首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Abstract: Matrix metalloproteinase-9 (MMP-9) is secreted from cells and, once activated, is thought to degrade collagen in the extracellular matrix. Because collagen is not readily localized where neurons have been shown to produce MMP-9 in the human brain, the ability of this enzyme to degrade bioactive peptides was investigated with representative tachykinin peptides [substance P (SP), neurokinin A, neurokinin B, and kassinin]. Latent MMP-9 (94 kDa) was purified from the human cell line HL-60 and converted to an intermediary active form (84 kDa) with p -aminophenylmercuric acetate. This active form of MMP-9 degraded SP with a k cat/ K m of 170 m M −1 min−1, which is 30-fold greater than the previously reported value for a representative collagen-derived peptide. The major digestion products were identified as SP1–6 and SP7–11, which were derived from cleavage of the Gln6-Phe7 bond. Minor products were also generated from cleavage of the Gly9-Leu10 bond. The other representative tachykinin peptides were cleaved at rates >10-fold slower than that of SP. The 84-kDa peptidase was also active as a gelatinase. Longer treatment of MMP-9 with p -aminophenylmercuric acetate caused the conversion of the 84-kDa enzyme to the established 68-kDa active form; however, the rate of SP degradation did not increase. Because MMP-9 is produced by neurons of the CNS, these results suggest a possible regulatory role for the enzyme in intercellular communication by altering the availability of bioactive peptides.  相似文献   

4.
A single point mutation in peripheral myelin protein 22 (pmp22) of the Trembler-J (TrJ) mouse models the human peripheral neuropathy, Charcot-Marie-Tooth disease type 1 A (CMT1A). An unexplored aspect of this disease is the gradual remodeling of the extracellular matrix in affected nerves. To elucidate the mechanism responsible for these changes, the levels of the extracellular matrix molecules laminin, collagen IV, and fibronectin were determined. In TrJ nerves, laminin is modestly increased while full-length forms of collagen IV and fibronectin are decreased. Matrix metalloproteinases (MMPs) are known to degrade multiple matrix molecules; therefore, nerves were assayed for MMP-2 and MMP-9 proteins. In neuropathy nerves, elevated levels of MMP-2 and MMP-9 were detected on western blots, and gelatin zymography confirmed the up-regulation of gelatinalytic activity in affected samples. Immunostaining studies revealed an increase in the numbers of MMP-2- and MMP-9-expressing cells in TrJ nerves. Cell type-specific immunolabeling showed that infiltrating macrophages are a significant source of both MMP-2 and MMP-9. Finally, the degradation of exogenous collagen IV by TrJ nerve lysates was prevented with a specific MMP inhibitor. Together these observations suggest that infiltration by MMP-expressing macrophages contributes to the remodeling of the TrJ nerve matrix.  相似文献   

5.
The structural backbone of extracellular matrix in cartilage is the collagen fibril, which is mainly composed of type II collagen. A measurable increase in type II collagen denaturation and degradation has been found in early Osteoarthritis (OA). Pro-inflammatory cytokine such as TNF-α produced in OA cartilage induced the expression of matrix metalloproteinase-13 (MMP-13), which targets and degrades type II collagen. Bortezomib is a proteasome inhibitor approved by the FDA for treatment of multiple myeloma and mantel cell lymphoma. The effects of bortezomib in OA have not been reported before. In this study, we found that bortezomib is able to suppress the degradation of type II collagen induced by TNF-α in human chondrocytes. Mechanistically, bortezomib treatment inhibits the expression of IRF-1 through blunting JAK2/STAT1 pathway, thereby prevents the induction of MMP-13 as well as the degradation of type II collagen. Our findings suggest the therapeutic potentials of bortezomib in patients with OA.  相似文献   

6.
The development of atherosclerotic lesions and abdominal aortic aneurysms involves degradation and loss of extracellular matrix components, such as collagen and elastin. Releases of the elastin cross-links desmosine (DES) and isodesmosine (IDE) may reflect elastin degradation in cardiovascular diseases. This study investigated the production of soluble elastin cross-linking structures by proteinases implicated in arterial diseases. Recombinant MMP-12 and neutrophil elastase liberated DES and IDE as amino acids from insoluble elastin. DES and IDE were also released from insoluble elastin exposed to monocyte/macrophage cell lines or human primary macrophages derived from peripheral blood monocytes. Elastin oxidized by reactive oxygen species (ROS) liberated more unconjugated DES and IDE than did non-oxidized elastin when incubated with MMP-12 or neutrophil elastase. These results support the exploration of free DES and IDE as biomarkers of elastin degradation.  相似文献   

7.
Tissue remodeling is an important process in many inflammatory and fibrotic lung disorders. RBC may in these conditions interact with extracellular matrix (ECM). Fibroblasts can produce and secrete matrix components, matrix-degrading enzymes (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). Imbalance in matrix synthesis/degradation may result in rearrangement of tissue architecture and lead to diseases such as emphysema or fibrosis. Neutrophil elastase (NE), a protease released by neutrophils, is known to activate MMP. We hypothesized that RBC can stimulate secretion of MMPs from human lung fibroblasts and that NE can augment this effect. Human fetal lung fibroblasts were cultured in floating collagen gels with or without RBC. After 4 days, the culture medium was analyzed with gelatin zymography, Western blot, and ELISA for MMP-1, -2, -3 and TIMP-1, -2. RBC augmented NE-induced fibroblast-mediated collagen gel contraction compared with NE alone (18.4+/-1.6%, 23.7+/-1.4% of initial gel area, respectively). A pan-MMP inhibitor (GM-6001) completely abolished the stimulating effect of NE. Gelatin zymography showed that RBC stimulated MMP-2 activity and that NE enhanced conversion to the active form. Addition of GM-6001 completely inhibited MMP-2 activity in controls, whereas it only partially altered RBC-induced MMP activity. Western blot confirmed the presence of MMP-1 and MMP-3 in fibroblasts stimulated with RBC, and ELISA confirmed increased concentrations of pro-MMP-1. We conclude that stimulation of MMP secretion by fibroblasts may explain the ability of RBC to augment fibroblast-mediated collagen gel contraction. This might be a potential mechanism by which hemorrhage in inflammatory conditions leads to ECM remodeling.  相似文献   

8.
The excessive activity of matrix metalloproteinases (MMPs) contributes to pathological processes such as arthritis, tumor growth and metastasis if not balanced by the tissue inhibitors of metalloproteinases (TIMPs). In arthritis, the destruction of fibrillar (type II) collagen is one of the hallmarks, with MMP-1 (collagenase-1) and MMP-13 (collagenase-3) being identified as key players in arthritic cartilage. MMP-13, furthermore, has been found in highly metastatic tumors. We have solved the 2.0 A crystal structure of the complex between the catalytic domain of human MMP-13 (cdMMP-13) and bovine TIMP-2. The overall structure resembles our previously determined MT1-MMP/TIMP-2 complex, in that the wedge-shaped TIMP-2 inserts with its edge into the entire MMP-13 active site cleft. However, the inhibitor is, according to a relative rotation of approximately 20 degrees, oriented differently relative to the proteinase. Upon TIMP binding, the catalytic zinc, the zinc-ligating side chains, the enclosing MMP loop and the S1' wall-forming segment move significantly and in concert relative to the rest of the cognate MMP, and the active site cleft constricts slightly, probably allowing a more favourable interaction between the Cys1(TIMP) alpha-amino group of the inhibitor and the catalytic zinc ion of the enzyme. Thus, this structure supports the view that the central N-terminal TIMP segment essentially defines the relative positioning of the TIMP, while the flanking edge loops determine the relative orientation, depending on the individual target MMP.  相似文献   

9.
Extracellular matrix degradation in fetal membranes leading to its rupture is coupled to myometrial activity and cervical ripening during human normal labor. Mechanisms which modulate collagen degradation in amniochorion during labor have not been elucidated. Initial characterization of the effect of different blood compartments on connective tissue degradation in amniochorion during human labor was explored. Amniochorion explants were stimulated with plasma of maternal venous blood, umbilical cord blood or placental blood, obtained from women with pregnancies at term, with or without labor. MMP-2 and MMP-9 activities were quantified in conditioned media by gelatin-zymography as an index of connective tissue degradation. Collagen content was measured in tissue explants and collagen fibrils distribution was examined by electron microscopy. Placental plasma from term pregnancies, with or without labor, is enriched with soluble signals that enhance the in vitro MMP-9 production by amniochorion. Accompanying ultrastructural distortion of collagen fibers and demonstration of collagen degradation fragments confirmed induction of extracellular matrix degradation. Control experiments in which MMP-9 activity was blocked with TIMP-1 resulted in inhibition of all the above mentioned changes. These results suggest that placental intervillous space is a functional compartment in which mediators capable to induce collagen degradation in amniochorion are selectively expressed during human labor.  相似文献   

10.
Decorin is a small leucine-rich extracellular matrix proteoglycan composed of a core protein with a single glycosaminoglycan (GAG) chain near the N-terminus and N-glycosylated at three potential sites. Decorin is involved in the regulation of formation and organization of collagen fibrils, modulation of the activity of growth factors such as transforming growth factor β (TGF-β), and exerts other effects on cell proliferation and behavior. Increasing evidences show that decorin plays an important role in fibrogenesis by regulating TGF-β, a key stimulator of fibrosis, and by directly modulating the degradation of extracellular matrix (ECM) from activated hepatic stellate cells (HSCs). In this study, the core protein of human decorin was cloned and expressed in Escherichia coli. The purified recombinant human decorin (rhDecorin) significantly inhibited the proliferation of LX-2 cells, a human HSC cell line, stimulated by TGF-β1. RT-PCR result showed that the expression of metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-1 (TIMP-1) were reduced by rhDecorin in LX-2 cells stimulated by TGF-β1. Furthermore, the protein expression of smooth muscle-α-actin (α-SMA), collagen type III and phosphorylated Smad2 (p-Smad2) was significantly decreased in the presence of rhDecorin. rhDecorin also reduced fibrillogenesis of collagen type I in a dose-dependent manner. Gene expression profiles of LX-2 cells stimulated by TGF-β1 in the presence and the absence of rhDecorin were obtained by using cDNA microarray technique and differentially expressed genes were identified to provide further insight into the molecular action mechanism of decorin on LX-2 cells.  相似文献   

11.
Alterations in the composition of intervertebral disc extracellular matrix, mainly collagen and proteoglycans, may cause changes in mechanical properties of the disc, leading to dysfunction, nerve root compression, and herniation with severe clinical manifestations. Matrix metalloproteinases may be involved in degradation by hydrolysing extracellular matrix components. Inhibitors of matrix metalloproteinases, in contrast, function in the maintenance of degradation control. In this study, we investigated: (i) whether the level of matrix degradation correlated with the duration of the symptomatic disease, (ii) roles of matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of matrix metalloproteinases-2 (TIMP-2) in intervertebral disc degeneration. Nucleus pulposus of intervertebral discs were obtained from 22 patients and analysed for collagen and proteoglycan contents, and pro-MMP-2, TIMP-2 levels. Collagen content was determined as hydroxyproline and proteoglycan content was measured as glycosaminoglycans. The loss in matrix components did not correlate with the duration of the degenerative disc disease. Pro-MMP-2 levels were higher at early stages of the degenerative disc disease (r = -0.495, P < 0.05). TIMP-2 levels were similar in all samples. Pro-MMP-2 and TIMP-2 levels negatively correlated in herniated discs samples (r = -0.855, P < 0.01). Pro- MMP-2 levels negatively correlated with the collagen content in herniated disc material. Our findings may suggest a silent period of active disease prior to symptomatic outcome during which irreversible matrix loss occurs. Involvement of other proteolytic enzymes at different stages of the disease should also be investigated to help to control the degradation cascade at relatively early stages of disc degeneration before the clinical onset of disease.  相似文献   

12.
The turnover of native collagen has been ascribed to different members of the matrix metalloproteinase (MMP) family. Here, the mechanisms by which neutrophil collagenase (MMP-8), gelatinase A (MMP-2), and the ectodomain of MT1-MMP (ectMMP-14) degrade fibrillar collagen were examined. In particular, the hydrolysis of type I collagen at 37 degrees C was investigated to identify functional differences in the processing of the two alpha-chain types of fibrillar collagen. Thermodynamic and kinetic parameters were used for a quantitative comparison of the binding, unwinding, and hydrolysis of triple helical collagen. We demonstrate that the MMP family has developed at least two distinct mechanisms for collagen unwinding and cleavage. MMP-8 and ectMMP-14 display a similar mechanism (although with different catalytic parameters), which is characterized by binding (likely through the hemopexin-like domain) and cleavage of alpha-1 and/or alpha-2 chains without distinguishing between them and keeping the gross conformation of the triple helix (at least during the first cleavage step). On the other hand, MMP-2 binds preferentially the alpha-1 chains (likely through the fibronectin-like domain, which is not present in MMP-8 and ectMMP-14), grossly altering the whole triple helical arrangement of the collagen molecule and cleaving preferentially the alpha-2 chain. These distinctive mechanisms underly a drastically different mode of interaction with triple helical fibrillar collagen I, according to which the MMP domain is involved in binding. These findings can be related to the different role exerted by these MMPs on collagen homeostasis in the extracellular matrix.  相似文献   

13.
Located within the perisinusoidal space and surrounded by extracellular matrix, hepatic stellate cells (HSC) undergo phenotypic trans-differentiation called "myofibroblastic activation" in liver fibrogenesis. This study investigated the regulation of interleukin-1 (IL-1alpha) on expression of matrix metalloproteinases (MMPs) by HSC grown in three-dimensional extracellular matrix and the role of MMPs in HSC activation. To recapitulate the in vivo "quiescent" state of HSC, the isolated rat HSC were grown in three-dimensional Matrigel or type I collagen. Stimulation with IL-1alpha caused robust induction of pro-MMP-9 (the precursor of matrix metalloproteinase-9) when HSC were cultured in these matrices. IL-1alpha induced a conversion of the pro-MMP-9 to the active form only when the cells were in type I collagen. In collagen lattices, IL-1alpha provoked activation of HSC with induction of MMP-13, MMP-3, and breakdown of the matrix. The HSC activation was completely prevented by a treatment of the cells with tissue inhibitor of metalloproteinase-1 or deprivation of MMP-9. Once fully activated, HSC failed to express MMP-9 and showed attenuated induction of MMP-13 and MMP-3. Further, we demonstrated colocalization of alpha-smooth muscle actin and MMP-9 in a subpopulation of HSC in human fibrotic liver tissues. Thus, this study provides a novel model to enlighten the role of MMPs, particularly that of MMP-9, in HSC activation regulated by a specific cytokine in liver fibrogenesis.  相似文献   

14.
Dermal fibroblasts produce a collagen-rich extracellular matrix, which confers mechanical strength and resiliency to human skin. During aging, collagen production is reduced and collagen fragmentation is increased, which is initiated by matrix metalloproteinase-1 (MMP-1). This aberrant collagen homeostasis results in net collagen deficiency, which impairs the structural integrity and function of skin. Cysteine-rich protein 61 (CCN1), a member of the CCN family, negatively regulates collagen homeostasis, in primary human skin dermal fibroblasts. As replicative senescence is a form of cellular aging, we have utilized replicative senescent dermal fibroblasts to further investigate the connection between elevated CCN1 and aberrant collagen homeostasis. CCN1 mRNA and protein levels were significantly elevated in replicative senescent dermal fibroblasts. Replicative senescent dermal fibroblasts also expressed significantly reduced levels of type I procollagen and increased levels of MMP-1. Knockdown of elevated CCN1 in senescent dermal fibroblasts partially normalized both type I procollagen and MMP-1 expression. These data further support a key role of CCN1 in regulation of collagen homeostasis. Elevated expression of CCN1 substantially increased collagen lattice contraction and fragmentation caused by replicative senescent dermal fibroblasts. Atomic force microscopy (AFM) further revealed collagen fibril fragmentation and disorganization were largely prevented by knockdown of CCN1 in replicative senescent dermal fibroblasts, suggesting CCN1 mediates MMP-1-induced alterations of collagen fibrils by replicative senescent dermal fibroblasts. Given the ability of CCN1 to regulate both production and degradation of type I collagen, it is likely that elevated-CCN1 functions as an important mediator of collagen loss, which is observed in aged human skin.  相似文献   

15.
Culture of human dermal fibroblasts within a three-dimensional matrix composed of native type I collagen fibrils is widely used to study the cellular responses to the extracellular matrix. Upon contact with native type I collagen fibrils human skin fibroblasts activate latent 72-kDa type IV collagenase/ gelatinase (MMP-2) to its active 59- and 62-kDa forms. This activation did not occur when cells were cultured on plastic dishes coated with monomeric type I collagen or its denatured form, gelatin. Activation could be inhibited by antibodies against MT1-MMP, by the addition of TIMP-2 and by prevention of MT1-MMP processing. MT1-MMP protein was detected at low levels as active protein in fibroblasts cultured as monolayers. In collagen gel cultures, an increase of the active, 60-kDa MT1-MMP and an additional 63-kDa protein corresponding to inactive MT1-MMP was detected. Incubation of medium containing latent MMP-2 with cell membranes isolated from fibroblasts grown in collagen gels caused activation of the enzyme. Furthermore, regulation of MT1-MMP expression in collagen cultures seems to be mediated by alpha2beta1 integrins. These studies suggest that activation of the proMMP-2 is regulated at the cell surface by a mechanism which is sensitive to cell culture in contact with physiologically relevant matrices and which depends on the ratio of proenzyme and the specific inhibitor TIMP-2.  相似文献   

16.
Osteoarthritis is a common joint disease for which there are currently no disease-modifying drugs available. Degradation of the cartilage extracellular matrix is a central feature of the disease and is widely thought to be mediated by proteinases that degrade structural components of the matrix, primarily aggrecan and collagen. Studies on transgenic mice have confirmed the central role of Adamalysin with Thrombospondin Motifs 5 (ADAMTS-5) in aggrecan degradation, and the collagenolytic matrix metalloproteinase MMP-13 in collagen degradation. This review discusses recent advances in current understanding of the mechanisms regulating expression of these key enzymes, as well as reviewing the roles of other proteinases in cartilage destruction. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.  相似文献   

17.
Exposure of human skin to solar ultraviolet (UV) irradiation induces matrix metalloproteinase-1 (MMP-1) activity, which degrades type I collagen fibrils. Type I collagen is the most abundant protein in skin and constitutes the majority of skin connective tissue (dermis). Degradation of collagen fibrils impairs the structure and function of skin that characterize skin aging. Decorin is the predominant proteoglycan in human dermis. In model systems, decorin binds to and protects type I collagen fibrils from proteolytic degradation by enzymes such as MMP-1. Little is known regarding alterations of decorin in response to UV irradiation. We found that solar-simulated UV irradiation of human skin in vivo stimulated substantial decorin degradation, with kinetics similar to infiltration of polymorphonuclear (PMN) cells. Proteases that were released from isolated PMN cells degraded decorin in vitro. A highly selective inhibitor of neutrophil elastase blocked decorin breakdown by proteases released from PMN cells. Furthermore, purified neutrophil elastase cleaved decorin in vitro and generated fragments with similar molecular weights as those resulting from protease activity released from PMN cells, and as observed in UV-irradiated human skin. Cleavage of decorin by neutrophil elastase significantly augmented fragmentation of type I collagen fibrils by MMP-1. Taken together, these data indicate that PMN cell proteases, especially neutrophil elastase, degrade decorin, and this degradation renders collagen fibrils more susceptible to MMP-1 cleavage. These data identify decorin degradation and neutrophil elastase as potential therapeutic targets for mitigating sun exposure-induced collagen fibril degradation in human skin.  相似文献   

18.
The matrix metalloproteinase enzyme MMP-13 plays a key role in the degradation of type II collagen in cartilage and bone in osteoarthritis (OA). An effective MMP-13 inhibitor would provide a disease modifying therapy for the treatment of arthritis, although this goal still continues to elude the pharmaceutical industry due to issues with safety. Our efforts have resulted in the discovery of a series of hydroxamic acid inhibitors of MMP-13 that do not significantly inhibit MMP-2 (gelatinase-1). MMP-2 has been implicated in the musculoskeletal side effects resulting from pan-MMP inhibition due to findings from spontaneously occurring human MMP-2 deletions. Analysis of the SAR of hundreds of previously prepared hydroxamate based MMP inhibitors lead us to 2-naphthylsulfonamide substituted hydroxamates which exhibited modest selectivity for MMP-13 versus MMP-2. This Letter describes the lead optimization of 1 and identification of inhibitors exhibiting >100-fold selectivity for MMP-13 over MMP-2.  相似文献   

19.
Periglandular arrangement of myofibroblasts, associated with the deposition of extracellular matrix (ECM), is a cardinal feature of endometrosis in mares. We hypothesized that a disturbance in the expression of matrix degrading enzymes such as matrix metalloproteinases (MMP's) and matrix cross-linking proteins might lead to an imbalance in deposition and degradation of extracellular matrix components and thereby accentuate degeneration. Therefore, distributions of MMP-2, capable of collagen IV and laminin degradation, and tissue transglutaminase (TG2), a cross-linker of extracellular matrix proteins, were investigated by means of immunohistochemistry on uterine biopsies of healthy mares and animals with endometrosis. It was illustrated that both proteins were present in fibrotic regions of affected endometria, and that they were in most cases colocalized. Periglandular MMP-2 expression was significantly associated with dilated and fibrotic uterine glands. Furthermore, MMP-2 and TG 2 were demonstrated in the stratum compactum of healthy and endometrotic endometria. Gelatin zymography proved that active and inactive pro-form of MMP-2 were present in all examined samples with significantly higher amounts of total and active MMP-2 in affected endometria. TG 2-activity, determined by an in situ assay, was found in cases of severe periglandular fibrosis. We suggest that both enzymes play a major role in changes that occur in ECM homeostasis in endometrial fibrotic regions.  相似文献   

20.
Bone growth retardation in mouse embryos expressing human collagenase 1   总被引:2,自引:0,他引:2  
Cellular growth and differentiation are readouts of multiple signaling pathways from the intercellular and/or extracellular milieu. The extracellular matrix through the activation of cellular receptors transmits these signals. Therefore, extracellular matrix proteolysis could affect cell fate in a variety of biological events. However, the biological consequence of inadequate extracellular matrix degradation in vivo is not clear. We developed a mouse model expressing human collagenase (matrix metalloproteinase-1, MMP-1) under the control of Col2a1 promoter. The mice showed significant growth retardation during embryogenesis and a loss of the demarcation of zonal structure and columnar array of the cartilage. Immunological examination revealed increased degradation of type II collagen and upregulation of fibronectin and alpha(5)-integrin subunit in the transgenic cartilage. The resting zone and proliferating zone of the growth plate cartilage exhibited a simultaneous increase in bromodeoxyuridine (BrdU)-incorporated proliferating cells and terminal deoxynucleotidyl transferase-mediated X-dUTP nick-end labeling-positive apoptotic cells, respectively. Chondrocyte differentiation was not disturbed in the transgenic mice as evidenced by normal expression of the Ihh and type X collagen expression. These data demonstrate that type II collagen proteolysis is an important determinant for the skeletal outgrowth through modulation of chondrocyte survival and cartilagenous growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号