria contains an approximately 100-amino acid C-terminal extension that is not found in the E. coli glycinamide ribonucleotide formyltransferase, which, like MTF, use N(10)-formyltetrahydrofolate as a formyl group donor. This C-terminal extension, which forms a distinct structural domain, is attached to the N-terminal domain through a linker region. Here, we describe the effect of (i) substitution mutations on some nineteen basic, aromatic and other conserved amino acids in the linker region and in the C-terminal domain of MTF and (ii) deletion mutations from the C-terminus on enzyme activity. We show that the positive charge on two of the lysine residues in the linker region leading to the C-terminal domain are important for enzyme activity. Mutation of some of the basic amino acids in the C-terminal domain to alanine has mostly small effects on the kinetic parameters, whereas mutation to glutamic acid has large effects. However, the deletion of 18, 20, or 80 amino acids from the C-terminus has very large effects on enzyme activity. Overall, our results support the notion that the basic amino acid residues in the C-terminal domain provide a positively charged channel that is used for the nonspecific binding of tRNA, whereas some of the amino acids in the linker region play an important role in activity of MTF.  相似文献   

14.
Comparison of the amino acid sequence of yeast type 2 ADP/ATP carrier (yAAC2) with that of bovine type 1 AAC (bAAC1) revealed that the N- and C-terminus of yAAC2 are 15- and 6-amino acids longer, respectively, than those of bAAC1. In the present study, we focused on the difference in the C-terminal region between yAAC2 and bAAC1. Deletion of first six residues of C-terminus of yAAC did not markedly affect the function of yAAC2; however, further deletion of 1 amino acid (7th amino acid from the C-terminus) destroyed its function. On the contrary, deletion of the first amino acid residue of the C-terminus of bAAC1 caused failure of its functional expression in yeast mitochondria. Based on these results, we concluded that the 6-amino acid residue extension of the C-terminus of yAAC2 was not necessary for the function of this carrier and that the remainder of the C-terminal region of yAAC2, having a length conserved with that of bAAC1, is important for the transport function of AACs. We next prepared various single-Cys mutants in which each of 32 residues in the C-terminus of yAAC2 was replaced by a Cys residue. Since all mutants were successfully expressed in yeast mitochondria, we examined the reactivity of these cysteine residues with the membrane-impermeable sulfhydryl reagent eosin 5-maleimide (EMA). As a result, all cysteine residues that replaced the 9 continuous amino acids in Met310-Lys318 showed high reactivity with EMA regardless of the presence of carboxyatractyloside or bongkrekic acid; and so this region was concluded to be exposed to the water-accessible environment. Furthermore, based on the reactivities of cysteine residues that replaced amino acids in the sixth transmembrane segment, the probable structural features of the C-terminal region of this carrier in the presence of bongkrekic acid were discussed.  相似文献   

15.
Using a recombinant mini-laminin-332, we showed that truncation of the three C-terminal amino acids of the gamma 2 chain, but not of the C-terminal amino acid of the beta 3 chain, completely abolished alpha 3 beta 1 integrin binding and its cellular functions, such as attachment and spreading. However, a synthetic peptide mimicking the gamma 2 chain C-terminus did not interfere with alpha 3 beta 1 integrin binding or cell adhesion and spreading on laminin-332 as measured by protein interaction assays and electric cell-substrate impedance sensing. Nor was the soluble peptide able to restore the loss of integrin-mediated cell adhesiveness to mini-laminin-332 after deletion of the gamma 2 chain C-terminus. These findings spoke against the hypothesis that the gamma 2 chain C-terminus of laminin-332 is a part of the alpha 3 beta 1 integrin interaction site. In addition, structural studies with electron microscopy showed that truncation of the gamma 2 chain C-terminus opened up the compact supradomain structure of LG1-3 domains. Thus, by inducing or stabilizing an integrin binding-competent conformation or array of the LG1-3 domains, the gamma 2 chain C-terminus plays an indirect but essential role in laminin-332 recognition by alpha 3 beta 1 integrin and, hence, its cellular functions.  相似文献   

16.
重组人白细胞介素12(rhIL-12)是一种已经用于治疗肿瘤,寄生虫、病毒性感染及造血障碍等疾病研究的异二聚体糖蛋白。结构确证是质量控制的重要内容,此研究对CHO细胞表达的rhIL-12二硫键配对方式、N-糖基化位点以及C端氨基酸序列进行了分析,使用Trypsin、Chymotrypsin和Glu-C三种酶分别对rhIL-12进行非还原酶解,尽可能地在其所有半胱氨酸残基之间断裂而形成二硫键相连的肽段,然后使用LC-MS/MS对酶解后的肽段样品进行分析,确定了rhIL-12样品中存在和理论配对方式相符的7对二硫键。将rhIL-12二硫键还原后并烷基化修饰保护,分别采用Trypsin,Chymotrypsin和GluC进行酶解,并用LC-MS/MS对酶解后肽段进行了质谱肽图及C端氨基酸序列分析,确定了rhIL-12 p35亚基C端氨基酸序列的8个氨基酸、p40亚基C端氨基酸序列的15个氨基酸。对rhIL-12样品还原及烷基化后用Trypsin变性酶解,所得肽段在H2O及H218O水中分别用PNGase F糖苷酶处理酶切产物。并通过二级质谱分析脱糖后糖肽段分子量变化,从而确定了rhIL-12的3个N糖基化修饰位点,分别为p35亚基的71位和85位以及p40亚基的200位。通过建立酶解结合二级质谱鉴定的方法,证明了新药rhIL-12的二硫键位点、C端氨基酸序列和糖基化位点与理论一致。  相似文献   

17.
A model tripeptide, Gly-L-Leu-L-Phe, was immobilized with activated aminomethyl polystyrene, and its C-terminal was reduced to an alcohol. This peptidyl alcohol was selectively hydrolyzed at the C-terminal amide bond to afford a polymer-supported dipeptide (Gly-L-Leu) and amino alcohol (Phe-OH). The amino alcohol, including its absolute configuration, was determined by labelling with (+)-MNB-COOH, and the dipeptide was reused for a determination of its C-terminal amino acids. The d,l-amino acids of the tripeptide were sequentially determined from the C-terminus.  相似文献   

18.
RNA helicase II/Gu (RH II/Gu) is a nucleolar protein that unwinds dsRNA in a 5' to 3' direction, and introduces a secondary structure into a ssRNA. The helicase domain is at the N-terminal three-quarters of the molecule and the foldase domain is at the C-terminal quarter. The RNA folding activity of RH II/Gu is not a mere artifact of its binding to RNA. This study narrows down the RNA foldase domain to amino acids 749-801 at the C-terminus of the protein. Dissection of this region by deletion and site-directed mutagenesis shows that the four FRGQR repeats, as well as the C-terminal end bind RNA independently. These juxtaposed subdomains are both important for the RNA foldase activity of RH II/Gu. Mutation of either repeat 2 or repeat 4, or simultaneous mutation of Lys792, Arg793 and Lys797 at the C-terminal end of RH II/Gu to alanines inhibits RNA foldase activity. The last 17 amino acids of RH II/Gu can be replaced by an RNA binding motif from nucleolar protein p120 without a deleterious effect on its foldase activity. A model is proposed to explain how RH II/Gu binds and folds an RNA substrate.  相似文献   

19.
Restrictocin, produced by the fungus Aspergillus restrictus, is a highly specific ribonucleolytic toxin which cleaves a single phosphodiester bond between G4325 and A4326 in the 28S rRNA. It is a nonglycosylated, single-chain, basic protein of 149 amino acids. The putative catalytic site of restrictocin includes Tyr47, His49, Glu95, Arg120 and His136. To map the catalytic activity in the restrictocin molecule, and to study the role of N- and C-terminus in its activity, we have systematically deleted amino-acid residues from both the termini. Three N-terminal deletions removing 8, 15 and 30 amino acids, and three C-terminal deletions lacking 4, 6, and 11 amino acids were constructed. The deletion mutants were expressed in Escherichia coli, purified to homogeneity and functionally characterized. Removal of eight N-terminal or four C-terminal amino acids rendered restrictocin partially inactive, whereas any further deletions from either end resulted in the complete inactivation of the toxin. The study demonstrates that intact N- and C-termini are required for the optimum functional activity of restrictocin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号