首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chloralose is an intravenous anesthetic which preserves vagal and central baroreceptor reflexes, thus rendering it useful for physiologic research. However, chloralose is recommended for terminal experiments only, due to concerns relating to long-term toxicity. We investigated the safety of chloralose in longitudinal pulmonary function studies in beagle puppies. Twelve puppies received chloralose anesthesia repeatedly (8-12 times per dog) between the ages of 80 and 300 days. Constant anesthetic depth was maintained reliably throughout the course of the experiments. Recovery lasted approximately 4 hours in each experiment and occurred in four definable stages. Following recovery, the puppies exhibited normal health and growth as compared with other colony animals. There was no biochemical evidence of acute renal, hepatic, pancreatic or cardiac toxicity prior to and immediately after anesthesia, and no evidence of chronic toxicity following completion of the study protocol, after a total cumulative dose of 1.18 g/kg chloralose. These studies demonstrate that intravenous chloralose is a safe anesthetic for longitudinal use.  相似文献   

2.
i) In the awake animal, neither a late response nor a silent period could be evoked from the tibial nerve. Somatic afferentation with impulse trains failed to inhibit efferent sympathetic activity. On the other hand, vagal afferentation had an inhibitory action also in the awake animal. In the awake animal, the excitatory processes are dominant. ii) Urethan anaesthesia did not influence the sympathetic nervous processes; the reflex response were practically the same as in the awake animal. iii) Chloralose anaesthesia altered the sympathetic reflex observable in the awake animal. Somatic afferentation of low threshold voltage already elicited a late response and a silent period; in addition, a high degree of summation ability of silent periods was apparent. Thus, chloralose anaesthesia seems to raise the excitatory level of the sympathetic centres in the direction of inhibition. iv) Combined chloralose+urethan anaesthesia, under which investigations are usually performed, was seem to affect the reactivity of the sympathetic centres in the same way as did chloralose anaesthesia.  相似文献   

3.
Intranasal instillation is a widely used procedure for pneumonic delivery of drugs, vaccine candidates, or infectious agents into the respiratory tract of research mice. However, there is a paucity of published literature describing the efficiency of this delivery technique. In this report we have used the murine model of tularemia, with Francisella tularensis live vaccine strain (FTLVS) infection, to evaluate the efficiency of pneumonic delivery via intranasal dosing performed either with differing instillation volumes or different types of anesthesia. FTLVS was rendered luminescent via transformation with a reporter plasmid that constitutively expressed the Photorhabdus luminescens lux operon from a Francisella promoter. We then used an IVIS Spectrum whole animal imaging system to visualize FT dissemination at various time points following intranasal instillation. We found that instillation of FT in a dose volume of 10 μl routinely resulted in infection of the upper airways but failed to initiate infection of the pulmonary compartment. Efficient delivery of FT into the lungs via intranasal instillation required a dose volume of 50 μl or more. These studies also demonstrated that intranasal instillation was significantly more efficient for pneumonic delivery of FTLVS in mice that had been anesthetized with inhaled (isoflurane) vs. parenteral (ketamine/xylazine) anesthesia. The collective results underscore the need for researchers to consider both the dose volume and the anesthesia type when either performing pneumonic delivery via intranasal instillation, or when comparing studies that employed this technique.  相似文献   

4.
Polyphenols are natural compounds found in plants, fruits, chocolate, and beverages such as tea and wine. To date, the majority of polyphenol research shows them to have anticancer activity in cell lines and animal models. Some human clinical trials also indicate possible anticancer benefits are associated with polyphenols. A problem with polyphenols is their short half-life and low bioavailability; thus the use of nanoparticles to enhance their delivery is a new research field. A Pubmed search was conducted to find in vitro, in vivo, and human clinical trials done within the past 10 years involving the use of polyphenols against different cancer types, and for studies done within the past 5 years on the use of nanoparticles to enhance polyphenol delivery. Based on the studies found, it is observed that polyphenols may be a potential alternative or additive therapy against cancer, and the use of nanoparticles to enhance their delivery to tumors is a promising approach. However, further human clinical trials are necessary to better understand the use of polyphenols as well as their nanoparticle-mediated delivery.  相似文献   

5.
The physiological mechanisms limiting and adjusting cold and heat tolerance have regained interest in the light of global warming and associated shifts in the geographical distribution of ectothermic animals. Recent comparative studies, largely carried out on marine ectotherms, indicate that the processes and limits of thermal tolerance are linked with the adjustment of aerobic scope and capacity of the whole animal as a crucial step in thermal adaptation on top of parallel adjustments at the molecular or membrane level. In accordance with Shelford's law of tolerance decreasing whole animal aerobic scope characterises the onset of thermal limitation at low and high pejus thresholds (pejus=getting worse). The drop in aerobic scope of an animal indicated by falling oxygen levels in the body fluids and or the progressively limited capacity of circulatory and ventilatory mechanisms. At high temperatures, excessive oxygen demand causes insufficient oxygen levels in the body fluids, whereas at low temperatures the aerobic capacity of mitochondria may become limiting for ventilation and circulation. Further cooling or warming beyond these limits leads to low or high critical threshold temperatures (T(c)) where aerobic scope disappears and transition to an anaerobic mode of mitochondrial metabolism and progressive insufficiency of cellular energy levels occurs. The adjustments of mitochondrial densities and their functional properties appear as a critical process in defining and shifting thermal tolerance windows. The finding of an oxygen limited thermal tolerance owing to loss of aerobic scope is in line with Taylor's and Weibel's concept of symmorphosis, which implies that excess capacity of any component of the oxygen delivery system is avoided. The present study suggests that the capacity of oxygen delivery is set to a level just sufficient to meet maximum oxygen demand between the average highs and lows of environmental temperatures. At more extreme temperatures only time limited passive survival is supported by anaerobic metabolism or the protection of molecular functions by heat shock proteins and antioxidative defence. As a corollary, the first line of thermal sensitivity is due to capacity limitations at a high level of organisational complexity, i.e. the integrated function of the oxygen delivery system, before individual, molecular or membrane functions become disturbed. These interpretations are in line with the more general consideration that, as a result of the high level of complexity of metazoan organisms compared with simple eukaryotes and then prokaryotes, thermal tolerance is reduced in metazoans. A similar sequence of sensitivities prevails within the metazoan organism, with the highest sensitivity at the organismic level and wider tolerance windows at lower levels of complexity. However, the situation is different in that loss in aerobic scope and progressive hypoxia at the organismic level define the onset of thermal limitation which then transfers to lower hierarchical levels and causes cellular and molecular disturbances. Oxygen limitation contributes to oxidative stress and, finally, denaturation or malfunction of molecular repair, e.g. during suspension of protein synthesis. The sequence of thermal tolerance limits turns into a hierarchy, ranging from systemic to cellular to molecular levels.  相似文献   

6.
The concept of animal models is well honored, and amphibians have played a prominent part in the success of using key species to discover new information about all animals. As animal models, amphibians offer several advantages that include a well-understood basic physiology, a taxonomic diversity well suited to comparative studies, tolerance to temperature and oxygen variation, and a greater similarity to humans than many other currently popular animal models. Amphibians now account for approximately 1/4 to 1/3 of lower vertebrate and invertebrate research, and this proportion is especially true in physiological research, as evident from the high profile of amphibians as animal models in Nobel Prize research. Currently, amphibians play prominent roles in research in the physiology of musculoskeletal, cardiovascular, renal, respiratory, reproductive, and sensory systems. Amphibians are also used extensively in physiological studies aimed at generating new insights in evolutionary biology, especially in the investigation of the evolution of air breathing and terrestriality. Environmental physiology also utilizes amphibians, ranging from studies of cryoprotectants for tissue preservation to physiological reactions to hypergravity and space exploration. Amphibians are also playing a key role in studies of environmental endocrine disruptors that are having disproportionately large effects on amphibian populations and where specific species can serve as sentinel species for environmental pollution. Finally, amphibian genera such as Xenopus, a genus relatively well understood metabolically and physiologically, will continue to contribute increasingly in this new era of systems biology and "X-omics."  相似文献   

7.
Liposome-encapsulated Hb (LEH) is being developed as an artificially assembled, low-toxicity, and spatially isolated Hb-based oxygen carrier (HBOC). Standard methods of evaluating oxygen carriers are based on surrogate indicators of physiology in animal models of shock. Assessment of actual delivery of oxygen by HBOCs and resultant improvement in oxygen metabolism at the tissue level has been a technical challenge. In this work, we report our findings from 15O-positron emission tomographic (15O-PET) evaluation of LEH in a rat model of 40% hypovolemic shock. In vitro studies showed that PEGylated LEH formulation containing approximately 7.5% Hb and consisting of neutral lipids (distearoylphosphatidylcholine:cholesterol:alpha-tocopherol, 51.4:46.4:2.2) efficiently picks up 15O-labeled oxygen gas. The final preparation of LEH contained 5% human serum albumin to provide oncotic pressure. Cerebral PET images of anesthetized rats inhaling 15O-labeled O2 gas showed efficient oxygen-carrying and delivery capacity of LEH formulation. From the PET images, we determined cerebral metabolic rate of oxygen (CMR(O2)) as a direct indicator of oxygen-carrying capacity of LEH as well as oxygen delivery and metabolism in rat brain. Compared with control fluids [saline and 5% human serum albumin (HSA)], LEH significantly improved CMR(O2) to approximately 80% of baseline level. Saline and HSA resuscitation could not improve hypovolemia-induced decrease in CMR(O2). On the other hand, resuscitation of shed blood was the most efficient in restoring oxygen metabolism. The results suggest that 15O-PET technology can be successfully employed to evaluate potential oxygen carriers and blood substitutes and that LEH resuscitation in hemorrhage enhances oxygen delivery to the cerebral tissue and improves oxygen metabolism in brain.  相似文献   

8.
Drinking water and its delivery system are potential sources of variation in animal research. Concern arose that rubber stoppers used to cork water bottles might be a source of some nutritionally required minerals which could leach into drinking water. Six types of stoppers, each having different compositions, were cleaned with stainless-steel sipper tubes inserted into them and attached to polypropylene bottles filled with either deionized water (pH 4.5) or acidified-deionized water (pH 2.5). After six days of contact, water levels of copper, magnesium, iron, manganese, zinc, chromium, and selenium were determined by atomic absorption spectroscopy. Additionally, three of the stopper types were analyzed for mineral content. Minerals were present in both stoppers and drinking water. Acidified-deionized water generally leached minerals from the stoppers than did deionized water. The black stopper which is commonly used in animal facilities contained and leached measurable levels of some minerals, but it still can be recommended for typical animal husbandry uses, although other types of stoppers would be more suitable for specific nutritional and toxicologic studies.  相似文献   

9.
In the majority of countries where there are legislative requirements pertaining to the use of animals in research, figures are quoted for minimum cage sizes or space allocation to be provided per animal. These figures are generally based on professional judgement and are in common usage. However, there is a growing trend and expectation that welfare science should inform regulatory decision-making. Given the importance of the potential welfare influences of cage size on the animals themselves, this paper presents the latest scientific knowledge on this topic in one of the most commonly used animals in research, the mouse. A comprehensive review of studies in laboratory mice was undertaken, examining the effects of space allocation per animal and animal density on established welfare indicators. To date, animal density studies have predominated, and the effects of space allocation per se are still relatively unclear. This information will guide those involved in facility management or legislative review, and provide a more solid foundation for further studies into the effects of routine husbandry practices on animal welfare.  相似文献   

10.
Although rodent models are very popular for scientific studies, it is becoming more evident that large animal models can provide unique opportunities for biomedical research. Sheep are docile in nature and large in size, which facilitates surgical manipulation, and their physiology is similar to humans. As a result, for decades they have been chosen for several models and continue to be used to study an ever-increasing array of applications. Despite this, their full potential has not been exploited. Here, we review the use of sheep as an animal model for human vaccine development, asthma pathogenesis and treatment, the study of neonatal development, and the optimization of drug delivery and surgical techniques.  相似文献   

11.
Microarray technology has the potential to affect the number of laboratory animals used, the severity of animal experiments, and the development of non-animal alternatives in several areas scientific research. Microarrays can contain hundreds or thousands of microscopic spots of DNA, immobilised on a solid support, and their use enables global patterns of gene expression to be determined in a single experiment. This technology is being used to improve our understanding of the operation of biological systems during health and disease, and their responses to chemical insults. Although it is impossible to predict with certainty any future trends regarding animal use, microarray technology might not initially reduce animal use, as is often claimed to be the case. The accelerated pace of research as a result of the use of microarrays could increase overall animal use in basic and applied biological research, by increasing the numbers of interesting genes identified for further analysis, and the number of potential targets for drug development. Each new lead will require further evaluation i n studies that could involve animals. In toxicity testing, microarray studies could lead to increases in animal studies, if further confirmatory and other studies are performed. However, before such technology can be used more extensively, several technical problems need to be overcome, and the relevance of the data to biological processes needs to be assessed. Were microarray technology to be used in the manner envisaged by its protagonists, there need to be efforts to increase the likelihood that its application will create new opportunities for reducing, refining and replacing animal use. This comment is a critical assessment of the possible implications of the application of microarray technology on animal experimentation in various research areas, and makes some recommendations for maximising the application of the Three Rs.  相似文献   

12.
Recent advances in cell biology and tissue engineering have used various delivery vehicles for transplanting varying cell cultures with limited success. These techniques are frequently complicated by tissue necrosis, infection, and resorption. The purpose of this study was to investigate whether urothelium cells, tracheal epithelial cells, and preadipocytes cultured in vitro could be successfully transplanted onto a prefabricated capsule surface by using fibrin glue as a delivery vehicle, with the ultimate goal for use in reconstruction. In the first step of the animal study, tissue specimens (bladder urothelium, tracheal epithelial cells, epididymal fat pad) were harvested for in vitro cell culturing, and a silicone block was implanted subcutaneously or within the anterior rectus sheath to induce capsule formation. After 6 to 10 days, when primary cultures were confluent, the animals were re-anesthetized, the newly formed capsule pouches were incised, and the suspensions of cultured urothelia cells (n = 40), tracheal epithelial cells (n = 32), and preadipocytes (n = 40) were implanted onto the capsule surface in two groups, one using standard culture medium as a delivery vehicle and the second using fibrin glue. Histologic sections were taken, and different histomorphologic studies were performed according to tissue type. Consistently in all animals, a highly vascularized capsule was induced by the silicon material. In all animals in which the authors used fibrin glue as a delivery vehicle, they could demonstrate a successful reimplantation of cultured urothelium cells, tracheal epithelial cells, or preadipocytes. Their animal studies showed that capsule induction in combination with fibrin glue as a delivery vehicle is a successful model for transplantation of different in vivo cultured tissue types.  相似文献   

13.
Perinatal inflammation is associated with adverse neurodevelopmental outcomes, which may be partly due to changes in the cerebral oxygen delivery/consumption relationship. We aimed to determine the critical oxygen delivery threshold of the brain of preterm, ventilated lambs and to determine whether the critical threshold is affected by exposure to inflammation in utero. Pregnant ewes received intra-amniotic injection of lipopolysaccharide or saline at 125 or 127 days of gestation. Pulmonary and systemic flow probes and catheters were surgically positioned in the fetus immediately before delivery at 129 days of gestation. After delivery, lambs were ventilated for 90 min using a positive end-expiratory pressure recruitment strategy. Cardio-respiratory variables and blood gases were measured regularly. Systemic and cerebral oxygen delivery, consumption (Fick), and extraction were calculated, and the relationship between cerebral delivery and consumption analyzed. Linear regression was used to define the transition or "critical" oxygen threshold as the point at which the slope of the oxygen delivery/consumption curve changed to be > 10°. Four subgroups were defined according to the calculated critical threshold. A total of 150 measurements were recorded in 18 lambs. Fetal cerebral oxygen consumption was increased by antenatal lipopolysaccharide (P < 0.05). The postnatal critical oxygen threshold was 3.6 ml·kg?1·min?1, corresponding to cerebral oxygen consumption of 0.73 ml·kg?1·min?1. High oxygen delivery and consumption were associated with increased pulmonary and carotid blood flow and systemic extraction compared with low oxygen delivery and consumption. No postnatal effect of antenatal inflammation was observed. Inflammation in utero increases fetal, but not postnatal, cerebral oxygen consumption. Adverse alterations to pulmonary blood flow can result in reduced cerebral blood flow, oxygen delivery, and consumption. Regardless of exposure to inflammation, there is a consistent postnatal relationship between cerebral oxygen delivery and consumption.  相似文献   

14.
Detailed, high-resolution numerical simulations of the bubbly flows, used for oxygen delivery and mixing in mammalian cell suspensions, have been performed. The hydrodynamics, shear and normal forces, mass transfer and mass transport from and around individual bubbles and bubble clusters were resolved for different operating conditions, that is, Weber, Morton, and Schmidt numbers. Suspended animal (e.g., mammalian, insect) cells are known to be susceptible to damage potentially leading to cell death, caused by hydrodynamic stresses and oxygen deprivation. Better knowledge of the magnitude of the shear forces and the extent of mixing of the dissolved oxygen in sparged bioreactors can have a significant impact on their future design and optimization. Therefore, the computed liquid-phase velocity fields were used to calculate and compare the local shear in different types of single bubble wakes and in bubble clusters. Oxygen mass transfer and dissolved oxygen transport were resolved to examine oxygen supply to the cells in the different types of flows.  相似文献   

15.
肝癌动物模型是抗肝癌药物实验及肝靶向给药系统验证的重要方法和手段。本文对用于研究肝靶向制剂的动物模型的种类、特征、不足及应用进行了研究论述,提出了目前较适于应用的模型,应用肝癌动物模型可以提供与肝癌病人相似的肝癌生物学特性,也为肝靶向给药制剂药代动力学指标的可靠性提供了保障。  相似文献   

16.
This review provides an overview of studies employing particle-mediated epidermal delivery (PMED) or the gene gun to administer DNA vaccines for infectious diseases in preclinical studies employing large animal models and in human clinical trials. It reviews the immunogenicity and protective efficacy of PMED DNA vaccines in nonhuman primates and swine and studies that have directly compared the effectiveness of PMED in these large animal models to existing licensed vaccines and intramuscular or intradermal delivery of DNA vaccines with a needle. Various clinical trials employing PMED have been completed and an overview of the immunogenicity, safety, and tolerability of this approach in humans is described. Finally, efforts currently in progress for commercial development of particle-mediated DNA vaccines are discussed.  相似文献   

17.
Growth retardation is a consistent finding in animal studies on the effect of sodium valproate (NaVP) in the embryo. Apart from fetal weight, the state of ossification in the embryo may be regarded as an indication of growth. The present study was to determine what effect sodium valproate at human therapeutic drug plasma levels had on the craniofacial skeletal pattern in the CD-1 mouse embryo relative to oxygen conditions, drug treatment or the interaction of the two. Two NaVP-filled Alzet osmotic minipumps were implanted subcutaneously on day 5 of gestation for continuous delivery of a total daily dosage of 850 mg/kg for 7 days. During this same time period the dams were also exposed to either normoxic (21% oxygen), hyperoxic (50% oxygen), or hypoxic (12% oxygen) controlled environments. Dams were removed from the oxygen chambers on day 12 and killed on day 18 of gestation. The fetuses were then processed for skeletal evaluation of the craniofacial region. Ossification centers were present in all but six of the skeletal elements studied. The primary ossification delay was in the tympanic bony labyrinth. In addition, there was a decrease in maxillary and mandibular length and cranial base measurements. The greatest toxic effect on the fetus for all skeletal components studied was in the NaVP/hypoxia treated group. This finding suggests that fetal skeletal maturation may be affected by a combination of intrauterine as well as external factors.  相似文献   

18.
The high concentration of molecular oxygen in Earth??s atmosphere is arguably the most conspicuous and geologically important signature of life. Earth??s early atmosphere lacked oxygen; accumulation began after the evolution of oxygenic photosynthesis in cyanobacteria around 3.0?C2.5 billion years ago (Gya). Concentrations of oxygen have since varied, first reaching near-modern values ~600 million years ago (Mya). These fluctuations have been hypothesized to constrain many biological patterns, among them the evolution of body size. Here, we review the state of knowledge relating oxygen availability to body size. Laboratory studies increasingly illuminate the mechanisms by which organisms can adapt physiologically to the variation in oxygen availability, but the extent to which these findings can be extrapolated to evolutionary timescales remains poorly understood. Experiments confirm that animal size is limited by experimental hypoxia, but show that plant vegetative growth is enhanced due to reduced photorespiration at lower O2:CO2. Field studies of size distributions across extant higher taxa and individual species in the modern provide qualitative support for a correlation between animal and protist size and oxygen availability, but few allow prediction of maximum or mean size from oxygen concentrations in unstudied regions. There is qualitative support for a link between oxygen availability and body size from the fossil record of protists and animals, but there have been few quantitative analyses confirming or refuting this impression. As oxygen transport limits the thickness or volume-to-surface area ratio??rather than mass or volume??predictions of maximum possible size cannot be constructed simply from metabolic rate and oxygen availability. Thus, it remains difficult to confirm that the largest representatives of fossil or living taxa are limited by oxygen transport rather than other factors. Despite the challenges of integrating findings from experiments on model organisms, comparative observations across living species, and fossil specimens spanning millions to billions of years, numerous tractable avenues of research could greatly improve quantitative constraints on the role of oxygen in the macroevolutionary history of organismal size.  相似文献   

19.
Tissue kallikrein (hK1) cleaves low-molecular-weight kininogen to produce kinin peptide, which binds to kinin receptors and triggers a wide spectrum of biological effects. Tissue kallikrein levels are reduced in humans and in animal models with hypertension, cardiovascular and renal diseases. Transgenic mice or rats over-expressing human tissue kallikrein or kinin B2 receptor are permanently hypotensive, and somatic kallikrein gene delivery reduces blood pressure in several hypertensive rat models. Moreover, kallikrein gene delivery or kallikrein protein infusion can directly improve cardiac, renal and neurological function without blood pressure reduction. Kallikrein has pleiotropic effects in inhibiting apoptosis, inflammation, proliferation, hypertrophy and fibrosis, and promoting angiogenesis and neurogenesis in different experimental animal models. Kallikrein's effects can be blocked by kinin B2 receptor antagonists. Mechanistically, tissue kallikrein/kinin leads to increased nitric oxide levels and Akt activation, and reduced reactive oxygen species formation, TGF-beta1 expression, MAPK and nuclear factor-kappaB activation. Our studies indicate that tissue kallikrein, through the kinin B2 receptor and nitric oxide formation, can protect against oxidative damage in cardiovascular and renal diseases and ischemic stroke. These novel findings suggest that kallikrein/kinin may serve as new drug targets for the prevention and treatment of heart failure, renal disease and stroke in humans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号