首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Corn starches with different amylose/amylopectin ratios (waxy 0/100, normal corn 23/77, Gelose 50 50/50, Gelose 80 80/20) were annealed at below their gelatinization temperatures in excess water. The effects of annealing on the gelatinization and microstructures of the starches were studied using DSC, XRD and a microscope equipped with both normal and polarized light. In addition, a high-pressure DSC pan was used to study the effects of high-temperature annealing on the multiphase transitions of starches with different water contents. The granular size of the starches increased after the annealing process, but the size variation rates were different, with higher amylopectin contents resulting in a higher diameter growth rates and final accretion ratios. DSC results showed that annealing increased the gelatinization enthalpy of the amylose-rich starches. The increased enthalpy was mainly attributed to endotherm G – there were no significant changes to endotherms M1, M2 or Z – indicating that annealing mainly affected the helical length of shorter or sub-optional amylopectins, in particular the amylopectin in amylose-rich starches. The XRD traces of all starches after annealing remained unchanged.  相似文献   

2.
The amount of B-type crystallinity in compression-moulded, glycerol-plasticised potato starches was strongly dependent on both the properties of the potato starch used and the applied processing conditions. The presence of amylose and the morphology of the potato starch used, but also processing parameters such as moulding temperature and water content during moulding affected the amount of B-type crystallinity in the materials and thus the ultimate mechanical properties of the plasticised starches. This indicated that the direct relation between composition and physical properties of processed starches is not always valid; processing parameters are important tools for controlling the physical properties of processed starches as they influence the amount of B-type crystallinity in the material. It was shown that the total amount of B-type crystallinity in the glycerol-plasticised potato starches should be considered as a summation of residual amylopectin crystallinity and recrystallisation of both amylose and amylopectin, being strongly dependent on the applied processing conditions. In order to explain the observed amount of B-type crystallinity in these starches, partial (co-)crystallisation of both amylose and amylopectin should occur at high moulding temperatures. The measured mechanical properties of the plasticised potato starches correlated well with the amount of B-type crystallinity observed in the materials.  相似文献   

3.
A combined DSC–SAXS approach was employed to study the effects of amylose and phosphate esters on the assembly structures of amylopectin in B-type polymorphic potato tuber starches. Amylose and phosphate levels in the starches were specifically engineered by antisense suppression of the granule bound starch synthase (GBSS) and the glucan water dikinase (GWD), respectively. Joint analysis of the SAXS and DSC data for the engineered starches revealed that the sizes of amylopectin clusters, thickness of crystalline lamellae and the polymorphous structure type remained unchanged. However, differences were found in the structural organization of amylopectin clusters reflected in localization of amylose within these supramolecular structures. Additionally, data for annealed starches shows that investigated potato starches possess different types of amylopectin defects. The relationship between structure of investigated potato starches and their thermodynamic properties was recognized.  相似文献   

4.
For lintners with negligible amylose retrogradation, crystallinity related inversely to starch amylose content and, irrespective of starch source, incomplete removal of amorphous material was shown. The latter was more pronounced for B-type than for A-type starches. The two predominant lintner populations, with modal degrees of polymerization (DP) of 13-15 and 23-27, were best resolved for amylose-deficient and A-type starches. Results indicate a more specific hydrolysis of amorphous lamellae in such starches. Small-angle X-ray scattering showed a more intense 9-nm scattering peak for native amylose-deficient A-type starches than for their regular or B-type analogues. The experimental evidence indicates a lower contrasting density within the "crystalline" shells of the latter starches. A higher density in the amorphous lamellae, envisaged by the lamellar helical model, explains the relative acid resistance of linear amylopectin chains with DP > 20, observed in lintners of B-type starches. Because amylopectin chain length distributions were similar for regular and amylose-deficient starches of the same crystal type, we deduce that the more dense (and ordered) packing of double helices into lamellar structures in amylose-deficient starches is due to a different amylopectin branching pattern.  相似文献   

5.
A unique series of potato (mutant) starches with highly different amylopectin/amylose (AP/AM) ratios was annealed in excess water at stepwise increasing temperatures to increase the starch melting (or gelatinization) temperatures in aqueous suspensions. Small-angle X-ray scattering (SAXS) experiments revealed that the lamellar starch crystals gain stability upon annealing via thickening for high-AM starch, whereas the crystal surface energy decreases for AM-free starch. In starches with intermediate AP/AM ratio, both mechanisms occur, but the surface energy reduction mechanism prevails. Crystal thickening seems to be associated with the cocrystallization of AM with AP, leading to very disordered nanomorphologies for which a new SAXS data interpretation scheme needed to be developed. Annealing affects neither the crystal internal structure nor the spherulitic morphology on a micrometer length scale.  相似文献   

6.
The organization of amylose and amylopectin within starch granules is still not well elucidated. This study investigates the radial distribution of amylose and amylopectin in different corn starches varying in amylose content (waxy corn starch (WC), common corn starch (CC), and 50% and 70% amylose corn starches (AMC)). Corn starches were surface gelatinized by 13 M LiCl at room temperature to different extents (approximately 10%, 20%, 30%, and 40%). The gelatinized surface starch and remaining granules were characterized for amylose content, amylopectin chain-length distribution, thermal properties, swelling power (SP), and water solubility index (WSI). Except for the outmost 10% layer, the amylose content in CC increased slightly with increasing surface removal. In contrast, amylose was more concentrated at the periphery than at the core for 50% and 70% AMC. The proportion of amylopectin A chains generally decreased while that of B1 chains generally increased with increasing surface removal for all corn starches. The gelatinization enthalpy usually decreased, except for 70% AMC, whereas the retrogradation enthalpy relatively remained unchanged for CC but increased for WC, 50% and 70% AMC with increasing surface removal. The SP and WSI increased with increasing surface removal for all corn starches, with WC showing a significant increase in SP after the removal of the outmost 10% layer. The results of this study indicated that there were similarities and differences in the distribution of amylose and amylopectin chains along the radial location of corn starch granules with varying amylose contents. More amylose-lipid complex and amylopectin long chains were present at the periphery than at the core for amylose-containing corn starches.  相似文献   

7.
Comparative studies of native maize starches with different amylose contents were carried out using X-ray powder diffraction. The results show a transition of crystalline type from A through C to B, accompanying a decrease in degree of crystallinity from 41.8% to 17.2% across a range of apparent amylose content from 0% to 84%. Hydration induces an increase in degree of granule crystallinity, but does not change the transition of crystal type. Progressively from A-type to C-type, crystallinity decreases rapidly with an increase in amylose content. From C-type to B-type, overall crystallinity decreases more slowly. The crystal type is strongly dependent on amylose content and on average chain length of the respective amylopectin. Waxy A-types have an average chain length of about 20, while in high amylose B-types this rises to ≈35. The proportion of short chains (10–13 glucose units) appears to affect crystal type significantly. Some V-type material was detected at high amylose levels. The proportion of this increased after prolonged exposure of the granules to iodine vapour. Implications for the arrangement of starch components in the granule are discussed.  相似文献   

8.
Starch re-structured directly in potato tubers by antisense suppression of starch branching enzyme (SBE), granule bound starch synthase (GBSS) or glucan water dikinase (GWD) genes was studied with the aim at disclosing the effects on resulting physico-chemical and enzyme degradative properties. The starches were selected to provide a combined system with specific and extensive alterations in amylose and covalently esterified glucose-6-phosphate (G6P) contents. As an effect of the altered chemical composition of the starches their hydrothermal characteristics varied significantly. Despite of the extreme alterations in phosphate content, the amylose content had a major affect on swelling power, enthalpy for starch gelatinization and pasting parameters as assessed by Rapid Visco Analysis (RVA). However, a combined influence of the starch phosphate and long glucan chains as represented by high amylose or long amylopectin chain length was indicated by their positive correlation to the final viscosity and set back (RVA) demonstrating the formation of a highly hydrated and gel-forming system during re-structuring of the starch pastes. Clear inverse correlations between glucoamylase-catalyzed digestibility and amylopectin chain length and starch phosphate and lack of such correlation with amylose content indicates a combined structuring role of the phosphate groups and amylopectin chains on the starch glucan matrix.  相似文献   

9.
Biodegradable superabsorbent polymers (SAPs) were prepared by grafting acrylamide onto starches then crosslinking with N,N′-methylene-bisacrylamide. This work focused on the effects of the amylose/amylopectin ratio of starches from the same source (corn) on the grafting reactions and performance of the resultant starch-based SAPs. To characterise each SAP, the acrylamide groups grafted onto the starch were detected by FTIR; grafting ratio and grafting efficiency were evaluated by a gravimetric method; and graft position and the length of the grafted segment were investigated by NMR. The relationships between the microstructures of the starches, and the graft reactions and performance of the SAPs were studied based on the amylose content in the starches. It was found that under the same reaction conditions, the grafting ratio and efficiency increased with increasing amylose content, which corresponds with water absorption ratio. NMR results indicated that the acrylamide group mainly grafted onto C6, and that the length of the grafted segment decreased with increasing amylopectin content in general, and in particular for waxy starch. The high molecular weight and branched structure of amylopectin reduced the mobility of the polymer chains and increased viscosity, which could explain the graft reactions and performance of the starch-based SAPs.  相似文献   

10.
粉末X射线衍射图谱计算植物淀粉结晶度方法的探讨   总被引:6,自引:0,他引:6  
徐斌  满建民  韦存虚 《植物学报》2012,47(3):278-285
植物淀粉有A-型、B-型和C-型3种晶体。以水稻(Oryza sativa)、马铃薯(Solanum tuberosum)、豌豆(Pisum sativum) 和莲藕(Nelumbo nucifera)淀粉为材料, 利用粉末X-射线衍射仪(XRD)调查了不同晶体类型淀粉的波谱特征, 探讨XRD波谱相对结晶度的计算方法。软件峰拟合法、软件曲线法、直线作图法和曲线作图法均可用于计算淀粉XRD波谱的相对结晶度, 以曲线作图法计算结果较为可靠。利用曲线作图法得出的结果表明, 稻米淀粉的结晶度与直链淀粉含量呈显著线性负相关, 酸解莲藕淀粉的结晶度与淀粉酸水解度呈显著线性正相关。酸水解使莲藕淀粉的C-型晶体转变为A-型晶体。上述研究结果为利用XRD分析植物淀粉晶体类型和计算相对结晶度提供了重要参考。  相似文献   

11.
Retrograded starch is a crystal formed by starch molecules with hydrogen bonds. Many literatures have reported its physicochemical character, but its crystal structure is so far unclear. As we isolate amylose and amylopectin from retrograded maize, sweet potato and potato starches in 4.0M KOH solutions and make them retrograde alone in neutral solution (adjusted by HCl) to form crystal, a new phenomenon appears, crystals of KCl do not appear in retrograded potato amylose, potato amylopectin, and maize amylose, indicating that those crystals may absorb K(+) and (or) Cl(-), and those ions probably act with aldehyde of starch or hydroxy of fatty acid attached in starch, such characteristic may make retrograded starches replace graphite as anode with high-capacity in lithium-ion rechargeable batteries.  相似文献   

12.
The effects of amylose content on the extent of oxidation and the distribution of carboxyl groups in hypochlorite-oxidized corn starches were investigated. Corn starches including waxy corn starch (WC), common corn starch (CC), and 50% and 70% high-amylose corn starches (AMC) were oxidized with NaOCl at three concentrations (0.8%, 2%, and 5%). Carboxyl and carbonyl content of oxidized starches increased with increasing NaOCl concentration. High-AMC (70%) had slightly higher carboxyl and carbonyl contents at 0.8% NaOCl, whereas WC had significantly higher carboxyl and carbonyl contents at 2% and 5% NaOCl levels. Carbohydrate profiles by high-performance size-exclusion chromatography indicate that amylose was more susceptible to depolymerization than amylopectin. Degradation of amylopectin long chains (DP >24) was more pronounced in WC and CC than in AMCs. The crystalline lamellae of WC started to degrade at 2% NaOCl, but those of the other corn starches remained intact even at 5% NaOCl level according to X-ray crystallinity. By using anion-exchange chromatography for separation and size-exclusion chromatography for characterization, carboxyl groups were found to be more concentrated on amylopectin than on amylose, particularly in AMCs. Oxidation decreased gelatinization temperature and enthalpy with WC showing the most decrease and 70% AMC showing the least. The gelatinization enthalpy of 50% AMC decreased significantly faster than those of CC and 70% AMC after 0.8% oxidation. Retrogradation of amylopectin slightly increased after oxidation with increasing oxidation level. The peak viscosities of oxidized WC and CC were higher than those of their native counterparts at 0.8% NaOCl, but this increase was not observed in AMCs. The setback viscosities of 2% NaOCl-oxidized 50% and 70% AMCs were much higher than those of the unmodified counterparts. The extent of oxidation and physicochemical properties of oxidized starches varied greatly with the amylase:amylopectin ratio of corn starches. Amylose was suggested to play an important role in controlling the oxidation efficiency.  相似文献   

13.
The effect of starch composition and concentration on the rheological properties of starch in a mixed solvent, water–DMSO, was investigated in dynamic shear and extensional mode. High amylose corn starch containing 70% amylose and 30% amylopectin, common corn starch containing 25% amylose and 75% amylopectin, and waxy corn starch containing about 99% amylopectin were used in this study. Concentrations of 2, 4, 6, and 8% (w/v) in 10% water-90% DMSO (v/v) were used for each starch type. An increase in the amylopectin content of starch from 30 to 99% caused a change in behavior from semidilute solution to viscoelastic solid at a concentration of 8% (w/v). At a concentration of 2%, an increase in the amylopectin content of starch from 30 to 99% caused a change from Newtonian to incipient gel-like behavior. Behavior at intermediate concentrations of 4 and 6% (w/v) varied from semidilute to critical gel-like with increasing amylopectin content. A power-law relaxation was observed for all concentrations of common and waxy corn starches with the slope decreasing with increase in concentrations. A 2% waxy corn starch solution displayed extension thinning behavior, while a 2% high amylose corn starch solution displayed Newtonian behavior.  相似文献   

14.
Natural maize starches having a range of amylose contents have been characterised by CP/MAS NMR spectroscopy. Chemical shifts, relative resonance intensities, line-widths and spectral shapes were compared at different moisture contents. At 10% moisture content, these parameters showed few significant differences across a range of apparent amylose levels from 0 to 84%. After hydration of the granules to ≈30% moisture, it was found that the amylose content significantly affected the relative signal intensities and line-widths especially of C-1 and C-4 resonances. Narrower line-widths after hydration were attributed to (i) an increased degree of crystallinity, and (ii) disappearance of the signals of amorphous material which, on becoming more mobile, became invisible to the CP/MAS experiment. The enhanced resolution at higher moisture levels revealed signals which were assigned to the amylose–lipid complex, i.e. V-type amylose. The amount of V-amylose detected by NMR increased with both amylose content and lipid content of the granule. Prolonged treatment of the granules with iodine vapour significantly increased the amount of V-type amylose in the high amylose samples, but caused a decrease in their degree of crystallinity. Waxy-maize starch was barely affected by iodination. The results provide evidence that amylose tends to disrupt the structural order within amylopectin crystallities. This effect is enhanced by the formation of the amylose–iodine complex, indicating that V-amylose could be a major crystallite-disrupting agent in native starch granules.  相似文献   

15.
The amylose to amylopectin ratios in six maize starch samples of differing amylose contents were measured by enzymatic debranching, followed by high performance size exclusion chromatography (HPSEC). The molecular size of amyloses, estimated by -log Kwav, shows progressive decrease with the increase in amylose content in maize starches. The gel permeation chromatographs of the corresponding amylopectins, debranched with isoamylase, showed bimodal distributions containing long and short chains. The average chain length of amylopectin has a correlation with amylose content. The correlation coefficients between amylose content and average chain length, long chain length, weight ratio and the mole ratio of long and short chain length, were 0.97, 0.92, 0.96, 0.94 respectively. The maize starch with the highest amylose content has the lowest amylose molecular size and the longest chains, with a high ratio of long to short chains in its amylopectin fraction. Comparing the values of amylose content determined by HPSEC of starch or debranched starch with those of the iodinecomplex method, we conclude that long chains of amylopectin in high amylose starches contribute significantly to apparent amylose content.  相似文献   

16.
Native and high pressure-treated (water suspensions, 650 MPa) waxy maize starch, containing mainly amylopectin, and Hylon VII, rich in amylose, were studied for their ability to generate free radicals upon thermal treatment at 180–230 °C. The electron paramagnetic resonance (EPR) spectroscopy was used to characterize the nature, number and stability of radicals. Various stable and short living (stabilized by N-tert-butyl-α-phenylnitrone (PBN) spin trap) radical species were formed. It was found, that at given conditions the waxy maize starch reveals higher ability to generate radicals, than Hylon VII. The presence of water and high pressure pretreatment of starches, both resulted in the reduction of the amount of thermally generated radicals. The decrease in crystallinity of waxy maize starch and of Hylon VII, occurring upon high pressure treatment, leads to the increase of the relative amount of fast rotating component in the EPR spectrum of both types of starches.  相似文献   

17.
The molecular structure of starch granules formed in suspension-cultured cells of Ipomoea cordatotriloba Denn. was characterized by its chain length distribution, which was compared to those of the starches from the root and leaf of the original plant. The cultured cell starches were spherical and had a very small granule size (about 2 μm). The debranched starches roughly separated into three fractions during gel-permeation chromatography, and the fractions were defined as Fr.1, 2, and 3, respectively. The chain length distribution of the debranched cultured cell starch showed that the high molecular weight fraction (Fr.1), referred to as an amylose fraction, was much less than those of the root and leaf starches. The ratio of the two lower fractions (Fr.3/Fr.2) of the cultured cell starch, which was mainly derived from unit chains of amylopectin, was greatest among the starches, suggesting that the amylopectin from the cultured cell starch has much shorter unit chains. By X-ray diffraction analysis, it was found that both cultured cell and leaf starch granules have low crystallinity.  相似文献   

18.
The developmental changes in the structure and properties of endosperm starches were investigated using the near-isogenic lines for wx alleles of rice. The amylose content in nonwaxy starch was increased during the development of rice grains. Because the accumulation of amylose in endosperm stopped earlier than that of amylopectin during development, the percentages of amylose reached a maximum at the 17th day after flowering in nonwaxy endosperm. Since the distributions of the unit-chain length of amylopectin in waxy and nonwaxy starches were unchanged with the development of the grains, these amylopectins would be synthesized in a similar manner through development. The structure and properties of endosperm starches were reconfirmed to be conspicuously affected by the temperature at the early developmental stages of the grain-filling period, namely, they appeared to be characterized by the temperature at which the starch was accumulated in the endosperm.  相似文献   

19.
Y. Song  J. Jane   《Carbohydrate polymers》2000,41(4):365-377
Four varieties of barley starches, W.B. Merlin, glacier, high amylose glacier, and high amylose hull-less glacier, were isolated from barley seeds. Apparent and absolute amylose contents, molecular size distributions of amylose and amylopectin, amylopectin branch-chain-length distributions, and Naegeli dextrin structures of the starches were analyzed. W.B. Merlin amylopectin had the longest detectable chain length of DP 67, whereas glacier, high amylose glacier and high amylose hull-less glacier amylopectins had the longest detectable chain length of DP 82, 79, and 78, respectively. All the four starches displayed a substantially reduced proportion of chains at DP 18–21. Amylopectins of high amylose varieties did not show significantly larger proportions of long chains than that of normal and waxy barley starch. Onset gelatinization temperatures of all four barley starches ranged from 55.0 to 56.5°C. Absolute amylose contents of W.B. Merlin, glacier, high amylose glacier, and high amylose hull-less glacier were 9.1, 29.5, 44.7, and 43.4%, respectively; phospholipid contents were 0.36, 0.78, 0.79, and 0.97%, respectively.  相似文献   

20.
Influence of amylose content on starch films and foams   总被引:1,自引:0,他引:1  
After extraction of smooth pea starch and waxy maize starch from pure amylose and amylopectin fractions, films with various amylose contents were prepared by casting in the presence of water or water with glycerol. For unplasticized films, a continuous increase in tensile strength (40–70 MPa) and elongation (4–6%) was observed as amylose increased from 0 to 100%. Discrepancies with values obtained for native starches with variable amylose content and different botanical origins were attributable to variations in the molecular weights of components. Taking cell wall properties into account, the values obtained in the laboratory were used to improve the relation between the flexural behavior of extruded foams and the model of cellular solids with open cavities.

The properties of plasticized films were not improved by the presence of glycerol and remained constant when amylose content was higher than 40%. Results are interpreted on the basis of topological differences between amylose and amylopectin.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号