首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ena/VASP proteins capture actin filament barbed ends   总被引:1,自引:0,他引:1  
Ena/VASP (vasodialator-stimulated protein) proteins regulate many actin-dependent events, including formation of protrusive structures, fibroblast migration, neurite extension, cell-cell adhesion, and Listeria pathogenesis. In vitro, Ena/VASP activities on actin are complex and varied. They promote actin assembly, protect filaments from cappers, bundle filaments, and inhibit filament branching. To determine the mechanisms by which Ena/VASP proteins regulate actin dynamics at barbed ends, we monitored individual actin filaments growing in the presence of VASP and profilin using total internal reflection fluorescence microscopy. Filament growth was unchanged by VASP, but filaments grew faster in profilin-actin and VASP than with profilin-actin alone. Actin filaments were captured directly by VASP-coated surfaces via interactions with growing barbed ends. End-attached filaments transiently paused but resumed growth after becoming bound to the surface via a filament side attachment. Thus, Ena/VASP proteins promote actin assembly by interacting directly with actin filament barbed ends, recruiting profilin-actin, and blocking capping.  相似文献   

2.
Vasodilator-stimulated phosphoprotein (VASP) is a key regulator of dynamic actin structures like filopodia and lamellipodia, but its precise function in their formation is controversial. Using in vitro TIRF microscopy, we show for the first time that both human and Dictyostelium VASP are directly involved in accelerating filament elongation by delivering monomeric actin to the growing barbed end. In solution, DdVASP markedly accelerated actin filament elongation in a concentration-dependent manner but was inhibited by low concentrations of capping protein (CP). In striking contrast, VASP clustered on functionalized beads switched to processive filament elongation that became insensitive even to very high concentrations of CP. Supplemented with the in vivo analysis of VASP mutants and an EM structure of the protein, we propose a mechanism by which membrane-associated VASP oligomers use their WH2 domains to effect both the tethering of actin filaments and their processive elongation in sites of active actin assembly.  相似文献   

3.
Cell motility requires lamellipodial protrusion, a process driven by actin polymerization. Ena/VASP proteins accumulate in protruding lamellipodia and promote the rapid actin-driven motility of the pathogen Listeria. In contrast, Ena/VASP negatively regulate cell translocation. To resolve this paradox, we analyzed the function of Ena/VASP during lamellipodial protrusion. Ena/VASP-deficient lamellipodia protruded slower but more persistently, consistent with their increased cell translocation rates. Actin networks in Ena/VASP-deficient lamellipodia contained shorter, more highly branched filaments compared to controls. Lamellipodia with excess Ena/VASP contained longer, less branched filaments. In vitro, Ena/VASP promoted actin filament elongation by interacting with barbed ends, shielding them from capping protein. We conclude that Ena/VASP regulates cell motility by controlling the geometry of actin filament networks within lamellipodia.  相似文献   

4.
It has been postulated that the hydrophobic loop of actin (residues 262-274) swings out and inserts into the opposite strand in the filament, stabilizing the filament structure. Here, we analyzed the hydrophobic loop dynamics utilizing four mutants that have cysteine residues introduced at a single location along the yeast actin loop. Lateral, copper-catalyzed disulfide cross-linking of the mutant cysteine residues to the native C374 in the neighboring strand within the filament was fastest for S265C, followed by V266C, L267C, and then L269C. Site-directed spin labeling (SDSL) studies revealed that C265 lies closest to C374 within the filament, followed by C266, C267, and then C269. These results are not predicted by the Holmes extended loop model of F-actin. Furthermore, we find that disulfide cross-linking destroys L267C and L269C filaments; only small filaments are observed via electron microscopy. Conversely, phalloidin protects the L267C and L269C filaments and inhibits their disulfide cross-linking. Combined, our data indicate that, in solution, the loop resides predominantly in a "parked" position within the filament but is able to dynamically populate other conformational states which stabilize or destabilize the filament. Such states may be exploited within a cell by filament-stabilizing and -destabilizing factors.  相似文献   

5.
Disruption of cytoskeletal assembly is one of the early effects of any stress that can ultimately lead to cell death. Stabilization of cytoskeletal assembly, therefore, is a critical event that regulates cell survival under stress. alphaB-crystallin, a small heat shock protein, has been shown to associate with cytoskeletal proteins under normal and stress conditions. Earlier reports suggest that alphaB-crystallin could prevent stress-induced aggregation of actin in vitro. However, the molecular mechanisms by which alphaB-crystallin stabilizes actin filaments in vivo are not known. Using the H9C2 rat cardiomyoblast cell line as a model system, we show that upon heat stress, alphaB-crystallin preferentially partitions from the soluble cytosolic fraction to the insoluble cytoskeletal protein-rich fraction. Confocal microscopic analysis shows that alphaB-crystallin associates with actin filaments during heat stress and the extent of association increases with time. Further, immunoprecipitation experiments show that alphaB-crystallin interacts directly with actin. Treatment of heat-stressed H9C2 cells with the actin depolymerzing agent, cytochalasin B, failed to disorganize actin. We show that this association of alphaB-crystallin with actin is dependent on its phosphorylation status, as treatment of cells with MAPK inhibitors SB202190 or PD98059 results in abrogation of this association. Our results indicate that alphaB-crystallin regulates actin filament dynamics in vivo and protects cells from stress-induced death. Further, our studies suggest that the association of alphaB-crystallin with actin helps maintenance of pinocytosis, a physiological function essential for survival of cells.  相似文献   

6.
The structures of filamentous Mg-ATP-actin (F actin) in the presence and absence of KCl have been mapped with hydroxyl radicals (*OH) generated by synchrotron X-ray radiolysis. Proteolysis and mass spectrometry (MS) analysis revealed 52 reactive side-chain sites from 27 distinct peptides within actin. The reactivities of these probe sites with *OH in the F-actin states are compared with those of Mg-ATP-G-actin (monomers) analyzed previously [Guan, J.-Q. et al. (2003) Biochemistry 42, 11992-12000]. Filament-dependent protection within subdomains 2, 3, and 4 and at the C terminus is consistent with longitudinal contacts of monomers within the filament helical structure as predicted by the Holmes model. In the absence of KCl, the extent of filament-dependent protection rarely reached 3-fold, consistent with a highly dynamic filament characterized by relatively weak interactions between actin protomers. However, in the presence of KCl, the extents of protection are significantly increased, consistent with a well-ordered, more tightly packed filament structure. Filament-dependent enhancements of reactivity not predicted by the Holmes model are seen for a peptide that overlaps the "hydrophobic plug" (H-plug) region and for a peptide that forms contacts with the polyphosphate moiety of the bound nucleotide. Overall, these data are both consistent with and complementary to a recent deuterium-exchange MS study of filamentous actin [Chik, J. K., and Schriemer, D.C. (2003) J. Mol. Biol. 334, 373-385], which also did not detect any burial of the H plug upon formation of filaments.  相似文献   

7.
8.
An actin filament sliding on myosin molecules exhibits fluctuating or staggered movements as responding to changes in the ATP concentration. We previously observed that fluctuations in the sliding velocity enhanced in a manner being independent of the magnitude of the velocity. The present study focused upon a single actin filament bound to a glass surface through avidin–biotin bonding to examine those fluctuations inherent to the filament in the presence of heavy meromyosin. The auto-correlation analysis revealed that the relaxation time of fluctuations in the filamental displacement obtains its maximum value at about 100 μM of the ATP concentration in the ambient, while the magnitude of the fluctuations gradually increased with an increase of the concentration. Furthermore, the measurement of the fluorescence intensity from the markers fixed on the filament demonstrated an enhancement of the negative correlation between the measured peak intensity and the spatial spreading of its intensity over the range of 0–200 μM of the ATP concentration, as indicating both development and mitigation of local distortions occurring within the filament.  相似文献   

9.
Tropomyosin binds to actin filaments and is implicated in stabilization of actin cytoskeleton. We examined biochemical and cell biological properties of Caenorhabditis elegans tropomyosin (CeTM) and obtained evidence that CeTM is antagonistic to ADF/cofilin-dependent actin filament dynamics. We purified CeTM, actin, and UNC-60B (a muscle-specific ADF/cofilin isoform), all of which are derived from C. elegans, and showed that CeTM and UNC-60B bound to F-actin in a mutually exclusive manner. CeTM inhibited UNC-60B-induced actin depolymerization and enhancement of actin polymerization. Within isolated native thin filaments, actin and CeTM were detected as major components, whereas UNC-60B was present at a trace amount. Purified UNC-60B was unable to interact with the native thin filaments unless CeTM and other associated proteins were removed by high-salt extraction. Purified CeTM was sufficient to restore the resistance of the salt-extracted filaments from UNC-60B. In muscle cells, CeTM and UNC-60B were localized in different patterns. Suppression of CeTM by RNA interference resulted in disorganized actin filaments and paralyzed worms in wild-type background. However, in an ADF/cofilin mutant background, suppression of CeTM did not worsen actin organization and worm motility. These results suggest that tropomyosin is a physiological inhibitor of ADF/cofilin-dependent actin dynamics.  相似文献   

10.
Yang L  Sept D  Carlsson AE 《Biophysical journal》2006,90(12):4295-4304
The formation of filopodia-like bundles from a dendritic actin network has been observed to occur in vitro as a result of branching induced by Arp2/3 complex. We study both the energetics and dynamics of actin filament bundling in such a network to evaluate their relative importance in bundle formation processes. Our model considers two semiflexible actin filaments fixed at one end and free at the other, described using a normal-mode approximation. This model is studied by both Brownian dynamics and free-energy minimization methods. Remarkably, even short filaments can bundle at separations comparable to their lengths. In the dynamic simulations, we evaluate the time required for the filaments to interact and bind, and examine the dependence of this bundling time on the filament length, the distance between the filament bases, and the cross-linking energy. In most cases, bundling occurs in a second or less. Beyond a certain critical distance, we find that the bundling time increases very rapidly with increasing interfilament separation and/or decreasing filament length. For most of the cases we have studied, the energetics results for this critical distance are similar to those obtained from dynamics simulations run for 10 s, suggesting that beyond this timescale, energetics, rather than kinetic constraints, determine whether or not bundling occurs. Over a broad range of conditions, we find that the times required for bundling from a network are compatible with experimental observations.  相似文献   

11.
IQGAP is a conserved family of actin-binding proteins with essential roles in cell motility, cytokinesis, and cell adhesion, yet there remains a limited understanding of how IQGAP proteins directly influence actin filament dynamics. To close this gap, we used single-molecule and single-filament total internal reflection fluorescence microscopy to observe IQGAP regulating actin dynamics in real time. To our knowledge, this is the first study to do so. Our results demonstrate that full-length human IQGAP1 forms dimers that stably bind to actin filament sides and transiently cap barbed ends. These interactions organize filaments into thin bundles, suppress barbed end growth, and inhibit filament disassembly. Surprisingly, each activity depends on distinct combinations of IQGAP1 domains and/or dimerization, suggesting that different mechanisms underlie each functional effect on actin. These observations have important implications for how IQGAP functions as an actin regulator in vivo and how it may be regulated in different biological settings.  相似文献   

12.
13.
14.
The actin cytoskeleton is intimately involved in the motile behaviour of animal cells. The structure and dynamic behaviour of actin and its binding proteins have been intensively studied in vitro over the past several decades, culminating in achievements such as an atomic model of the actin filament. Despite this progress, it is not yet clear how the behaviour of these purified proteins in vitro relates to the dynamic behaviour of actin inside living, moving cells. Here we discuss a new model that relates the known dynamic parameters for pure actin to the observed behaviour of actin filaments inside motile cells.  相似文献   

15.
Although much evidence suggests that axon growth and guidance depend on well-coordinated cytoskeletal dynamics, direct characterization of the corresponding molecular events has remained a challenge. Here, we address this outstanding problem by examining neurite outgrowth stimulated by local application of cell adhesion substrates. During acute outgrowth, the advance of organelles and underlying microtubules was correlated with regions of attenuated retrograde actin network flow in the periphery. Interestingly, as adhesion sites matured, contractile actin arc structures, known to be regulated by the Rho/Rho Kinase/myosin II signaling cascade, became more robust and coordinated microtubule movements in the growth cone neck. When Rho Kinase was inhibited, although growth responses occurred with less of a delay, microtubules failed to consolidate into a single axis of growth. These results reveal a role for Rho Kinase and myosin II contractility in regulation of microtubule behavior during neuronal growth.  相似文献   

16.
Actin is a major structural protein of the eukaryotic cytoskeleton and enables cell motility. Here, we present a model of the actin filament (F-actin) that not only incorporates the global structure of the recently published model by Oda et al. but also conserves internal stereochemistry. A comparison is made using molecular dynamics simulation of the model with other recent F-actin models. A number of structural determents such as the protomer propeller angle, the number of hydrogen bonds, and the structural variation among the protomers are analyzed. The MD comparison is found to reflect the evolution in quality of actin models over the last 6 years. In addition, simulations of the model are carried out in states with both ADP or ATP bound and local hydrogen-bonding differences characterized.  相似文献   

17.
18.
The extent and dynamics of actin polymerization in solution are calculated as functions of the filament severing rate, using a simple model of in vitro polymerization. The model is solved by both analytic theory and stochastic-growth simulation. The results show that severing essentially always enhances actin polymerization by freeing up barbed ends, if barbed-end cappers are present. Severing has much weaker effects if only pointed-end cappers are present. In the early stages of polymerization, the polymerized-actin concentration grows exponentially as a function of time. The exponential growth rate is given in terms of the severing rate, and the latter is given in terms of the maximum slope in a polymerization time course. Severing and branching are found to act synergistically.  相似文献   

19.
Fascin is the main actin filament bundling protein in filopodia. Because of the important role filopodia play in cell migration, fascin is emerging as a major target for cancer drug discovery. However, an understanding of the mechanism of bundle formation by fascin is critically lacking. Fascin consists of four β-trefoil domains. Here, we show that fascin contains two major actin-binding sites, coinciding with regions of high sequence conservation in β-trefoil domains 1 and 3. The site in β-trefoil-1 is located near the binding site of the fascin inhibitor macroketone and comprises residue Ser-39, whose phosphorylation by protein kinase C down-regulates actin bundling and formation of filopodia. The site in β-trefoil-3 is related by pseudo-2-fold symmetry to that in β-trefoil-1. The two sites are ~5 nm apart, resulting in a distance between actin filaments in the bundle of ~8.1 nm. Residue mutations in both sites disrupt bundle formation in vitro as assessed by co-sedimentation with actin and electron microscopy and severely impair formation of filopodia in cells as determined by rescue experiments in fascin-depleted cells. Mutations of other areas of the fascin surface also affect actin bundling and formation of filopodia albeit to a lesser extent, suggesting that, in addition to the two major actin-binding sites, fascin makes secondary contacts with other filaments in the bundle. In a high resolution crystal structure of fascin, molecules of glycerol and polyethylene glycol are bound in pockets located within the two major actin-binding sites. These molecules could guide the rational design of new anticancer fascin inhibitors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号