首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
What cellular and network properties allow reliable neuronal rhythm generation or firing that can be started and stopped by brief synaptic inputs? We investigate rhythmic activity in an electrically-coupled population of brainstem neurons driving swimming locomotion in young frog tadpoles, and how activity is switched on and off by brief sensory stimulation. We build a computational model of 30 electrically-coupled conditional pacemaker neurons on one side of the tadpole hindbrain and spinal cord. Based on experimental estimates for neuron properties, population sizes, synapse strengths and connections, we show that: long-lasting, mutual, glutamatergic excitation between the neurons allows the network to sustain rhythmic pacemaker firing at swimming frequencies following brief synaptic excitation; activity persists but rhythm breaks down without electrical coupling; NMDA voltage-dependency doubles the range of synaptic feedback strengths generating sustained rhythm. The network can be switched on and off at short latency by brief synaptic excitation and inhibition. We demonstrate that a population of generic Hodgkin-Huxley type neurons coupled by glutamatergic excitatory feedback can generate sustained asynchronous firing switched on and off synaptically. We conclude that networks of neurons with NMDAR mediated feedback excitation can generate self-sustained activity following brief synaptic excitation. The frequency of activity is limited by the kinetics of the neuron membrane channels and can be stopped by brief inhibitory input. Network activity can be rhythmic at lower frequencies if the neurons are electrically coupled. Our key finding is that excitatory synaptic feedback within a population of neurons can produce switchable, stable, sustained firing without synaptic inhibition.  相似文献   

2.
Small volumes of N-Methyl-D-Aspartate (NMDA) and non-NMDA excitatory amino acid receptor agonists were applied to localized regions of the dendritic trees of lamprey spinal neurons along their medial-lateral axis to obtain a spatial map of glutamate receptor distribution. Voltage clamp and frequency domain methods were used to obtain quantitative kinetic data of the voltage dependent ionic channels located both on the soma and on highly branched dendritic membranes. Pressure pulses of NMDA applied to the most peripheral regions of the dendritic tree elicited large somatic impedance increases, indicating that the most peripheral dendrites are well supplied with NMDA receptors. Experiments done with kainate did not elicit somatic responses to agonist applications on peripheral dendrites. The data obtained are consistent with the hypothesis that the activation of NMDA receptors by exogenous glutamate is significantly modified by the simultaneous activation of non-NMDA receptors, which shunts the NMDA response. The non-NMDA shunting hypothesis was tested by a combined application of kainate and NMDA to mimic the action of glutamate showing that the shunting effect of non-NMDA receptor activation virtually abolished the marked voltage dependency typical of NMDA receptor activation. These data were interpreted with a compartmental neuronal model having both NMDA and non-NMDA receptors.  相似文献   

3.
One- and two-dimensional models of glutamate diffusion, uptake, and binding in the synaptic cleft were developed to determine if the release of single vesicles of glutamate would saturate NMDA and non-NMDA receptors. Ranges of parameter values were used in the simulations to determine the conditions when saturation could occur. Single vesicles of glutamate did not saturate NMDA receptors unless diffusion was very slow and the number of glutamate molecules in a vesicle was large. However, the release of eight vesicles at 400 Hz caused NMDA receptor saturation for all parameter values tested. Glutamate uptake was found to reduce NMDA receptor saturation, but the effect was smaller than that of changes in the diffusion coefficient or in the number of glutamate molecules in a vesicle. Non-NMDA receptors were not saturated unless diffusion was very slow and the number of glutamate molecules in a vesicle was large. The release of eight vesicles at 400 Hz caused significant non-NMDA receptor desensitization. The results suggest that NMDA and non-NMDA receptors are not saturated by single vesicles of glutamate under usual conditions, and that tetanic input, of the type typically used to induce long-term potentiation, will increase calcium influx by increasing receptor binding as well as by reducing voltage-dependent block of NMDA receptors.  相似文献   

4.
Excitatory synaptic currents in Purkinje cells   总被引:13,自引:0,他引:13  
The N-methyl-D-aspartate (NMDA) and non-NMDA classes of glutamate receptor combine in many regions of the central nervous system to form a dual-component excitatory postsynaptic current. Non-NMDA receptors mediate synaptic transmission at the resting potential, whereas NMDA receptors contribute during periods of postsynaptic depolarization and play a role in the generation of long-term synaptic potentiation. To investigate the receptor types underlying excitatory synaptic transmission in the cerebellum, we have recorded excitatory postsynaptic currents (EPSCS), by using whole-cell techniques, from Purkinje cells in adult rat cerebellar slices. Stimulation in the white matter or granule-cell layer resulted in an all-or-none synaptic current as a result of climbing-fibre activation. Stimulation in the molecular layer caused a graded synaptic current, as expected for activation of parallel fibres. When the parallel fibres were stimulated twice at an interval of 40 ms, the second EPSC was facilitated; similar paired-pulse stimulation of the climbing fibre resulted in a depression of the second EPSC. Both parallel-fibre and climbing-fibre responses exhibited linear current-voltage relations. At a holding potential of -40 mV or in the nominal absence of Mg2+ these synaptic responses were unaffected by the NMDA receptor antagonist 2-amino-5-phosphonovaleric acid (APV), but were blocked by the non-NMDA receptor antagonist 6-cyano-2,3-dihydro-7-nitroquinoxalinedione (CNQX). NMDA applied to the bath failed to evoke an inward current, whereas aspartate or glutamate induced a substantial current; this current was, however, largely reduced by CNQX, indicating that non-NMDA receptors mediate this response. These results indicate that both types of excitatory input to adult Purkinje cells are mediated exclusively by glutamate receptors of the non-NMDA type, and that these cells entirely lack NMDA receptors.  相似文献   

5.
We have defined conditions whereby glutamate becomes toxic to isolated cerebellar granule neurons in a physiologic salt solution (pH 7.4). In the presence of a physiologic Mg++ concentration, acute glutamate excitotoxicity manifests only when the temperature was reduced from 37°C to 22°C. In contrast to glutamate, N-methyl-D-aspartate (NMDA) was non-toxic at either temperature at concentrations as high as 1 mM. Glycine strongly potentiated both the potency and efficacy of glutamate but revealed only a modest NMDA response. The non-NMDA receptor antagonist, 6-cyano-7-nitroquinoxalinedione (CNQX), potently protected against glutamate challenge, although the contribution of antagonism at strychnine-insensitive glycine sites could not be excluded. To further characterize the non-NMDA receptor contribution to the excitotoxic response, the promiscuity of glutamate interaction with ionotropic receptors was simulated by exposing neurons to NMDA in the presence of non-NMDA receptor agonists. NMDA toxicity was potentiated four- to sevenfold when non-NMDA receptors were coactivated by a subtoxic concentration of AMPA, kainate, or domoate. These results suggest that non-NMDA receptor activation participates in the mechanism of acute glutamate toxicity by producing neuronal depolarization (via sodium influx), which in turn promotes the release of the voltage-dependent magnesium blockade of NMDA receptor ion channels. © 1997 John Wiley & Sons, Inc.  相似文献   

6.
Realistic computer simulations of the experimentally established local spinal cord neural network generating swimming in the lamprey have been performed. Populations of network interneurons were used in which cellular properties, like cell size and membrane conductance including voltage dependent ion channels were randomly distributed around experimentally obtained mean values, as were synaptic conductances (kainate/AMPA, NMDA, glycine) and delays. This population model displayed more robust burst activity over a wider frequency range than the more simple subsample model used previously, and the pattern of interneuronal activity was appropriate. The strength of the reciprocal inhibition played a very important role in the regulation of burst frequency, and just by changing the inhibitory bias the entire physiological range could be covered. At the lower frequency range of bursting the segmental excitatory interneurons provide stability as does the activation of voltage dependent NMDA receptors. Spike frequency adaptation by means of summation of afterhyperpolarization (AHP) serves as a major burst terminating factor, and at lower rates the membrane properties conferred by the NMDA receptor activation. The lateral interneurons were not of critical importance for the burst termination. They may, however, be of particular importance for inducing a rapid burst termination during for instance steering and righting reactions. Several cellular factors combine to provide a secure and stable motor pattern in the entire frequency range.  相似文献   

7.
We have developed compact analog integrated circuits that simulate two synaptic excitatory conductances. A four-transistor circuit captures the dynamics of an excitatory postsynaptic current caused by a real AMPA conductance. A six-transistor circuit simulates the effects of a real voltage-dependent NMDA conductance. The postsynaptic current dynamics are modeled by a current mirror integrator with adjustable gain. The voltage dependence of the silicon NMDA conductance is realized by a differential pair. We show the operation of these silicon synaptic conductances and their integration with the silicon neuron (Mahowald and Douglas, 1991).  相似文献   

8.
The motor programme executed by the spinal cord to generate locomotion involves glutamate-mediated excitatory synaptic transmission. Using the neonatal rat spinal cord as an in vitro model in which the locomotor pattern was evoked by 5-hydroxytryptamine (5-HT), we investigated the role of N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptors in the generation of locomotor patterns recorded electrophysiologically from pairs of ventral roots. In a control solution, 5-HT (2.5-30 microM) elicited persistent alternating activity in left and right lumbar ventral roots. Increasing 5-HT concentration within this range resulted in increased cycle frequency (on average from 8 to 20 cycles min-1). In the presence of NMDA receptor antagonism, persistent alternating activity was still observed as long as 5-HT doses were increased (range 20-40 microM), even if locomotor pattern frequency was lower than in the control solution. In the presence of non-NMDA receptor antagonism, stable locomotor activity (with lower cycle frequency) was also elicited by 5-HT, albeit with doses larger than in the control solution (15-40 microM). When NMDA and non-NMDA receptors were simultaneously blocked, 5-HT (5-120 microM) always failed to elicit locomotor activity. These data show that the operation of one glutamate receptor class was sufficient to express locomotor activity. As locomotor activity developed at a lower frequency than in the control solution after pharmacological block of either NMDA or non-NMDA receptors, it is suggested that both receptor classes were involved in locomotor pattern generation.  相似文献   

9.
Locomotor burst generation is simulated using a full-scale network model of the unilateral excitatory interneuronal population. Earlier small-scale models predicted that a population of excitatory neurons would be sufficient to produce burst activity, and this has recently been experimentally confirmed. Here we simulate the hemicord activity induced under various experimental conditions, including pharmacological activation by NMDA and AMPA as well as electrical stimulation. The model network comprises a realistic number of cells and synaptic connectivity patterns. Using similar distributions of cellular and synaptic parameters, as have been estimated experimentally, a large variation in dynamic characteristics like firing rates, burst, and cycle durations were seen in single cells. On the network level an overall rhythm was generated because the synaptic interactions cause partial synchronization within the population. This network rhythm not only emerged despite the distributed cellular parameters but relied on this variability, in particular, in reproducing variations of the activity during the cycle and showing recruitment in interneuronal populations. A slow rhythm (0.4–2 Hz) can be induced by tonic activation of NMDA-sensitive channels, which are voltage dependent and generate depolarizing plateaus. The rhythm emerges through a synchronization of bursts of the individual neurons. A fast rhythm (4–12 Hz), induced by AMPA, relies on spike synchronization within the population, and each burst is composed of single spikes produced by different neurons. The dynamic range of the fast rhythm is limited by the ability of the network to synchronize oscillations and depends on the strength of synaptic connections and the duration of the slow after hyperpolarization. The model network also produces prolonged bouts of rhythmic activity in response to brief electrical activations, as seen experimentally. The mutual excitation can sustain long-lasting activity for a realistic set of synaptic parameters. The bout duration depends on the strength of excitatory synaptic connections, the level of persistent depolarization, and the influx of Ca2+ ions and activation of Ca2+-dependent K+ current.  相似文献   

10.
We hypothesized that blocking the activation of N-methyl-D-aspartate (NMDA) receptors prevents the initiation of walking-like activity and abolishes the ongoing rhythmic activity in the spinal cord-forelimb preparation from the mudpuppy. Robust walking-like movements of the limb and rhythmic alternating elbow flexor-extensor EMG pattern characteristic of walking were elicited when continuous perfusion of the spinal cord with solution containing D-glutamate. The frequency of the walking-like activity was dose-dependent on the concentration of D-glutamate in the bath over a range of 0.2 to 0.9 mmol/L. Elevation of potassium concentrations failed to induce walking-like activity. Application of the selective antagonist 2-amino-5-phosphonovalerate (AP-5) produced dose-dependent block of the initiation and maintenance of walking-like activity induced by D-glutamate. Complete block of the activity was achieved when the concentration of AP-5 reached 20 micromol/L. Furthermore, application of L-701,324 (a selective antagonist of the strychnine-insensitive glycine site of NMDA receptor) (1-10 micromol/L) also resulted in complete block of the walking-like activity. In contrast, application of the non-NMDA receptor antagonist 6-cyno-7-nitroquinoxaline-2,3-dione (CNQX) (1-50 micromol/L) induced a dose-dependent inhibition of the burst frequency but failed to result in a complete block. Only at concentration as high as 100 micromol/L, did CNQX cause complete block of the rhythmic activity, presumably through nonspecific action on the strychnine-insensitive glycine site of NMDA receptors. These results suggest that activation of NMDA receptors is required for the initiation and maintenance of walking-like activity. Operation of non-NMDA receptors plays a powerful role in the modulation of the walking-like activity in the mudpuppy.  相似文献   

11.
Glutamate receptors of the N-methyl-D-aspartate (NMDA) and non-NMDA type serve different functions during excitatory synaptic transmission. Although many central neurons bear both types of receptor, the evidence concerning the sensitivity of cerebellar Purkinje cells to NMDA is contradictory. To investigate the receptor types present in Purkinje cells, we have used whole-cell and outside-out patch-clamp methods to record from cells in thin cerebellar slices from young rats. At a holding potential of -70 mV (in nominally Mg(2+)-free medium, with added glycine) NMDA caused a whole-cell current response which consisted of a dramatic increase in the frequency of synaptic currents. In the presence of tetrodotoxin (TTX) and the gamma-aminobutyric acidA (GABAA) receptor antagonist bicuculline, spontaneous synaptic currents and responses to NMDA were inhibited. In a proportion of cells a small polysynaptic response to NMDA persisted, which was further reduced by the non-NMDA receptor antagonist 6-cyano-2,3-dihydro-7-nitroquinoxalinedione (CNQX). The non-NMDA glutamate receptor agonists kainate (KA), quisqualate (QA) and s-alpha-amino-3-hydroxy-5-methyl-4-isoazolepropionic acid (s-AMPA), evoked large inward currents due to the direct activation of receptors in Purkinje cells. NMDA applied to excised membrane patches failed to evoke any single-channel currents, whereas s-AMPA and QA caused small inward currents accompanied by marked increases in current noise. Spectral analysis of the s-AMPA noise in patches gave an estimated mean channel conductance of approximately 4 pS.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
K A Jones  R W Baughman 《Neuron》1991,7(4):593-603
N-methyl-D-aspartate (NMDA) and non-NMDA receptors play a key role in synaptic transmission and plasticity in the vertebrate central nervous system. Previous studies have suggested that although both receptor types are present at synapses, the NMDA receptors may be relatively uniformly distributed. We have combined iontophoretic mapping of NMDA and non-NMDA receptors with immunohistochemical localization of synaptic vesicles along dendrites of single neocortical neurons to determine the relationship between NMDA and non-NMDA receptor distribution and the location of synapses. We find that when corrections for glutamate diffusion are made, NMDA responses are concentrated at focal "hot spots" that coincide with non-NMDA hot spots and that there is an excellent correlation between these hot spots and synapses.  相似文献   

13.
Little is known about the role of the hindbrain during development of spinal network activity. We set out to identify the activity patterns of reticulospinal (RS) neurons of the hindbrain in fictively swimming (paralyzed) zebrafish larvae. Simultaneous recordings of RS neurons and spinal motoneurons revealed that these were coactive during spontaneous fictive swim episodes. We characterized four types of RS activity patterns during fictive swimming: (i) a spontaneous pattern of discharges resembling evoked high-frequency spiking during startle responses to touch stimuli, (ii) a rhythmic pattern of excitatory postsynaptic potentials (EPSPs) whose frequency was similar to the motoneuron EPSP frequency during swim episodes, (iii) an arrhythmic pattern consisting of tonic firing throughout swim episodes, and (iv) RS cell activity uncorrelated with motoneuron activity. Despite lesions to the rostral spinal cord that prevented ascending spinal axons from entering the hindbrain (normally starting at approximately 20 h), RS neurons continued to display the aforementioned activity patterns at day 3. However, removal of the caudal portion of the hindbrain prior to the descent of RS axons left the spinal cord network unable to generate the rhythmic oscillations normally elicited by application of N-methyl-d-aspartate (NMDA), but in approximately 40% of cases chronic incubation in NMDA maintained rhythmic activity. We conclude that there is an autonomous embryonic hindbrain network that is necessary for proper development of the spinal central pattern generator, and that the hindbrain network can partially develop independently of ascending input.  相似文献   

14.
I have developed a detailed biophysical model of the chemical synapse which hosts voltage-dependent presynaptic ion channels and takes into account the capacitance of synaptic membranes. I find that at synapses with a relatively large cleft resistance (e.g., mossy fiber or giant calyx synapse) the rising postsynaptic current could activate, within the synaptic cleft, electrochemical phenomena that induce rapid widening of the presynaptic action potential (AP). This mechanism could boost fast Ca(2+) entry into the terminal thus increasing the probability of subsequent synaptic releases. The predicted difference in the AP waveforms generated inside and outside the synapse can explain the previously unexplained fast capacitance transient recorded in the postsynaptic cell at the giant calyx synapse. I propose therefore the mechanism of positive ephaptic feedback that acts between the postsynaptic and presynaptic cell contributing to the basal synaptic transmission at large central synapses. This mechanism could also explain the supralinear voltage dependence of EPSCs recorded at hyperpolarizing membrane potentials in low extracellular calcium concentration.  相似文献   

15.
Based on our own data on generation of spindle-like field electrical activity in neuronal barrels of the rat somatic cortex and also on the published data on the properties of voltage-dependent channels in the membranes of cortical cells, we developed a model of the ensemble (simple network) of neurons connected by electrical synapses. Such connections were found earlier in neurophysiological and ultramicroscopic studies. Model neurons with membranes having sodium, potassium, and calcium channels described in the literature were capable of generating bursting rhythmic impulse activity under conditions of switching off of synaptic connections between cells (isolation). With switching on of electrical synapses, spiking generated by separate neurons, which initially was nonsynchronous, became synchronized in time. Ipso facto, we demonstrated the ability of pacemaker oscillatory activity to be electrotonically synchronized in ensembles of neurons connected with electrical synapses.  相似文献   

16.
Glutamate-activated N-methyl-D-aspartate (NMDA) receptors are ligand-gated ion channels which mediate synaptic transmission, long-term potentiation, synaptic plasticity and neurodegeneration via conditional Ca2+ signalling. Recent crystallographic studies have focussed on solving the structural determinant of the ligand binding within the core region of NR1 and NR2 subunits. Future structural analysis will help to understand the mechanism of native channel activation and regulation during synaptic transmission. A number of NMDA receptor ligands have been identified which act as positive or negative modulators of receptor function. There is evidence that the lipid bilayer can further regulate the activity of the NMDA receptor channels. Modulators of NMDA receptor function offer the potential for the development of novel therapeutics to target neurological disorders associated with this family of glutamate ion channel receptors. Here, we review the recent literature concerning structural and functional properties, as well as the physiological and pathological roles of NMDA receptor channels.  相似文献   

17.
It is known from the experimental data that at different cerebellar neurons there are voltage-dependent Ca2+ channels, NMDA receptors, metabotropic glutamate and GABAB receptors. This receptor arrangement ensures that activation of excitatory and inhibitory input results in changes in activity of protein kinases and phosphatases and subsequent modification of synaptic efficacy. The mechanism of synaptic plasticity is advanced that in accordance with the known experimental data concerning the modification of excitatory and inhibitory inputs to Purkinje cells, granule cells, and deep cerebellar nuclei cells. The mechanism is based on a postulate that phosphorylation/dephosphorylation of AMPA (GABAA) receptors on cerebellar cells causes the LTP/LTD of excitatory (LTD/LTP of inhibitory) transmission. It is assumed that modification rules for Purkinje cells, granule cells, and deep cerebellar nuclei cells, wherein cGMP-dependent protein kinase G is involved in synaptic plasticity, are distinct from those of hippocampal/neocortical cells, wherein cAMP-dependent protein kinase A is involved in synaptic plasticity, since cGMP (cAMP) concentration decreases (increases) with Ca2+ rise.  相似文献   

18.
The light-activated channels of Drosophila photoreceptors transient receptor potential (TRP) and TRP-like (TRPL) show voltage-dependent conductance during illumination. Recent studies implied that mammalian members of the TRP family, which belong to the TRPV and TRPM subfamilies, are intrinsically voltage-gated channels. However, it is unclear whether the Drosophila TRPs, which belong to the TRPC subfamily, share the same voltage-dependent gating mechanism. Exploring the voltage dependence of Drosophila TRPL expressed in S2 cells, we found that the voltage dependence of this channel is not an intrinsic property since it became linear upon removal of divalent cations. We further found that Ca(2+) blocked TRPL in a voltage-dependent manner by an open channel block mechanism, which determines the frequency of channel openings and constitutes the sole parameter that underlies its voltage dependence. Whole cell recordings from a Drosophila mutant expressing only TRPL indicated that Ca(2+) block also accounts for the voltage dependence of the native TRPL channels. The open channel block by Ca(2+) that we characterized is a useful mechanism to improve the signal to noise ratio of the response to intense light when virtually all the large conductance TRPL channels are blocked and only the low conductance TRP channels with lower Ca(2+) affinity are active.  相似文献   

19.
Glutamate-activated N-methyl-D-aspartate (NMDA) receptors are ligand-gated ion channels, which mediate synaptic transmission, long-term potentiation, synaptic plasticity and neurodegeneration via conditional Ca(2+) signalling. Recent crystallographic studies have focussed on solving the structural determinant of the ligand binding within the core region of NR1 and NR2 subunits. Future structural analysis will help to understand the mechanism of native channel activation and regulation during synaptic transmission. A number of NMDA receptor ligands have been identified which act as positive or negative modulators of receptor function. There is evidence that the lipid bilayer can further regulate the activity of the NMDA receptor channels. Modulators of NMDA receptor function offer the potential for the development of novel therapeutics to target neurological disorders associated with this family of glutamate ion channel receptors. Here, we review the recent literature concerning structural and functional properties, as well as the physiological and pathological roles of NMDA receptor channels.  相似文献   

20.
Locomotion rhythms are thought to be generated by neurons in the central-pattern-generator (CPG) circuit in the spinal cord. Synaptic connections in the CPG and pacemaker properties in certain CPG neurons, both may contribute to generation of the rhythms. In the half-center model proposed by Graham Brown a century ago, reciprocal inhibition plays a critical role. However, in all vertebrate preparations examined, rhythmic motor bursts can be induced when inhibition is blocked in the spinal cord. Without inhibition, neuronal pacemaker properties may become more important in generation of the rhythms. Pacemaker properties have been found in motoneurons and some premotor interneurons in different vertebrates and they can be dependent on N-Methyl-d-aspartate (NMDA) receptors (NMDAR) or rely on other ionic currents like persistent inward currents. In the swimming circuit of the hatchling Xenopus tadpole, there is substantial evidence that emergent network properties can give rise to swimming rhythms. During fictive swimming, excitatory interneurons (dINs) in the caudal hindbrain fire earliest on each swimming cycle and their spikes drive the firing of other CPG neurons. Regenerative dIN firing itself relies on reciprocal inhibition and background excitation. We now find that the activation of NMDARs can change dINs from firing singly at rest to current injection to firing repetitively at swimming frequencies. When action potentials are blocked, some intrinsic membrane potential oscillations at about 10 Hz are revealed, which may underlie repetitive dIN firing during NMDAR activation. In confirmation of this, dIN repetitive firing persists in NMDA when synaptic transmission is blocked by Cd(2+). When inhibition is blocked, only dINs and motoneurons are functional in the spinal circuit. We propose that the conditional intrinsic NMDAR-dependent pacemaker firing of dINs can drive the production of swimming-like rhythms without the participation of inhibitory neurotransmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号