首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of lipopolysaccharide (LPS) expressed by non-typeable Haemophilus influenzae (NTHi) strains 1008 and 1247 has been investigated by mass spectrometry and NMR analyses on O-deacylated LPS and core oligosaccharide material. Both strains express the conserved triheptosyl inner core, [l-α-d-Hepp-(1→2)-[PEtn→6]-l-α-d-Hepp-(1→3)-l-α-d-Hepp-(1→5)-[PPEtn→4]-α-Kdo-(2→6)-Lipid A] with PCho→6)-β-d-Glcp (GlcI) substituting the proximal heptose (HepI) at O-4. Strain 1247 expresses the common structural motifs of H. influenzae; globotetraose [β-d-GalpNAc-(1→3)-α-d-Galp-(1→4)-β-d-Galp-(1→4)-β-d-Glcp-(1→] and its truncated versions globoside [α-d-Galp-(1→4)-β-d-Galp-(1→4)-β-d-Glcp-(1→] and lactose [β-d-Galp-(1→4)-β-d-Glcp-(1→] linked to the terminal heptose of the inner core and GlcI. A genetically distinct NTHi strain, 1008, expresses identical structures to strain 1247 with the exception that it lacks GalNAc. A lpsA mutant of strain 1247 expressed LPS of reduced complexity that facilitated unambiguous structural determination of the oligosaccharide from HepI. By CE-ESI-MS/MS we identified disialylated glycoforms indicating disialyllactose [α-Neu5Ac-(2→8)-α-Neu5Ac-(2→3)-β-d-Gal-(1→4)-β-d-Glcp-(1→] as an extension from GlcI which is a novel finding for NTHi LPS.  相似文献   

2.
We have investigated the structure of the lipopolysaccharide (LPS) of nontypeable Haemophilus influenzae (NTHi) strain 2019, a prototype strain that is used for studies of NTHi biology and disease. Analysis of LPS from wild type and lex2B, lpt3 and pgm mutant strains using NMR techniques and ESI-MS on O-deacylated LPS and core oligosaccharide material (OS), as well as ESI-MSn on permethylated dephosphorylated OS, confirmed the previously established structure in which lactose is linked to the proximal heptose (HepI) of the conserved triheptosyl inner-core moiety, l-α-d-Hepp-(1→2)-[PEtn→6]-l-α-d-Hepp-(1→3)-l-α-d-Hepp-(1→5)-[PPEtn→4]-α-Kdo-(2→6)-lipid A. Importantly, our data provide further structural detail whereby extensions from the middle heptose (HepII) are now characterized as β-d-Galp-(1→4)-β-d-Glcp-(1→4)-α-d-Glcp-(1→3 and truncated versions thereof. PEtn substitutes O-3 of the distal heptose (HepIII) of the inner-core moiety. This PEtn substituent was absent in the lpt3 mutant indicating that Lpt3 is the transferase required to add PEtn to the distal heptose. Interestingly, in the lex2B mutant strain HepIII was found to be substituted at O-2 by β-d-Glcp which, in turn, can be further extended. Contrary to previous findings, LPS of the pgm mutant strain contained minor glycoforms having β-d-Glcp linked to O-4 of HepI and also glycoforms with an additional PEtn which could be assigned to HepIII. Acetate groups and one glycine residue further substitute HepIII in NTHi 2019.  相似文献   

3.
Lipopolysaccharide (LPS) biosynthesis in Haemophilus influenzae involves genes from the lic2 locus that are required for chain extension from the middle heptose (HepII) of the conserved triheptosyl inner-core moiety. Lic2C initiates the process by attaching the first glucose to HepII, but the gene encoding for the enzyme adding the next β-d-Glcp- is uncharacterized. Lic2B is the candidate glucosyltransferase; however, in previous investigations, mutation of lic2B resulted in no hexose extension from HepII, likely due to a polar effect on the lic2C gene.In this study we complemented a lic2B knock-out mutant of H. influenzae strain Eagan with a functional lic2C gene and investigated its LPS by mass spectrometry and 2D NMR spectroscopy. Lic2B was found to encode a glucosyltransferase responsible for the linkage of β-d-Glcp-(1→4)-α-d-Glcp-(1→ extending from O-3 of the central heptose of the triheptosyl inner-core moiety, l-α-d-Hepp-(1→2)-[PEtn→6]-l-α-d-Hepp-(1→3)-l-α-d-Hepp-(1→5)-[PPEtn→4]-α-Kdo-(2→6)-lipid A.  相似文献   

4.
Haemophilus parainfluenzae is a Gram-negative bacterium that colonizes the upper respiratory tract of humans and is a part of normal flora. In this study, we investigated the lipopolysaccharide (LPS) expressed by H. parainfluenzae strain 20. Using NMR and MS techniques on LPS, oligosaccharide samples and lipid A, the structures for O-antigen, core oligosaccharide and lipid A could be established. It was found that the biological repeating unit of the O-antigen is →4)-α-d-GalpNAc-(1→P→6)-β-d-Glcp-(1→3)-α-d-FucpNAc4N-(1→, in which d-FucpNAc4N is 2-acetamido-4-amino-2,4,6-trideoxy-d-galactose. This sugar is in β-configuration when linked to O-4 of the glucose residue of β-d-Galp-(1→2)-l-α-d-Hepp-(1→2)-[PEtn→6]-l-α-d-Hepp-(1→3)-[β-d-Glcp-(1→4)]-l-α-d-Hepp-(1→5)-[PPEtn→4]-α-Kdo-(2→6)-lipid A. LPS from a wbaP mutant of H. parainfluenzae strain 20 did not contain an O-antigen, consistent with the wbaP gene product being required for expression of O-antigen in fully extended LPS.  相似文献   

5.
Defined mutants of the galactose biosynthetic (Leloir) pathway were employed to investigate lipopolysaccharide (LPS) oligosaccharide expression in Haemophilus influenzae type b strain Eagan. The structures of the low-molecular-mass LPS glycoforms from strains with mutations in the genes that encode galactose epimerase (galE) and galactose kinase (galK) were determined by NMR spectroscopy on O- and N-deacylated and dephosphorylated LPS-backbone, and O-deacylated oligosaccharide samples in conjunction with electrospray mass spectrometric, glycose and methylation analyses. The structural profile of LPS glycoforms from the galK mutant was found to be identical to that of the galactose and glucose-containing Hex5 glycoform previously identified in the parent strain [Masoud, H.; Moxon, E. R.; Martin, A.; Krajcarski, D.; Richards, J. C. Biochemistry1997, 36, 2091-2103]. LPS from the H. influenzae strain bearing mutations in both galK and galE (galE/galK double mutant) was devoid of galactose. In the double mutant, Hex3 and Hex4 glycoforms containing di- and tri-glucan side chains from the central heptose of the triheptosyl inner-core unit were identified as the major glycoforms. The triglucoside chain extension, β-d-Glcp-(1→4)-β-d-Glcp-(1→4)-α-d-Glcp, identified in the Hex4 glycoform has not been previously reported as a structural element of H. influenzae LPS. In the parent strain, it is the galactose-containing trisaccharide, β-d-Galp-(1→4)-β-d-Glcp-(1→4)-α-d-Glcp, and further extended analogues thereof, that substitute the central heptose. When grown in galactose deficient media, the galE single mutant was found to expresses the same population of LPS glycoforms as the double mutant.  相似文献   

6.
The structure of the lipopolysaccharide (LPS) of non-typeable Haemophilus influenzae strain 723 has been elucidated using NMR spectroscopy and electrospray ionization mass spectrometry (ESI-MS) on O-deacylated LPS and core oligosaccharide material (OS), as well as ESI-MSn on permethylated dephosphorylated OS. It was found that the LPS contains the common structural element of H. influenzae, l-alpha-D-Hepp-(1-->2)-[PEtn-->6]-l-alpha-D-Hepp-(1-->3)-[beta-D-Glcp-(1-->4)]-l-alpha-D-Hepp-(1-->5)-[PPEtn-->4]-alpha-Kdo-(2-->6)-Lipid A, in which the beta-D-Glcp residue (GlcI) is substituted by phosphocholine at O-6 and the distal heptose residue (HepIII) by PEtn at O-3, respectively. In a subpopulation of glycoforms O-2 of HepIII was substituted by beta-D-Galp-(1-->4)-beta-D-Glcp-(1--> or beta-D-Glcp-(1-->. Considerable heterogeneity of the LPS was due to the extent of substitution by O-acetyl groups (Ac) and ester-linked glycine of the core oligosaccharide. The location for glycine was found to be at Kdo. Prominent acetylation sites were found to be at GlcI, HepIII, and the proximal heptose (HepI) residue of the triheptosyl moiety. Moreover, GlcI was acetylated at O-3 and/or O-4 and HepI was acetylated at O-2 as evidenced by capillary electrophoresis ESI-MSn in combination with NMR analyses. This is the first study to show that an acetyl group can substitute HepI of the inner-core region of H. influenzae LPS.  相似文献   

7.
High-molecular-mass polysaccharides were released by mild acid degradation of the lipopolysaccharides of two wild-type Vibrio vulnificus strain, a flagellated motile strain CECT 5198 and a non-flagellated non-motile strain S3-I2-36. Studies by sugar analysis and partial acid hydrolysis along with 1H and 13C NMR spectroscopies showed that the polysaccharides from both strains have the same trisaccharide repeating unit of the following structure:→4)-β-d-GlcpNAc3NAcylAN-(1→4)-α-l-GalpNAmA-(1→3)-α-d-QuipNAc-(1→where QuiNAc stands for 2-acetamido-2,6-dideoxyglucose, GalNAmA for 2-acetimidoylamino-2-deoxygalacturonic acid, GlcNAc3NAcylAN for 2-acetamido-3-acylamino-2,3-dideoxyglucuronamide and acyl for 4-d-malyl (∼30%) or 2-O-acetyl-4-d-malyl (∼70%). The structure of the polysaccharide studied resembles much that of a marine bacterium Pseudoalteromonas rubra ATCC 29570 reinvestigated in this work. The latter differs in (i) the absolute configuration of malic acid (l vs d), (ii) 3-O-acetylation of GalNAmA and (iii) replacement of QuiNAc with its 4-keto biosynthetic precursor.  相似文献   

8.
An O-polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of Salmonella enterica O41, and the following structure of the O-unit was determined by chemical analyses along with 1D and 2D 1H and 13C NMR spectroscopy:→2)-β-d-Manp-(1→4)-α-d-Glcp-(1→3)-α-l-QuipNAc-(1→3)-α-d-GlcpNAc-(1→where QuiNAc stands for 2-acetamido-2,6-dideoxyglucose. The structure established is in agreement with the O-antigen gene cluster of S. enterica O41 and tentative assignment of the gene functions reported earlier.  相似文献   

9.
The structure of the O-antigen polysaccharides (PS) from the enteroaggregative Escherichia coli strain 94/D4 and the international type strain E. coli O82 have been determined. Component analysis and 1H, 13C, and 31P NMR spectroscopy experiments were employed to elucidate the structure. Inter-residue correlations were determined by 1H, 13C-heteronuclear multiple-bond correlation, and 1H, 1H-NOESY experiments. d-GroA as a substituent is linked via its O-2 in a phosphodiester-linkage to O-6 of the α-d-Glcp residue. The PS is composed of tetrasaccharide repeating units with the following structure:→4)-α-d-Glcp6-(P-2-d-GroA)-(1→4)-β-d-Galp-(1→4)-β-d-Glcp-(1→3)-β-d-GlcpNAc-(1→Cross-peaks of low intensity from an α-d-Glcp residue were present in the NMR spectra and spectral analysis indicates that they originate from the terminal residue of the polysaccharide. Consequently, the biological repeating unit has a 3-substituted N-acetyl-d-glucosamine residue at its reducing end. Enzyme immunoassay using specific anti-E. coli O82 rabbit sera showed identical reactivity to the LPS of the two strains, in agreement with the structural analysis of their O-antigen polysaccharides.  相似文献   

10.
A new stereoselective preparation of N-aceyl-d-galactosamine (1b) starting from the known p-methoxyphenyl 3,4-O-isopropylidene-6-O-(1-methoxy-1-methylethyl)-β-d-galactopyranoside (10) is described using a simple strategy based on (a) epimerization at C-2 of 10 via oxidation-reduction to give the talo derivative 11, (b) amination with configurational inversion at C-2 of 11 via a SN2-type reaction on its 2-imidazylate, (c) anomeric deprotection of the p-methoxyphenyl β-d-galactosamine glycoside 14, (d) complete deprotection. Applying the same protocol to 2,3:5,6:3′,4′-tri-O-isopropylidene-6′-O-(1-methoxy-1-methylethyl)-lactose dimethyl acetal (4), directly obtained through acetonation of lactose, the disaccharide β-d-GalNAcp-(1→4)-d-Glcp (1a) was obtained with complete stereoselectivity in good (40%) overall yield from lactose.  相似文献   

11.
Based on the O-antigens (O-polysaccharides), one of the most variable cell constituents, 46 O-serogroups have been recognized in the Kauffmann-White serotyping scheme for Salmonella enterica. In this work, the structure of the O-polysaccharide and the genetic organization of the O-antigen gene cluster of S. enterica O56 were investigated. As judged by sugar and methylation analyses, along with NMR spectroscopic data, the O-polysaccharide has a linear tetrasaccharide O-unit, which consists of one residue each of d-ribofuranose, N-acetyl-d-glucosamine, N-acetyl-d-galactosamine, and a novel sugar derivative, 4-(N-acetyl-l-seryl)amino-4,6-dideoxy-d-glucose (d-Qui4NSerAc). The following structure of the O-polysaccharide was established:→3)-β-d-Quip4NSerAc-(1→3)-β-d-Ribf-(1→4)-α-d-GalpNAc-(1→3)-α-d-GlcpNAc-(1→The O-antigen gene cluster of S. enterica O56 having 12 open reading frames was found between the housekeeping genes galF and gnd. A comparison with databases and using the O-antigen structure data enabled us to ascribe functions to genes for (i) synthesis of d-GalNAc and d-Qui4NSerAc, (ii) sugar transfer, and (iii) O-antigen processing, including genes for O-unit flippase (Wzx) and O-antigen polymerase (Wzy).  相似文献   

12.
The O-antigenic polysaccharide of Salmonella Mara O:39 (formerly Q) was investigated by sugar and methylation analyses, absolute configuration assignment, mass spectrometry and NMR spectroscopy. The experiments revealed an O-polysaccharide chain composed of the following linear tetrasaccharide repeating units with the structure:→2)-α-l-Quip3NAc-(1→3)-α-d-Manp-(1→3)-α-l-Fucp-(1→3)-α-d-GalpNAc-(1→where α-l-Quip3NAc is the residue of 3-acetamido-3,6-dideoxy-α-l-glucopyranose. This repeating unit is the first published structure of the O-polysaccharide from 27 serotypes of Salmonella bacteria belonging to serogroup O:39 in the Kauffmann-White classification system.  相似文献   

13.
The O-polysaccharide of Pragia fontium 97U116 was obtained by mild acid degradation of the lipopolysaccharide and studied by sugar analysis along with 1D and 2D 1H and 13C NMR spectroscopy. The following structure of the pentasaccharide-repeating unit was established: →2)-α-d-Galf-(1→3)-α-l-Rhap2AcI-(1→4)-α-d-GlcpNAcI-(1→2)-α-l-RhapII-(1→3)-β-d-GlcpNAcII-(1→  相似文献   

14.
This paper describes the structure of neutral exopolysaccharide (EPS) produced by Lactobacillus johnsonii 142, strain of the lactic acid bacteria isolated from the intestine of mice with experimentally induced inflammatory bowel disease (IBD). Sugar and methylation analyses along with 1H and 13C NMR spectroscopy, including two-dimensional 1H,1H COSY, TOCSY, NOESY, and 1H,13C HSQC experiments revealed that the repeating unit of the EPS is a pentasaccharide:→3)-α-d-Galp-(1→3)-β-d-Glcp-(1→5)-β-d-Galf-(1→3)-α-d-Galp-(1→3)-α-d-Galp-(1→The rabbit antiserum raised against whole cells of L. johnsonii 142 reacted with homologous EPS, and cross-reacted with exopolysaccharide from Lactobacillus animalis/murinus 148 isolated also from mice with IBD, but not reacted with EPS of L. johnsonii 151 from healthy mice.  相似文献   

15.
The following structure of the O-polysaccharide (O-antigen) of Salmonella enterica O13 was established by chemical analyses along with 2D 1H and 13C NMR spectroscopy:→2)-α-l-Fucp-(1→2)-β-d-Galp-(1→3)-α-d-GalpNAc-(1→3)-α-d-GlcpNAc-(1→The O-antigen of S. enterica O13 was found to be closely related to that of Escherichia coli O127, which differs only in the presence of a GalNAc residue in place of the GlcNAc residue and O-acetylation. The location of the O-acetyl groups in the E. coli O127 polysaccharide was determined. The structures of the O-polysaccharides studied are in agreement with the DNA sequence of the O-antigen gene clusters of S. enterica O13 and E. coli O127 reported earlier.  相似文献   

16.
The major immunostimulatory principle in the hot aqueous extract of Chlorella pyrenoidosa has been isolated by a sequence of ethanol precipitation, precipitation with a cationic surfactant (CTAB), size exclusion chromatography, and anion exchange chromatography. A series of phosphorylated polysaccharides were obtained having different molecular masses but with similar structures. The higher molecular mass fractions showed considerable activity in the stimulation of mouse peritoneal macrophages to synthesize nitric oxide. The structure of the major polysaccharide was established by sugar analysis, configurational analysis, and 1D and 2D NMR experiments at 500 and 800 MHz on the parent polysaccharide, the de-O-acetylated polysaccharide, and on the components obtained after hydrolysis of the phosphate diesters. It had a β-d-Galp-(1→3)-β-d-Galp-(1→3)-backbone with half of the Galp units substituted at O-6 by terminal β-d-Glcp units. The remaining Galp units were substituted on O-6 by about equal amounts of α-d-Manp-1-phosphate and 3-O-Me-α-Manp-1-phosphate diesters. The substituents were not located in a regularly alternating fashion on the backbone. The O-acetyl groups were largely located on O-2 and O-4 of Galp and 35% of the Galp residues were O-acetylated. This is the second observation of a phosphorylated polysaccharide in an alga and the first where it is present to a significant extent.  相似文献   

17.
A water-soluble polysaccharide DNP-W2 composed of glucose, mannose, and galactose in the molar ratio of 6.1:2.9:2.0 had been isolated from the stems of Dendrobium nobile. Its molecular weight was 1.8 × 104 Da determined by HPGPC. Structural features of DNP-W2 were investigated by a combination of chemical and instrumental analysis, including FTIR, GC, GC-MS, periodate oxidation-Smith degradation, methylation analysis, partial acid hydrolysis, and NMR spectroscopy. The results showed that DNP-W2 is a 2-O-acetylgalactomannoglucan and has a backbone consisting of (1→4)-linked β-d-Glcp, (1→6)-linked β-d-Glcp, and (1→4)-linked β-d-Manp, with branches at O-6 of (1→4)-linked β-d-Glcp and β-d-Manp. The branches are composed of α-d-Galp. The acetyl groups are substituted at O-2 of (1→4)-linked Manp. Preliminary tests in vitro reveals that DNP-W2 can stimulate ConA- and LPS-induced T and B lymphocyte proliferation.  相似文献   

18.
Shearzyme (GH10 endo-1,4-β-d-xylanase) and two different α-l-arabinofuranosidases (AXH-m and AXH-d3) were used stepwise to manufacture arabinoxylo-oligosaccharides (AXOS) with α-l-Araf (1→2)-monosubstituted β-d-Xylp residues or α-l-Araf (1→2)- and (1→3) doubly substituted β-d-Xylp residues from wheat arabinoxylan (AX) in a rather straightforward way. Four major AXOS (d-I, d-II, m-I and m-II) were formed in two separate hydrolyses. The AXOS were purified and the structures were confirmed using TLC, HPAEC-PAD, MALDI-TOF-MS and 1D and 2D NMR spectroscopy. The samples were identified as d-I: α-l-Araf-(1→2)-[α-l-Araf-(1→3)]-β-d-Xylp-(1→4)-β-d-Xylp-(1→4)-d-Xylp, d-II: α-l-Araf-(1→2)-[α-l-Araf-(1→3)]-β-d-Xylp-(1→4)-d-Xylp, m-I: α-l-Araf-(1→2)-β-d-Xylp-(1→4)-β-d-Xylp-(1→4)-d-Xylp and m-II: α-l-Araf-(1→2)-β-d-Xylp-(1→4)-d-Xylp. To our knowledge, this is the first report on structural 1H and 13C NMR analysis of xylobiose-derived AXOS d-II and m-II. The latter compound has not been reported previously. The doubly substituted AXOS were produced for the first time in good yields, as d-I and d-II corresponded to 11.8 and 5.6 wt% of AX, respectively. Singly α-l-Araf (1→2)-substituted AXOS could also be prepared in similar yields by treating the doubly substituted AXOS further with AXH-d3.  相似文献   

19.
The strain Lactobacillus pentosus LPS26 produces a capsular polymer composed of a high- (2.0 × 106 Da) (EPS A) and a low-molecular mass (2.4 × 104 Da) (EPS B) polysaccharide when grown on semi-defined medium containing glucose as the carbon source. The structure of EPS A and its deacetylated form has been determined by monosaccharide and methylation analysis as well as by 1D/2D NMR studies (1H and 13C). We conclude that EPS A is a charged heteropolymer, with a composition of d-glucose, d-glucuronic acid and l-rhamnose in a molar ratio 1:2:2. The repeating unit is a pentasaccharide with two O-acetyl groups at O-4 of the 3-substituted α-d-glucuronic acid and at O-2 of the 3-substituted β-l-rhamnose, respectively.→4)-α-d-Glcp-(1→3)-α-d-GlcpA4Ac-(1→3)-α-l-Rhap-(1→4)-α-d-GlcpA-(1→3)-β-l-Rhap2Ac-(1→This unbranched structure is not common in EPSs produced by Lactobacilli. Moreover, the presence of acetyl groups in the structure is an unusual feature which has only been reported in L. sake 0-1 [Robijn et al. Carbohydr. Res., 1995, 276, 117-136].  相似文献   

20.
The structure of the lipopolysaccharide core of Vibrio vulnificus type strain 27562 is presented. LPS hydrolysis gave two oligosaccharides, OS-1 and OS-2, as well as lipid A. NMR spectroscopic data corresponded to the presence of one Kdo residue, one β-glucopyranose, three heptoses, one glyceric acid, one acetate, three PEtN, and one 5,7-diacylamido-3,5,7,9-tetradeoxynonulosonic acid residue (pseudaminic acid, Pse) in OS1. OS2 differed form OS 1 by the absence of glyceric acid, acetate, and Pse residues. Lipid A was analyzed for fatty acid composition and the following fatty acids were found: C14:0, C12:0-3OH, C16:0, C16:1, C14:0-3OH, C18:0, C18:1 in a ratio of 1:3:3:1:2.5:0.6:0.8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号