首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In previous work [Pol-Fachin, L.; Fernandes, C. L.; Verli, H.; Carbohydr. Res.2009, 344, 491-500], we had demonstrated that GROMOS96 43a1 force field and Löwdin HF/6-31G∗∗-derived atomic charges, adequately represent a glycoprotein’s conformational ensemble in aqueous solutions, taking as the starting geometries NMR-determined structures. Based on such data, the present work intends to evaluate the use of the main solution conformations of isolated disaccharides, to build the carbohydrate moiety of glycoproteins, for which no previous experimental information is available. The observed results suggested that the entire glycoprotein scaffold appears unable to promote major modifications in the conformational behavior of glycosidic linkages. Additionally, when compared to energy contour plots, the results support the use of solution ensembles, to refine vacuum conformations of carbohydrate databases in the assembling of glycoproteins 3D structures. Finally, such approach is applied to build a full glycosylated model for COX-1 and COX-2 enzymes.  相似文献   

2.
Summary Swine tracheal epithelium has been cultured as explants in a chemically defined medium for periods of up to 2 wk. The viability of the explants was shown by the preservation of the ultrastructural features of cells in the epithelial layer and by the active incorporation of radioactive glucosamine and sulfate into secreted mucin glycoproteins. The rate of secretion of mucin glycoprotein was about 0.035 mg per cm2 per d. After initial 24 h lag period was shown to be due to the equilibration of intracellular mucin glycoprotein pools with radioactive precursors. The rate of secretion of glycoprotein showed a linear dependence on the area of the explant, and maximal incorporation was observed at 200 μM glucosamine. A higher concentration of35SO4, 1000 μM, was required for maximal incorporation of the precursor. Insulin at 0.1 to 1 μg/ml increased the rate of secretion twofold, whereas 0.1 to 100 μg/ml of hydrocortisone and 0.1 to 100 μg/ml of epinephrine significantly decreased the rate of secretion. Vitamin A had little or no effect of normal trachea explants at low concentrations, and, at higher concentrations, 10−5 M, it decreased the secretion of mucin glycoproteins. Vitamin A, at a concentration of 10−9 M, increased the rate of synthesis of glycoprotein at least fourfold in trachea explants from vitamin A-deficient rats. Mucus secretions collected from the surface of swine trachea and from the culture medium of trachea explants were purified. The mucus was solubilized by reduction and carboxymethylation, and the high molecular weight mucin glycoproteins were purified by chromatography on Sepharose CL-6B columns under dissociating conditions in 2M guanidine HCl. The mucin glycoproteins purified from swine trachea and from the culture medium of trachea explants were virtually indistingushable. They showed the same properties when examined by gel electrophoresis and immunoprecipitation. The purified glycoproteins contained about 25% protein, and serine, threonine, and proline were the principal amino acids present. More than 80% of the carbohydride chains in both samples were released by treatment with alkaline borohydride. Nearly the same molar ratio ofN-acetylgalactosamine,N-acetylglucosamine, galactose, fucose, sulfate, and sialic acid was found in both preparations. This investigation was supported by U.S. Public Health Service Grants HL 20868, HL 24688, and HL 24718 from the National Heart, Lung and Blood Institute, Bethesda, MD, and AM 28187 from the National Institute of Arthritis, Diabetes and Digestive and Kidney Diseases, Bethesda, MD.  相似文献   

3.
Cytotoxic T lymphocyte (CTL) epitopes in the HBV protein of hepatitis B virus (HBV) may play a key role in viral control and liver damage. The aim of this study was to identify and study the function of HLA-A33:03-restricted CTL epitopes in HBV protein of the HBV genotypes B and C, which are epidemic in China. Sixteen HBV peptides were predicated by computational analysis, and synthesized peptides were examined for their affinity to HLA-A33:03 using a stable cell line. After being analyzed by enzyme-linked immunospot and cytolytic activity assays, as well as the tetramers staining method using peripheral blood mononuclear cells isolated from HBV-infected patients, five peptides (Hbs245–253, HBs335–343, HBc119–127, HBc104–112, and HBp391–399) were chosen to further confirm their HLA_A33:03 restriction in transgenic mice.  相似文献   

4.
Mouse hepatitis virus receptor (MHVR) is a murine biliary glycoprotein (Bgp1a). Purified, soluble MHVR expressed from a recombinant vaccinia virus neutralized the infectivity of the A59 strain of mouse hepatitis virus (MHV-A59) in a concentration-dependent manner. Several anchored murine Bgps in addition to MHVR can also function as MHV-A59 receptors when expressed at high levels in nonmurine cells. To investigate the interactions of these alternative MHVR glycoproteins with MHV, we expressed and purified to apparent homogeneity the extracellular domains of several murine Bgps as soluble, six-histidine-tagged glycoproteins, using a baculovirus expression system. These include MHVR isoforms containing four or two extracellular domains and the corresponding Bgp1b glycoproteins from MHV-resistant SJL/J mice, as well as Bgp2 and truncation mutants of MHVR and Bgp1b comprised of the first two immunoglobulin-like domains. The soluble four-domain MHVR glycoprotein (sMHVR[1-4]) had fourfold more MHV-A59 neutralizing activity than the corresponding soluble Bgp1b (sBgp1b) glycoprotein and at least 1,000-fold more neutralizing activity than sBgp2. Although virus binds to the N-terminal domain (domain 1), soluble truncation mutants of MHVR and Bgp1b containing only domains 1 and 2 bound virus poorly and had 10- and 300-fold less MHV-A59 neutralizing activity than the corresponding four-domain glycoproteins. In contrast, the soluble MHVR glycoprotein containing domains 1 and 4 (sMHVR[1,4]) had as much neutralizing activity as the four-domain glycoprotein, sMHVR[1-4]. Thus, the virus neutralizing activity of MHVR domain 1 appears to be enhanced by domain 4. The sBgp1b[1-4] glycoprotein had 500-fold less neutralizing activity for MHV-JHM than for MHV-A59. Thus, MHV strains with differences in S-glycoprotein sequence, tissue tropism, and virulence can differ in the ability to utilize the various murine Bgps as receptors.  相似文献   

5.
It is speculated that HLA-A26-restricted HIV-1-specific CTLs can control HIV-1, since HLA-A26 is associated with a slow progression to AIDS. In three major HLA-A26 subtypes, HLA-A2601-restricted, and HLA-A2603-restricted HIV-1 epitopes have been identified, but HLA-A2602-restricted ones have not. We here identified HLA-A2602-restricted HIV-1 epitopes by using reverse immunogenetics and compared the immunodominance of the epitopes among the three subtypes. Out of 110 HIV-1 peptides carrying HLA-A26 anchor residues, only the Gag169-177 peptide, which had been previously identified as an HLA-A2601- and HLA-A2603-restricted immunodominant epitope, induced Gag169-177-specific CD8+ T cells from only two of six HLA-A2602+ HIV-1-infected individuals. No difference in affinity of this epitope peptide was found among these three HLA-A26 subtypes, indicating that Gag169-177 was effectively presented by HLA-A2602 but recognized as a subdominant epitope in HIV-1-infected HLA-A2602+ individuals. These findings indicate different immunodominance of Gag169-177 epitope among 3 HLA-A26 subtypes.  相似文献   

6.
Interaction of Vicia villosa agglutinin-B4 (VVA-B4) to glycopeptides with O-linked GalNAc residues was investigated by surface plasmon resonance. The affinity was shown to be influenced by the arrangement of O-glycosylation sites on a peptide, PTTTPITTTTK, representing the tandem repeat of MUC2. The association rate constant was relatively high with a particular category of GalNAc-peptides in which more than three amino acid residues were placed between GalNAc-Thr residues. PTTTPITTTTK (T indicates GalNAc-Thr) had the highest association rate constant among the glycopeptides tested. The dissociation rate constant was low in the peptides containing consecutive GalNAc residues and PTTTPITTTTK was the lowest of the glycopeptides tested. Dissociation constant (KD), calculated as kd/ka was the lowest with PTTTPITTTTK. Therefore, the arrangement but not the quantity of GalNAc residues apparently determines the affinity between VVA-B4 and peptides with attached GalNAc residues.  相似文献   

7.
A high molecular weigh mucus glycoprotein has been isolated from submandibular saliva of caries-resistant and caries-susceptible individual by a procedure involving fractionation on Bio-Gel P-100 and A-50 columns followed by equilibrium density-gradient centrifugation in CsCl. The purified caries-resistant mucus glycoprotein displayed a buoyant density of 1.50 and accounted for 9.5% of the dry weight of caries-resistant saliva. The caries-susceptible mucus glycoprotein representd 14.1% of the dry weight of caries-susceptible saliva and gave a buoyant density of 1.43. Both glycoproteins exhibited similar protein and carbohydrate content, but the caries-resistant mucus glycoprotein contained 28.7% less associated lipids and 3-times less covalently bound fatty acids than the caries-susceptible mucus glycoprotein. The associated lipids were represented by neutral lipids, glycolipids and phospholipids, whereas the covalently bound fatty acids consisted mainly of hexadecanoate, octadecanoate and docosanoate. Extraction of associated lipids caused the caries-resistant glycoprotein to band in CsCl gradient at the density of 1.54 and caused the caries-susceptible glycoprotein to band at the density of 1.52. A further shift in the buoyant densities occurred following removal of the covalently bound fatty acids, and both glycoproteins banded at the density of 1.57. While the intact caries-resistant and caries-susceptibel glycoproteins were susceptible to proteolysis by pronase, the lipid-rich caries-susceptible glycoprotein was degraded to a lesser extent. Extraction of associated lipids increased the degradation of both glycoproteins, but the caries-susceptible glycoprotein still remained 25% less susceptible. However, the susceptibility to pronase of the delipidated and deacylated caries-resistant and caries-susceptible glycoproteins was essentially identical. The caries-resistant and caries-susceptible mucus glycoproteins also differed in susceptibility to peptic degradation. The apparent Km values for intact caries-resistant and caries-susceptible glycoproteins were 10.5 · 10−7 M and 8.1 · 10−7 M, while the values for the delipidated and deacylated caries-resistant and caries-susceptible glycoproteins were 13.0 · 10−7 M and 12.4 · 10−7 M. The results suggest that the differences in the content of associated lipids and covalently bound fatty acids are responsible for the different physicochemical characteristics of caries-resistant and caries-susceptible salivary mucus glycoproteins, which may be determining falctors in the resistance to caries.  相似文献   

8.
Conformational changes in the glycoproteins of enveloped viruses are critical for membrane fusion, which enables viral entry into cells and the pathological cell-cell fusion (syncytia) associated with some viral infections. However, technological capabilities for identifying viral glycoproteins and their conformational changes on actual enveloped virus surfaces are generally scarce, challenging, and time-consuming. Our model, Nipah virus (NiV), is a syncytium-forming biosafety level 4 pathogen with a high mortality rate (40 to 75%) in humans. Once the NiV attachment glycoprotein (G) (NiV-G) binds the cell receptor ephrinB2 or -B3, G triggers conformational changes in the fusion glycoprotein (F) that result in membrane fusion and viral entry. We demonstrate that confocal micro-Raman spectroscopy can, within minutes, simultaneously identify specific G and F glycoprotein signals and receptor-induced conformational changes in NiV-F on NiV virus-like particles (VLPs). First, we identified reproducible G- and F-specific Raman spectral features on NiV VLPs containing M (assembly matrix protein), G, and/or F or on NiV/vesicular stomatitis virus (VSV) pseudotyped virions via second-derivative transformations and principal component analysis (PCA). Statistical analyses validated our PCA models. Dynamic temperature-induced conformational changes in F and G or receptor-induced target membrane-dependent conformational changes in F were monitored in NiV pseudovirions in situ in real time by confocal micro-Raman spectroscopy. Advantageously, Raman spectroscopy can identify specific protein signals in relatively impure samples. Thus, this proof-of-principle technological development has implications for the rapid identification and biostability characterization of viruses in medical, veterinary, and food samples and for the analysis of virion glycoprotein conformational changes in situ during viral entry.  相似文献   

9.
Human T-cell leukemia virus types 1 and 2 (HTLV-1 and HTLV-2) are closely related retroviruses with nucleotide sequences that are 65% identical. To determine whether their envelope glycoproteins function similarly and to define the molecular determinants of HTLV-2 envelope-mediated functions, we have used pseudotyped viruses and have introduced mutations into regions of the HTLV-2 glycoproteins homologous to those known to be important for HTLV-1 glycoprotein functions. The envelopes of the two viruses could be exchanged with no loss of infectivity, suggesting that the glycoproteins function in broadly similar ways. However, comparative analysis of the HTLV-1 and HTLV-2 glycoproteins showed subtle differences in the structure-function relationships of the two surface glycoprotein (SU) subunits, even though they recognize the same receptor. Indeed, mutations introduced at equivalent positions in the two SU glycoproteins resulted in different phenotypes in the two viruses. The scenario is the opposite for the transmembrane glycoprotein (TM) subunits, in which the functional domains of the two viruses are strictly conserved, confirming the involvement of the TM ectodomain in postfusion events required for full infectivity of the HTLVs. Thus, although they recognize the same receptor, the HTLV-1 and HTLV-2 SU subunits have slightly different ways of transducing the conformational information that primes a common fusion mechanism effected by similar TM subunits.  相似文献   

10.
The henipaviruses, represented by Nipah virus and Hendra virus, are emerging zoonotic viral pathogens responsible for repeated outbreaks associated with high morbidity and mortality in Australia, Southeast Asia, India and Bangladesh. These viruses enter host cells via a class I viral fusion mechanism mediated by their attachment and fusion envelope glycoproteins; efficient membrane fusion requires both these glycoproteins in conjunction with specific virus receptors present on susceptible host cells. The henipavirus attachment glycoprotein interacts with a cellular B class ephrin protein receptor triggering conformational alterations leading to the activation of the viral fusion (F) glycoprotein. The analysis of monoclonal antibody (mAb) reactivity with G has revealed measurable alterations in the antigenic structure of the glycoprotein following its binding interaction with receptor. These observations only appear to occur with full-length native G glycoprotein, which is a tetrameric oligomer, and not with soluble forms of G (sG), which are disulfide-linked dimers. Single amino acid mutations in a heptad repeat-like structure within the stalk domain of G can disrupt its association with F and subsequent membrane fusion promotion activity. Notably, these mutants of G also appear to confer a postreceptor bound conformation implicating the stalk domain as an important element in the G glycoprotein's structure and functional relationship with F. Together, these observations suggest fusion is dependent on a specific interaction between the F and G glycoproteins of the henipaviruses. Further, receptor binding induces measurable changes in the G glycoprotein that appear to be greatest in respect to the interactions between the pairs of dimers comprising its native tetrameric structure. These receptor-induced conformational changes may be associated with the G glycoprotein's promotion of the fusion activity of F.  相似文献   

11.
In vivo glycoprotein synthesis and secretion was studied in rat colonic epithelial cells using precursor labelling with radiolabelled glucosamine. Sepharose 4B gel filtration of radiolabelled glycoproteins obtained from isolated colonic epithelial cells revealed two major fractions: (1) high molecular weight mucus in the excluded fraction and (2) lower molecular weight glycoproteins in the included volume. These glycoproteins were further fractionated by affinity chromatography on concanavalin A-Sepharose. The low molecular weight [3H]glucosamine-labelled glycoproteins contained a major subfraction which specifically adhered to concanavalin A, and could be eluted with 0.2 M α-methylmannoside. Fractionation of the concanavalin A-reactive glycoproteins on Sephadex G-100 revealed a major peak with a molecular weight of 15 000. In contrast, high molecular weight mucus glycoprotein did not adhere appreciably to concanavalin A-Sepharose. Perfusion experiments indicated that colonic secretions contained both mucus and concanavalin A-reactive glycoproteins. The major concanavalin A-reactive glycoprotein in the colonic perfusate was not derived from serum, but was released directly from the colonic membrane into the lumen.  相似文献   

12.
1. Non-desmosomal plasma membranes enriched in plasma-membrane marker enzymes and in metabolically labelled glycoproteins were isolated on a large scale from up to 500g of pig ear skin slices. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and periodic acid/Schiff staining revealed the presence of four major glycosylated components in the apparent molecular-weight range 150000–80000. 2. A large proportion of the marker enzymes, the d-[3H]glucosamine-labelled glycoproteins and the periodic acid/Schiff-stained glycoproteins were solubilized by 1% (w/v) sodium deoxycholate. However, several non-glycosylated proteins, in particular those with mol.wts. 81000, 41000 and 38000 (possibly cytoskeletal components), were relatively resistant to solubilization. 3. The deoxycholate-solubilized membranes were fractionated by lectin affinity chromatography using both concanavalin A–Sepharose 4B and lentil lectin–Sepharose 4B. From 75 to 85% of the applied glycoprotein was recovered from the columns. From 30 to 40% of the recovered glycoprotein was specifically bound by the lectins and was eluted with 2% (w/v) α-methyl d-mannoside. The enrichment of labelled glycoproteins in the material bound by the lectins (2.5-fold) was similar with both lectins, although the yield was somewhat greater when lentil lectin was used. The glycoprotein-enriched fraction was also enriched in all the plasma-membrane marker enzymes, indicating their probable glycoprotein nature. 4. The glycoprotein-enriched fraction contained the four major periodic acid/Schiff-stained bands that were detected in the original plasma membrane. They had apparent mol.wts. 147000, 130500, 108000 and 91400. The higher-molecular-weight components contained relatively more d-[3H]glucosamine, indicating differences in the sugar composition or in the metabolic turnover of the individual glycoproteins in culture. The material bound by the lectins also contained a number of lower-molecular-weight Coomassie Brilliant Blue-stained components. These were weakly stained by periodic acid/Schiff reagent and were lightly labelled with d-[3H]glucosamine, indicating that they contained less carbohydrate than the four major glycoprotein bands. 5. Chloroform/methanol-extracted plasma membranes and isolated glycoproteins had a similar carbohydrate composition, containing sialic acid, hexosamine, fucose, xylose, mannose, galactose and glucose. Glucose was not enriched in the isolated glycoproteins, suggesting that it may be a contaminant. Xylose, however, was enriched in the isolated glycoproteins. It remains to be established whether this sugar, which is not usually found in plasma-membrane glycoproteins, is a genuine constituent of plasma-membrane glycoproteins in the epidermis.  相似文献   

13.
1. Confluent human skin fibroblasts maintained in a chemically defined medium incorporate l-[1-3H]fucose in a linear manner with time into non-diffusible macromolecules for up to 48h. Chromatographic analysis demonstrated that virtually all the macromolecule-associated 3H was present as [3H]fucose. 2. Equilibrium CsCl-density-gradient centrifugation established that [3H]fucose-labelled macromolecules released into the medium were predominantly glycoproteins. Confirmation of this finding was provided by molecular-size analyses of the [3H]fucose-labelled material before and after trypsin digestion. 3. The [3H]fucose-labelled glycoproteins released into fibroblast culture medium were analysed by gel-filtration chromatography and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. These techniques demonstrated that the major fucosylated glycoprotein had an apparent mol.wt. of 230000–250000; several minor labelled species were also detected. 4. Dual-labelling experiments with [3H]fucose and 14C-labelled amino acids indicated that the major fucosylated glycoprotein was synthesized de novo by cultured fibroblasts. The non-collagenous nature of this glycoprotein was established by three independent methods. 5. Gel-filtration analysis before and after reduction with dithiothreitol showed that the major glycoprotein occurs as a disulphide-bonded dimer when analysed under denaturing conditions. Further experiments demonstrated that this glycoprotein was the predominant labelled species released into the medium when fibroblasts were incubated with [35S]cysteine. 6. The relationship between the major fucosylated glycoprotein and a glycoprotein, or group of glycoproteins, variously known as fibronectin, LETS protein, cell-surface protein etc., is discussed.  相似文献   

14.
We analyzed surface glycoproteins of human natural killer (NK) cells by utilizing lectins. Among the lectins tested, wheat germ agglutinin (WGA) was found to bind preferentially to CD16(Leu11)-positive lymphocytes as determined by two-colour flow cytometry. Analysis of glycoproteins in the lysate prepared from NK cells with sodium dodecyl sulfate (SDS) gel electrophoresis followed by Western blotting and125I labeled WGA staining revealed that a glycoprotein with anM r of 65 kDa was strongly bound to the lectin, but no corresponding glycoprotein was detected in the lysate of T lymphocytes. This glycoprotein (GP65) gave several spots in the pI range 4.1–4.6 on 2-dimensional gel electrophoresis. Sialidase treatment of GP65 resulted in a single spot on the 2-dimensional gel, suggesting that GP65 is heterogeneous in the degree of sialylation. GP65 was shown to be exposed on the cell surface, since it was radiolabeled with125I by the lactoperoxidase-catalyzed method. We next isolated GP65 from human peripheral blood lymphocytes by a combination of chromatography on a cation-exchange column and a WGA-agarose column and preparative SDS gel electrophoresis. It is suggested that GP65 is a novel surface glycoprotein on human NK cells.  相似文献   

15.
The development of a new class of single-site metal alkoxide catalysts employing trispyrazolyl ligands is described where the metal ions are Mg(2+), Zn(2+) and Ca(2+). A particularly promising ligand for the kinetically labile Ca(2+) ion is tris[3(-2-methoxy-1,1-dimethylpyrazolyl)] hydroborate, TpC∗. This ligand is capable of being extremely flexible in its coordination modes and its coordination with various group 1 and 2 metal ions is described. The complexes TpC∗MI exist as salts [TpC∗M]+I, where M = Mg and Ca, but TpC∗ZnI contains a four coordinate Zn(2+) center. The complexes TpC∗CaN(SiMe3)2 and TpC∗CaOC6H4-p-Me contain 5 and 7 coordinate Ca(2+) ions and serve as initiators for the ring-opening polymerization of lactide and ε-caprolactone. The compounds [TpC∗M]+[TpC∗], where M = Mg and Ca, exist as salts in the solid-state and in solution show exchange between coordinated and free TpC∗ ligands as determined by NMR spectroscopy.  相似文献   

16.
The process of vision is initiated when the G protein-coupled receptor, rhodopsin (Rho), absorbs a photon and transitions to its activated Rho form. Rho binds the heterotrimeric G protein, transducin (Gt) inducing GDP to GTP exchange and Gt dissociation. Using nucleotide depletion and affinity chromatography, we trapped and purified the resulting nucleotide-free Rho·Gt complex. Quantitative SDS–PAGE suggested a 2:1 molar ratio of Rho to Gt in the complex and its mass determined by scanning transmission electron microscopy was 221 ± 12 kDa. A 21.6 Å structure was calculated from projections of negatively stained Rho·Gt complexes. The molecular envelope thus determined accommodated two Rho molecules together with one Gt heterotrimer, corroborating the heteropentameric structure of the Rho·Gt complex.  相似文献   

17.
Neurotransmitter:sodium symporter (NSS) proteins are secondary Na+-driven active transporters that terminate neurotransmission by substrate uptake. Despite the availability of high-resolution crystal structures of a bacterial homolog of NSSs—Leucine Transporter (LeuT)—and extensive computational and experimental structure-function studies, unanswered questions remain regarding the transport mechanisms. We used microsecond atomistic molecular-dynamics (MD) simulations and free-energy computations to reveal ion-controlled conformational dynamics of LeuT in relation to binding affinity and selectivity of the more extracellularly positioned Na+ binding site (Na1 site). In the course of MD simulations starting from the occluded state with bound Na+, but in the absence of substrate, we find a spontaneous transition of the extracellular vestibule of LeuT into an outward-open conformation. The outward opening is enhanced by the absence of Na1 and modulated by the protonation state of the Na1-associated Glu-290. Consistently, the Na+ affinity for the Na1 site is inversely correlated with the extent of outward-open character and is lower than in the occluded state with bound substrate; however, the Na1 site retains its selectivity for Na+ over K+ in such conformational transitions. To the best of our knowledge, our findings shed new light on the Na+-driven transport cycle and on the symmetry in structural rearrangements for outward- and inward-open transitions.  相似文献   

18.
Hendra virus and Nipah virus, comprising the genus Henipavirus, are recently emerged, highly pathogenic and often lethal zoonotic agents against which there are no approved therapeutics. Two surface glycoproteins, the attachment (G) and fusion (F), mediate host cell entry. The crystal structures of the Hendra G glycoprotein alone and in complex with the ephrin-B2 receptor reveal that henipavirus uses Tryptophan 122 on ephrin-B2/B3 as a “latch” to facilitate the G-receptor association. Structural-based mutagenesis of residues in the Hendra G glycoprotein at the receptor binding interface document their importance for viral attachments and entry, and suggest that the stability of the Hendra-G-ephrin attachment complex does not strongly correlate with the efficiency of viral entry. In addition, our data indicates that conformational rearrangements of the G glycoprotein head domain upon receptor binding may be the trigger leading to the activation of the viral F fusion glycoprotein during virus infection.  相似文献   

19.
Enveloped viruses utilize membrane glycoproteins on their surface to mediate entry into host cells. Three-dimensional structural analysis of these glycoprotein ‘spikes’ is often technically challenging but important for understanding viral pathogenesis and in drug design. Here, a protocol is presented for viral spike structure determination through computational averaging of electron cryo-tomography data. Electron cryo-tomography is a technique in electron microscopy used to derive three-dimensional tomographic volume reconstructions, or tomograms, of pleomorphic biological specimens such as membrane viruses in a near-native, frozen-hydrated state. These tomograms reveal structures of interest in three dimensions, albeit at low resolution. Computational averaging of sub-volumes, or sub-tomograms, is necessary to obtain higher resolution detail of repeating structural motifs, such as viral glycoprotein spikes. A detailed computational approach for aligning and averaging sub-tomograms using the Jsubtomo software package is outlined. This approach enables visualization of the structure of viral glycoprotein spikes to a resolution in the range of 20-40 Å and study of the study of higher order spike-to-spike interactions on the virion membrane. Typical results are presented for Bunyamwera virus, an enveloped virus from the family Bunyaviridae. This family is a structurally diverse group of pathogens posing a threat to human and animal health.  相似文献   

20.
A series of oxo-vanadium(IV) complexes: TpVO(pzH)(CH3COO) (1), TpVO(pzH)(CCl3COO) (2), TpVO(pzH)(C6H5COO) (3), TpVO(pzH)(m-NO2-C6H4COO)·CH3CN (4) and [TpVO(pzH)(H2O)]+[m-NO2-C6H4-SO3]·CH3OH (5) (Tp = hydrotris(3,5-dimethylpyrazolyl)borate; pzH = 3,5-dimethylpyrazole) are synthesized in methanol solution under physiological conditions. They are characterized by elemental analysis, IR, UV-Vis and X-ray crystallography. Structural analyses show that the vanadium atoms in complexes 1-5 are all in a distorted-octahedral environment with the N4O2 donor set, and intra- or inter-hydrogen bonding linkages have been also observed in each complex. Bromination reaction activity of the complexes has been evaluated by the method with phenol red as organic substrate in the presence of H2O2, Br and phosphate buffer, indicating that they can be considered as potential functional model vanadium-dependent haloperoxidases. In addition, thermal analysis and quantum chemistry calculations were also performed and discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号