首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silver (Ag) resistance and accumulation were investigated in Ag-resistant Pseudomonas stutzeri strain AG259 and Ag-sensitive P. stutzeri strain JM303. Both strains exhibited a similar pattern of silver accumulation although to different final concentrations. Energy-dispersive X-ray analyses revealed the association of dense silver deposits with the Ag-resistant strain, but not the Ag-sensitive strain. Toluene permeabilization or incubation of cells at 2°C resulted in decreased Ag accumulation in both strains. This suggests that Ag accumulation may be energy dependent. A decrease in Ag accumulation was observed when cells were pretreated with 2,4-dinitrophenol (2,4-DNP). No decrease was observed using carbonyl cyanide m-chlorphenyl-hydrazone (CCCP). However, it was observed that both 2,4-DNP and CCCP complexed to Ag, making interpretation of accumulation results difficult. Washing of cells incubated in the presence of Ag with ethylenediaminetetraacetic acid (EDTA) or hydrochloric acid did not result in decreased Ag accumulation.  相似文献   

2.
The increasing number of penicillin-resistant clinical strains of Streptococcus pneumoniae has raised questions about the mechanism involved. We have isolated a large number of independent, spontaneous laboratory mutants with increasing resistance against either piperacillin or cefotaxime. Both classes of mutants showed a different pathway of penicillin-binding protein (PBP) alterations, and within each group of mutants the individual PBPs appeared to have changed at different resistance levels and in different sequences. The mutations led to decreased beta-lactam affinity and possibly to a reduction in the amount of protein present in the cell, but differences in apparent molecular weight, like those reported in low- and high-level resistant pathogenic strains, were not found. Some mutants showed a high degree of cross-resistance to a variety of penicillins and cephalosporins independently of the acquired PBP alterations, indicating that different genotypes can be responsible for the same phenotypic expression of resistance.  相似文献   

3.
The effect of H(2)O(2) on the induction of ciprofloxacin (CFL) resistant mutants of Salmonella enterica subsp. enterica serovar Typhimurium was evaluated and determinants of CFL resistance in the mutants were analyzed. Factors associated with CFL resistance in H(2)O(2)-induced mutants included (i) mutations in gyrA gene, predominantly (63 %) Asp(87)-->Asn and less (37 %) Ser(83)-->Phe substitutions, (ii) mutations in the regulatory genes of MarRAB or SoxRS or in the individual structural genes of these operons. Such mutations are induced by H(2)O(2) in a much lower extent. Reduced OmpF expression simultaneously with enhanced efflux was detected only in one mutant strain and 20 % of mutant strains had increased CFL efflux from the cells.  相似文献   

4.
A major obstacle confronting the discovery and development of new antibacterial agents to combat resistant Gram-negative (GN) organisms is the lack of a rational process for endowing compounds with properties that allow (or promote) entry into the bacterial cytoplasm. The major permeability difference between GN and Gram-positive (GP) bacteria is the GN outer membrane (OM) which is a permeability barrier itself and potentiates efflux pumps that expel compounds. Based on the fact that OM-permeable and efflux-deleted GNs are sensitive to many anti-GP drugs, recent efforts to approach the GN entry problem have focused on ways of avoiding efflux and transiting or compromising the OM, with the tacit assumption that this could allow entry of compounds into the GN cytoplasm. But bypassing the OM and efflux obstacles does not take into account the additional requirement of penetrating the cytoplasmic membrane (CM) whose sieving properties appear to be orthogonal to that of the OM. That is, tailoring compounds to transit the OM may well compromise their ability to enter the cytoplasm. Thus, a Gestalt approach to understanding the chemical requirements for GN entry seems a useful adjunct. This might consist of characterizing compounds which reach the cytoplasm, grouping (or binning) by routes of entry and formulating chemical ‘rules’ for those bins. This will require acquisition of data on large numbers of compounds, using non-activity-dependent methods of measuring accumulation in the cytoplasm.  相似文献   

5.
Two Klebsiella pneumoniae strains selected according to their high cross-resistance pattern to cephalosporins were characterized by (i) outer membrane protein content such as OmpA or nonspecific porins, (ii) MICs of various cephalosporins and unrelated antibiotics, (iii) beta-lactamase production, and (iv) active efflux of fluoroquinolones. An association of porin deficiency and beta-lactamase production induced a noticeable cephalosporin resistance. In addition to these mechanisms, the presence of an active efflux participating in high-level fluoroquinolone resistance was identified in one strain. The decrease of antibiotic uptake associated with efflux explains the Klebsiella adaptation against the drugs present in the environment.  相似文献   

6.
7.
To be effective against gram-negative organisms, beta-lactam antibiotics must be able to penetrate the outer membrane. For Escherichia coli, these compounds generally cross this barrier through non-specific channels in porins OmpF and OmpC. In vitro studies have shown that increased pH induces a switch in the structure of OmpF and OmpC from a small channel conformation to a set of larger-sized channel conformations. In this study, the permeability of two cephalosporins into cells producing either OmpC or OmpF was examined at various pHs. The results suggest that the pH-induced switch in channel size observed in vitro also occurs in vivo.  相似文献   

8.
Colchicine resistant (CHR) mutants of CHO cells with reduced permeability to colchicine display extensive cross-resistance to a number of apparently unrelated compounds including puromycin, daunomycin, emetine, ethidium bromide and gramicidin D. A positive correlation was observed between the level of cross-resistance and the relative hydrophobicity of these compounds. The mutants also showed increased (collateral) sensitivity to local anaesthetics (procaine, tetracaine, xylocaine and propanolol), steroid hormones (1-dehydrotestosterone, corticosterone and 5beta-pregnan-3,20-dione) and some Triton X compounds. In general, the degree of the pleiotropic response (cross-resistance or collateral sensitivity) correlated with the degree of colchicine resistance in mutant lines. These results are consistent with the pleiotropic phenotype being the result of the same mutation(s) which confer colchicine resistance and support a model for resistance in which the reduced permeability is assumed to be the result of an alteration in the modulation of the fluidity of the surface membrane.  相似文献   

9.
R S Gupta  L Siminovitch 《Biochemistry》1977,16(14):3209-3214
Stable mutants resistant to the protein synthesis inhibitors cryptopleurine and tylocrebine can be isolated in Chinese hamster ovary (CHO) cells, in a single step. The frequency of occurrence of cryptopleurine (CryR) and tylocrebrine (TylR) resistant mutants in normal and mutagenized cell populations is similar to that observed for emetine resistant (EmtR) mutants. The CryR, TylR, and EmtR mutants exhibit strikingly similar cross-resistance to the three drugs used for selection, to tubulosine and also to two emetine derivatives cephaeline and dehydroemetine, based on assays of in vivo cytotoxicity and on assays of protein synthesis in cell-free extracts. The identity of cross-resistance patterns of the CryR, TylR, and EmtR mutants indicates that the resistance to all these compounds results from the same primary lesion, which in the case of EmtR cells has been shown to affect the 40S ribosomal subunit. This conclusion is strongly supported by the failure of EmtR, TylR, and CryR mutants to complement each other in somatic cell hybrids. Based on these results it is suggested that the above group of compounds possesses common structural determinants which are responsible for their activity. The above mutants, however, do not show any cross-resistance to other inhibitors of protein synthesis such as cycloheximide, trichodermin, anisomycin, pactamycin, and sparsomycin, either in vivo or in vitro, indicating that the site of action of these inhibitors is different from that of the emetine-like compounds.  相似文献   

10.
The binding of lactoferrin, an iron-binding glycoprotein found in secretions and leukocytes, to the outer membrane of Gram-negative bacteria is a prerequisite to exert its bactericidal activity. It was proposed that porins, in addition to lipopolysaccharides, are responsible for this binding. We studied the interactions of human lactoferrin with the three major porins of Escherichia coli OmpC, OmpF, and PhoE. Binding experiments were performed on both purified porins and porin-deficient E. coli K12 isogenic mutants. We determined that lactoferrin binds to the purified native OmpC or PhoE trimer with molar ratios of 1.9 +/- 0.4 and 1.8 +/- 0.3 and Kd values of 39 +/- 18 and 103 +/- 15 nM, respectively, but not to OmpF. Furthermore, preferential binding of lactoferrin was observed on strains that express either OmpC or PhoE. It was also demonstrated that residues 1-5, 28-34, and 39-42 of lactoferrin interact with porins. Based on sequence comparisons, the involvement of lactoferrin amino acid residues and porin loops in the interactions is discussed. The relationships between binding and antibacterial activity of the protein were studied using E. coli mutants and planar lipid bilayers. Electrophysiological studies revealed that lactoferrin can act as a blocking agent for OmpC but not for PhoE or OmpF. However, a total inhibition of the growth was only observed for the PhoE-expressing strain (minimal inhibitory concentration of lactoferrin was 2.4 mg/ml). These data support the proposal that the antibacterial activity of lactoferrin may depend, at least in part, on its ability to bind to porins, thus modifying the stability and/or the permeability of the bacterial outer membrane.  相似文献   

11.
tolA mutants of Escherichia coli K-12 release periplasmic proteins into the extracellular medium; they are sensitive to growth inhibitors such as cholic acid and tolerant to group A colicins and filamentous bacteriophage. Suppressor mutants of the tolA-876 allele were isolated by selecting for cholic acid resistant clones that did not release periplasmic ribonuclease I. One class of tolA suppressor strains carried mutations in the staA gene (for suppressor of tolA) located a 41 min. tolA-876 staA strains partially recovered a wild-type phenotype: they exported alkaline phosphatase and beta-lactamase into the periplasm and only released very low amounts of periplasmic proteins; moreover, they were sensitive to E1 and A colicins and more resistant than tolA-876 staA+ strains to various growth inhibitors. Furthermore, tolA-876 staA-2 and tolA+staA-2 mutants were 10- to 2700-times more resistant than staA+ strains to bacteriophages TuIa, TuIb and T4, and TuII whose receptors are major outer membrane proteins OmpF, OmpC and OmpA, respectively. SDS-PAGE analysis suggested that cell envelopes of staA or staA+ strains contained similar amounts of these proteins but characterization of strains carrying ompF (or C or A)-phoA gene fusions showed that mutation stA-2 reduced ompF gene expression by a factor of two. Analysis of double mutants strains carrying mutation staA-2 and a tolA, tolB, excC or excD periplasmic-leaky mutation showed that staA suppression was allele specific which suggested that proteins TolA and StaA might directly interact.  相似文献   

12.
The outer membrane (OM) vitamin B(12) receptor, BtuB, is the primary receptor for E group colicin adsorption to Escherichia coli. Cell death by this family of toxins requires the OM porin OmpF but its role remains elusive. We show that OmpF enhances the ability of purified BtuB to protect bacteria against the endonuclease colicin E9, demonstrating either that the two OM proteins form the functional receptor or that OmpF is recruited for subsequent translocation of the bacteriocin. While stable binary colicin E9-BtuB complexes could be readily shown in vitro, OmpF-containing complexes could not be detected, implying that OmpF association with the BtuB-colicin complex, while necessary, must be weak and/or transient in nature.  相似文献   

13.
The influence of outer membrane (OM) permeability on carbapenem susceptibility was studied in strains of Enterobacter cloacae, a species in which carbapenem resistance depends upon the conjunction of overproduction of the chromosomal cephalosporinase and reduction of OM permeability. Relative trans-OM diffusion rates were measured using the liposome swelling assay. Proteoliposomes were reconstituted with OM from the members of an isogenic set of E. cloacae strains, selected in vivo or in vitro, which produced either porins F and D (wild-type), or F or D only, or neither. For all but one mutant, and compared with the wild-type strain, the respective increases in MICs and decreases in trans-OM diffusion of carbapenems were: nil and 13 to 18%; 4- to 32-fold and 33 to 50%; > or = 64-fold and > or = 90%. Our results suggest (i) that carbapenems (and other beta-lactam antibiotics) diffuse through porins F and D, but more rapidly through porin F, and (ii) that OM permeability is the critical factor in determining the level of MICs of carbapenems for cephalosporinase-overproducing strains of E. cloacae. The OM of one particular low-level carbapenem-resistant and porin F- and D-deficient mutant was at least five times more permeable to carbapenems than the similarly porin-deficient high-level resistant mutants. We infer from this observation the possible existence of an alternative carbapenem penetration pathway which could be associated with two as yet uncharacterized overproduced OM proteins of about 22 and 47 kDa.  相似文献   

14.
Independent colchicine-resistant (CHR) mutants of Chinese hamster ovary cells displaying reduced permeability to colchicine have been isolated. A distinguishing feature of these membrane-altered mutants is their pleiotropic cross-resistance to a variety of unrelated compounds. Genetic characterization of the CHR lines indicate that colchicine resistance and cross-resistance to other drugs are of a dominant nature in somatic cell hybrids. Revertants of CHR have been isolated which display decreased resistance to colchicine and a corresponding decrease in resistance to other drugs. These results strongly suggest that colchicine resistance and the pleiotropic cross-resistance are the result of the same mutation(s). Biochemical studies indicate that although colchicine is transported into our cells by passive diffusion, no major alterations in the membrane lipids could be detected in mutant cells. However, there appears to be an energy-dependent process in these cells which actively maintains a permeability barrier against colchicine and other drugs. The CHR cells might be altered in this process. A new glycoprotein has been identified in mutant cell membranes which is not present in parental cells, and is greatly reduced in revertant cells. A model for colchicine-resistance is proposed which suggests that certain membrane proteins such as the new glycoprotein of CHR cells, are modulators of membrane fluidity (mmf proteins) whose molecular conformation regulates membrane permeability to a variety of compounds and that the CHR mutants are altered in their mmf proteins. The possible importance of the CHR cells as models for investigating aspects of chemotherapy related to drug resistance is discussed.  相似文献   

15.
16.
17.
Immunizing potencies of vaccines prepared from various strains of Salmonella were graded by comparing the mortality rate of immunized mice after challenge with highly virulent strains of either Salmonella enteritidis or S. typhimurium. The resistance against this challenge infection was shown to be conferred by joint immunization with a specific factor, which was represented by O specific lipopolysaccharide of smooth strains, and cross-protection factor, which was a major potent factor in live vaccine. The distribution of this cross-protection factor in rough mutants of S. typhimurium was found to be limited to strains which possessed a polysaccharide chain longer than that of glucose1-less mutant. The potency conferring cross-resistance was found to be maintained partly in formalin-killed cells and cell walls of the strains harboring cross-protection factor but not in lipopolysaccharide extracted from such strains.  相似文献   

18.
Multidrug resistance (MDR) has been reported in both prokaryotes and eukaryotes, underscoring the challenge of design and screening of more efficacious new drugs. For instance, the efflux pump of Pseudomonas aeruginosa (gram-negative bacteria) can extrude a variety of structurally and functionally diverse substrates, which leads to MDR. In this study, we present a new platform that studies modes of action of antibiotics in living bacterial cells (P. aeruginosa), in real-time, at nanometer scale and single-cell resolution using nanoparticle optics and single living cell imaging. The color index of silver (Ag) nanoparticles (violet, blue, green, and red) is used as the sized index (30 +/- 10, 50 +/- 10, 70 +/- 10, and 90 +/- 10 nm) for real-time measurement of sized transformation of the cell wall and membrane permeability at the nanometer scale. We have demonstrated that the number of Ag nanoparticles accumulated in cells increases as the aztreonam (AZT) concentration increases and as incubation time increases, showing that AZT induces the sized transformation of membrane permeability and the disruption of the cell wall. The results demonstrate that nanoparticle optics assay can be used as a new powerful tool for real-time characterization of modes of action of antimicrobial agents in living cells at the nanometer scale. Furthermore, studies of mutants of WT bacteria (nalB-1 and DeltaABM), suggest that an efflux pump (MexA-MexB-OprM) effectively extrudes substrates (nanoparticles) out of the cells, indicating that the MDR mechanism involves the induction of changes in membrane permeability and the intrinsic pump machinery.  相似文献   

19.
The increasing number of penicillin-resistant clinical strains of Strepfococcus pneumoniae has raised questions about the mechanism involved. We have isolated a large number of independent, spontaneous laboratory mutants with increasing resistance against either piperacillin or cefotaxime. Both classes of mutants showed a different pathway of penicillin-binding protein (PBP) alterations, and within each group of mutants the individual PBPs appeared to have changed at different resistance levels and in different sequences. The mutations led to decreased β-lactam affinity and possibly to a reduction in the amount of protein present in the cell, but differences in apparent molecular weight, like those reported in low- and high-level resistant pathogenic strains, were not found. Some mutants showed a high degree of cross-resistance to a variety of pencillins and cephaiosporins independently of the acquired PBP alterations, indicating that different genotypes can be responsible for the same phenotypic expression of resistance.  相似文献   

20.
In HeLa cells, stable mutants which are between 25-to about 200-fold resistant to the cardiac glycoside derivative SC4453 (a digoxin analog which contains a pyridazine ring in place of a lactone ring in the C-17 position) have been isolated after a single step selection in the presence of the drug. Based on their cross-resistance pattern towards various cardiac glycosides, the mutants resistant to SC4453 (SCR mutants) appear to be of two different kinds and they differ from the two classes of ouabain-resistant mutants described previously (Gupta, R. S., and Chopra, A. (1985) J. Biol. Chem. 260, 6843-6850). One type of SCR mutants (designated as group C) exhibit a high degree of cross-resistance to all cardiac glycosides and their genins (viz. ouabain, digitoxin, digoxin, digoxigenin, convallatoxin, gitoxin, strophanthidin, and bufalin). In contrast, the second type of SCR mutant (group D) exhibit considerable resistance to only SC4453, digoxin, and digoxigenin, but showed very little or no cross-resistance to the other cardiac glycosides examined. The cross-resistance of the mutants towards cardiac glycosides was highly specific as they exhibited no cross-resistance towards a large number of other structurally and functionally related compounds (viz. ethacrynic acid, sanguinarine nitrate, penicillic acid, methyl quinolizinum bromide, 5,5'-diphenylhydantoin, deoxycorticosterone, vanadium pentoxide, and adriamycin). The cellular uptake of 86Rb in the mutant cells was found to be resistant to specific cardiac glycosides. Studies on the sensitivity of plasma membrane Na+/K+-ATPase to cardiac glycosides show that about 10-15% of the enzymic activity in the mutant cells was highly resistant to inhibition by the specific drugs to which the mutants exhibit increased resistance. Very interestingly, when the mutant cells are grown in cardiac glycoside-containing medium, the resistant form of the enzyme accounts for about 50-60% of the total enzyme. These results show that both classes of SCR mutants are affected in Na+/K+-ATPase and that the amount of the resistant enzyme in the mutant cells is regulated in response to cardiac glycosides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号