首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two pairs of restriction enzyme isoschizomers were used to study in vivo methylation of E. coli and extrachromosomal DNA. By use of the restriction enzymes MboI (which cleaves only the unmethylated GATC sequence) and its isoschizomer Sau3A (indifferent to methylated adenine at this sequence), we found that all the GATC sites in E. coli and in extrachromosomal DNAs are symmetrically methylated on both strands. The calculated number of GATC sites in E. coli DNA can account for all its m6Ade residues. Foreign DNA, like mouse mtDNA, which is not methylated at GATC sites became fully methylated at these sequences when introduced by transfection into E. coli cells. This experiment provides the first evidence for the operation of a de novo methylation mechanism for E. coli methylases not involved in restriction modification. When the two restriction enzyme isoschizomers, EcoRII and ApyI, were used to analyze the methylation pattern of CCTAGG sequences in E. coli C and phi X174 DNA, it was found that all these sites are methylated. The number of CCTAGG sites in E. coli C DNA does not account for all m5Cyt residues.  相似文献   

2.
3.
Seven GATC sites that are nonmethylated in logarithmic growth phase cells using glycerol as a carbon source were isolated from the Escherichia coli chromosome. Three of these GATC sites are located upstream of the operons gut, mtl, and ppiA, whereas DNA sequences adjacent to three other nonmethylated GATC sites are not homologous to previously identified genes. The seventh nonmethylated GATC site is located downstream of uspA. The protection of this site from DNA methylation requires leucine-responsive regulatory protein and is leucine responsive. The carbon source and the growth phase influenced the protection of the GATC site 5' of the ppiA gene. The other five sites were protected under all the environmental conditions examined.  相似文献   

4.
5.
Two DNA methylase activities of Escherichia coli C, the mec (designates DNA-cytosine-methylase gene, which is also designated dcm) and dam gene products, were physically separated by DEAE-cellulose column chromatography. The sequence and substrate specificity of the two enzymes were studied in vitro. The experiments revealed that both enzymes show their expected sequence specificity under in vitro conditions, methylating symmetrically on both DNA strands. The mec enzyme methylates exclusively the internal cytosine residue of CCATGG sequences, and the dam enzyme methylates adenine residues at GATC sites. Substrate specificity experiments revealed that both enzymes methylate in vitro unmethylated duplex DNA as efficiently as hemimethylated DNA. The results of these experiments suggest that the methylation at a specific site takes place by two independent events. A methyl group in a site on one strand of the DNA does not facilitate the methylation of the same site on the opposite strand. With the dam methylase it was found that the enzyme is incapable of methylating GATC sites located at the ends of DNA molecules.  相似文献   

6.
Bacteriophages T2 and T4 encode DNA-[N6-adenine] methyltransferases (Dam) which differ from each other by only three amino acids. The canonical recognition sequence for these enzymes in both cytosine and 5-hydroxymethylcytosine-containing DNA is GATC; at a lower efficiency they also recognize some non-canonical sites in sequences derived from GAY (where Y is cytosine or thymine). We found that T4 Dam fails to methylate certain GATA and GATT sequences which are methylated by T2 Dam. This indicates that T2 Dam and T4 Dam do not have identical sequence specificities. We analyzed DNA sequence data files obtained from GenBank, containing about 30% of the T4 genome, to estimate the overall frequency of occurrence of GATC, as well as non-canonical sites derived from GAY. The observed N6methyladenine (m6A) content of T4 DNA, methylated exclusively at GATC (by Escherichia coli Dam), was found to be in good agreement with this estimate. Although GATC is fully methylated in virion DNA, only a small percentage of the non-canonical sequences are methylated.  相似文献   

7.
The expression of pyelonephritis-associated pili (Pap) in uropathogenic Escherichia coli is epigenetically controlled by a reversible OFF to ON switch. In phase OFF cells, the global regulator Lrp is bound to pap sites proximal to the pilin promoter, whereas in phase ON cells, Lrp is bound to promoter distal sites. We have found that the local regulator PapI increases the affinity of Lrp for the sequence "ACGATC," which contains the target "GATC" site for DNA adenine methylase (Dam) and is present in both promoter proximal and distal sites. Mutational analyses show that methylation of the promoter proximal GATC(prox) site by Dam is required for transition to the phase ON state by specifically blocking PapI-dependent binding of Lrp to promoter proximal sites. Furthermore, our data support the hypothesis that PapI-dependent binding of Lrp to a hemimethylated GATC(dist) site generated by DNA replication is a critical component of the switch mechanism.  相似文献   

8.
Escherichia coli DNA adenine methyltransferase (EcoDam) methylates the N-6 position of the adenine in the sequence 5'-GATC-3' and plays vital roles in gene regulation, mismatch repair, and DNA replication. It remains unclear how the small number of critical GATC sites involved in the regulation of replication and gene expression are differentially methylated, whereas the approximately 20,000 GATCs important for mismatch repair and dispersed throughout the genome are extensively methylated. Our prior work, limited to the pap regulon, showed that methylation efficiency is controlled by sequences immediately flanking the GATC sites. We extend these studies to include GATC sites involved in diverse gene regulatory and DNA replication pathways as well as sites previously shown to undergo differential in vivo methylation but whose function remains to be assigned. EcoDam shows no change in affinity with variations in flanking sequences derived from these sources, but methylation kinetics varied 12-fold. A-tracts immediately adjacent to the GATC site contribute significantly to these differences in methylation kinetics. Interestingly, only when the poly(A) is located 5' of the GATC are the changes in methylation kinetics revealed. Preferential methylation is obscured when two GATC sites are positioned on the same DNA molecule, unless both sites are surrounded by large amounts of nonspecific DNA. Thus, facilitated diffusion and sequences immediately flanking target sites contribute to higher order specificity for EcoDam; we suggest that the diverse biological roles of the enzyme are in part regulated by these two factors, which may be important for other enzymes that sequence-specifically modify DNA.  相似文献   

9.
10.
The EcoRV restriction/modification system consists of two enzymes that recognize the DNA sequence GATATC. The EcoRV restriction endonuclease cleaves DNA at this site, but the DNA of Escherichia coli carrying the EcoRV system is protected from this reaction by the EcoRV methyltransferase. However, in vitro, the EcoRV nuclease also cleaves DNA at most sites that differ from the recognition sequence by one base pair. Though the reaction of the nuclease at these sites is much slower than that at the cognate site, it still appears to be fast enough to cleave the chromosome of the cell into many fragments. The possibility that the EcoRV methyltransferase also protects the noncognate sites on the chromosome was examined. The modification enzyme methylated alternate sites in vivo, but these were not the same as the alternate sites for the nuclease. The excess methylation was found at GATC sequences, which are also the targets for the dam methyltransferase of E. coli, a protein that is homologous to the EcoRV methyltransferase. Methylation at these sites gave virtually no protection against the EcoRV nuclease: even when the EcoRV methyltransferase had been overproduced, the cellular DNA remained sensitive to the EcoRV nuclease at its noncognate sites. The viability of E. coli carrying the EcoRV restriction/modification system was found instead to depend on the activity of DNA ligase. Ligase appears to proofread the EcoRV R/M system in vivo: DNA, cut initially in one strand at a noncognate site for the nuclease, is presumably repaired by ligase before the scission of the second strand.  相似文献   

11.
We have investigated the occurrence of methylated adenine residues in the macronuclear ribosomal RNA genes of Tetrahymena thermophila. It has been shown previously that macronuclear DNA, including the palindromic ribosomal RNA genes (rDNA), of Tetrahymena thermophila contains the modified base N-6-methyladenine, but no 5-methylcytosine. Purified rDNA was digested with restriction enzymes Sau 3AI, MboI and DpnI to map the positions and levels of N-6-methyladenine in the sequence 5' GATC 3'. A specific pattern of doubly methylated GATC sequences was found; hemimethylated sites were not detected. The patterns and levels of methylation of these sites did not change significantly in different physiological states. A molecular form of the rDNA found in the newly developing macronucleus and for several generations following the sexual process, conjugation, contained no detectably methylated GATC sites. However, both the bulk macronuclear DNA and palindromic rDNA from the same macronuclei were methylated. Possible roles for N-6-methyladenine in macronuclear DNA are discussed in light of these findings.  相似文献   

12.
Prokaryote DNA methyltransferases (MTases) of the Dam family (including those of bacteriophages T2 and T4) catalyze methyl group transfer from S-adenosyl-L-methionine (AdoMet), producing S-adenosyl-L-homocysteine (AdoHcy) and methylated adenine residues in palindromic GATC sequences. Dam DNA MTases, as all site-specific enzymes interacting with polymeric DNA, require a mechanism of action that ensures a rapid search for specific targets for catalytic action, during both the initial and subsequent rounds of methylation. The results of pre-steady-state (reaction burst) and steady-state methylation analyses of individual targets permitted us to monitor the action of T4Dam, which has three degrees of freedom: sliding, reorientation and adaptation to the canonical GATC sequence. The salient results are as follows: (i) 40mer substrate duplexes containing two canonical GATC sites showed differential methylation of the potential targets, i.e., T4Dam exhibited a preference for one site/target, which may present the better 'kinetic trap' for the enzyme. (ii) Prior hemimethylation of the two sites made both targets equally capable of being methylated during the pre-steady-state reaction. (iii) Although capable of moving in either direction along double-stranded DNA, there are some restrictions on T4Dam reorientation/adaptation on 40mer duplexes.  相似文献   

13.
GATC sequence and mismatch repair in Escherichia coli.   总被引:11,自引:2,他引:9       下载免费PDF全文
The Escherichia coli mismatch repair system greatly improves DNA replication fidelity by repairing single mispaired and unpaired bases in newly synthesized DNA strands. Transient undermethylation of the GATC sequences makes the newly synthesized strands susceptible to mismatch repair enzymes. The role of unmethylated GATC sequences in mismatch repair was tested in transfection experiments with heteroduplex DNA of phage phi 174 without any GATC sequence or with two GATC sequences, containing in addition either a G:T mismatch (Eam+/Eam3) or a G:A mismatch (Bam+/Bam16). It appears that only DNA containing GATC sequences is subject to efficient mismatch repair dependent on E. coli mutH, mutL, mutS and mutU genes; however, also in the absence of GATC sequence some mut-dependent mismatch repair can be observed. These observations suggest that the mismatch repair enzymes recognize both the mismatch and the unmethylated GATC sequence in DNA over long distances. The presence of GATC sequence(s) in the substrate appears to be required for full mismatch repair activity and not only for its strand specificity according to the GATC methylation state.  相似文献   

14.
15.
Escherichia coli DNA adenine methyltransferase (Dam) and Leucine-responsive regulatory protein (Lrp) are key regulators of the pap operon, which codes for the pilus proteins necessary for uropathogenic E. coli cellular adhesion. The pap operon is regulated by a phase variation mechanism in which the methylation states of two GATC sites in the pap regulatory region and the binding position of Lrp determine whether the pilus genes are expressed. The post-replicative reassembly of Dam, Lrp, and the local regulator PapI onto a hemimethylated pap intermediate is a critical step of the phase variation switching mechanism and is not well understood. We show that Lrp, in the presence and in the absence of PapI and nonspecific DNA, specifically protects pap regulatory GATC sites from Dam methylation when allowed to compete with Dam for assembly on unmethylated and hemimethylated pap DNA. The methylation protection is dependent upon the concentration of Lrp and does not occur with non-regulatory GATC sites. Our data suggest that only at low Lrp concentrations will Dam compete effectively for binding and methylation of the proximal GATC site, leading to a phase switch resulting in the expression of pili.  相似文献   

16.
17.
Bacteriophage T4 codes for a DNA-[N6-adenine] methyltransferase (Dam) which recognizes primarily the sequence GATC in both cytosine- and hydroxymethylcytosine-containing DNA. Hypermethylating mutants, damh, exhibit a relaxation in sequence specificity, that is, they are readily able to methylate non-canonical sites. We have determined that the damh mutation produces a single amino acid change (Pro126 to Ser126) in a region of homology (III) shared by three DNA-adenine methyltransferases; viz, T4 Dam, Escherichia coli Dam, and the DpnII modification enzyme of Streptococcus pneumoniae. We also describe another mutant, damc, which methylates GATC in cytosine-containing DNA, but not in hydroxymethylcytosine-containing DNA. This mutation also alters a single amino acid (Phe127 to Val127). These results implicate homology region III as a domain involved in DNA sequence recognition. The effect of several different amino acids at residue 126 was examined by creating a polypeptide chain terminating codon at that position and comparing the methylation capability of partially purified enzymes produced in the presence of various suppressors. No enzyme activity is detected when phenylalanine, glutamic acid, or histidine is inserted at position 126. However, insertion of alanine, cysteine, or glycine at residue 126 produces enzymatic activity similar to Damh.  相似文献   

18.
DnaA protein is required for the initiation of DNA replication at the bacterial chromosomal origin, oriC, and at the origins of many plasmids. The concentration of DnaA protein is an important factor in determining when initiation occurs during the cell cycle. Methylation of GATC sites in the dnaAp2 promoter, two of which are in the -35 and -10 sequences, has been predicted to play an important role in regulating dnaA gene expression during the cell cycle because the promoter is sequestered from methylation immediately following replication. Mutations that eliminate these two GATC sites but do not substantially change the activity of the promoter were introduced into a reporter gene fusion and into the chromosome. The chromosomal mutants are able to initiate DNA replication synchronously at both moderately slow and fast growth rates, demonstrating that GATC methylation at these two sites is not directly involved in providing the necessary amount of DnaA for precise timing of initiation during the cell cycle. Either sequestration does not involve these GATC sites, or cell cycle control of DnaA expression is not required to supply the concentration necessary for correct timing of initiation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号