首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 2 毫秒
1.
Studies of biodiversity–ecosystem function in treed ecosystems have generally focused on aboveground functions. This study investigates intertrophic links between tree diversity and soil microbial community function and composition. We examined how microbial communities in surface mineral soil responded to experimental gradients of tree species richness (SR ), functional diversity (FD ), community‐weighted mean trait value (CWM ), and tree identity. The site was a 4‐year‐old common garden experiment near Montreal, Canada, consisting of deciduous and evergreen tree species mixtures. Microbial community composition, community‐level physiological profiles, and respiration were evaluated using phospholipid fatty acid (PLFA ) analysis and the MicroResp? system, respectively. The relationship between tree species richness and glucose‐induced respiration (GIR ), basal respiration (BR ), metabolic quotient (qCO 2) followed a positive but saturating shape. Microbial communities associated with species mixtures were more active (basal respiration [BR ]), with higher biomass (glucose‐induced respiration [GIR ]), and used a greater number of carbon sources than monocultures. Communities associated with deciduous tree species used a greater number of carbon sources than those associated with evergreen species, suggesting a greater soil carbon storage capacity. There were no differences in microbial composition (PLFA ) between monocultures and SR mixtures. The FD and the CWM of several functional traits affected both BR and GIR . In general, the CWM of traits had stronger effects than did FD , suggesting that certain traits of dominant species have more effect on ecosystem processes than does FD . Both the functions of GIR and BR were positively related to aboveground tree community productivity. Both tree diversity (SR ) and identity (species and functional identity—leaf habit) affected soil microbial community respiration, biomass, and composition. For the first time, we identified functional traits related to life‐history strategy, as well as root traits that influence another trophic level, soil microbial community function, via effects on BR and GIR .  相似文献   

2.
Previous studies from Central Europe and North America showed that species richness is higher in urban than in rural landscapes. Do protected areas, which can be found in both city and countryside, reflect this species richness pattern? The impact of urban land-use might reduce conservation success and necessitate special management strategies. We compared species richness and species spatial turnover of selected animal and plant taxa (carabids, butterflies, snails, birds, lichens, mosses, vascular plants) in 30 protected areas in the city of Halle and 56 protected areas in the adjacent rural district of Saalkreis (Central Germany). Species were mapped by experienced biologists within a systematic species inventory. We corrected species numbers for the effects of landscape structure (e.g. size, shape and distance of habitats) which might influence species diversity beyond urbanisation effects. Butterflies, birds and lichens had significantly higher species numbers in the rural protected areas. Species spatial turnover was higher among urban areas than among rural areas or pairs of urban and rural areas for most taxa. Diversity in all taxa depended on the size of a protected area. We discussed these patterns in the context of the general urban-rural species diversity patterns. Our results indicate an increasing isolation of species assemblages with urbanisation and highlight that space for protected areas is even more limited in urban than rural areas. An effective conservation of urban species diversity should include both typical urban and semi-natural habitats to cover the full range of species living in cities.  相似文献   

3.
4.
Recently, nomina such as “Homo heidelbergensis” and “H. ergaster” have been resurrected to refer to fossil hominids that are perceived to be specifically distinct from Homo sapiens and Homo erectus. This results in a later human fossil record that is nearly as speciose as that documenting the earlier history of the family Hominidae. However, it is agreed that there remains only one extant hominid species: H. sapiens. Has human taxonomic diversity been significantly pruned over the last few hundred millennia, or have the number of taxa been seriously overestimated? To answer this question, the following null hypothesis is tested: polytypism was established relatively early and the species H. erectus can accommodate all spatio-temporal variation from ca. 1.7 to 0.5 Ma. A disproof of this hypothesis would suggest that modern human polytypism is a very recent phenomenon and that speciation throughout the course of human evolution was the norm and not the exception. Cranial variation in a taxonomically mixed sample of fossil hominids, and in a modern human sample, is analyzed with regard to the variation present in the fossils attributed to H. erectus. The data are examined using both univariate (coefficient of variation) and multivariate (determinant) analyses. Employing randomization methodology to offset the small size and non-normal distribution of the fossil samples, the CV and determinant results reveal a pattern and degree of variation in H. erectus that most closely approximates that of the single species H. sapiens. It is therefore concluded that the null hypothesis cannot be rejected. © 1993 Wiley-Liss, Inc.  相似文献   

5.
A central goal in ecology is to develop theories that explain the diversity and distribution of species. The evolutionary history of species and their functional traits may provide mechanistic links between community assembly and the environment. Such links may be hierarchically structured such that the strength of environmental filtering decreases in a step‐wise manner from regional conditions through landscape heterogeneity to local habitat conditions. We sampled the wild bee species assemblages in power‐line strips transecting forests in south‐eastern Norway. We used altitude, landscape diversity surrounding sites and plant species composition, together with total plant cover as proxies for regional, landscape and local environmental filters, respectively. The species richness and abundance of wild bees decreased with altitude. The reduction in species richness and abundance was accompanied by a phylogenetic clustering of wild bee individuals. Furthermore, regional filters followed by local filters best explained the structure of the functional species composition. Sites at high altitudes and sites with Ericaceae‐dominated plant communities tended to have larger bees and a higher proportion of social and spring‐emerging bees. When Bombus species were excluded from the analysis, the proportion of pollen specialists increased with the dominance of Ericaceae. Furthermore, we also found that the taxonomic, phylogenetic and functional compositional turnover between sites was higher in the northern region than in the southern part of the study region. Altogether, these results suggest that regional filters drive the species richness and abundance in trait‐groups whereas local filters have more descrete sorting effects. We conclude that the model of multi‐level environmental filters provides a good conceptual model for community ecology. We suggest that future studies should focus on the relationship between the biogeographical history of species and their current distribution, and on the assumption that closely related species do indeed compete more intensely than distantly related species.  相似文献   

6.
Aim To study the effects of the degree of fragmentation of heathland patches on their species richness and species composition, and to infer the ecological mechanisms behind the observed patterns. Location The heathland patches of the north‐western part of Flanders, Belgium. During the last 200 years, the heathland area in this study area has been reduced from c. 10,000 to c. 40 ha, yielding c. 150 small and highly isolated relic fragments. Methods Different isolation measures were calculated for each of the 153 inventoried heathland patches. The influence of isolation, area and habitat diversity on species richness was investigated using correlation techniques. Community composition of the patches was tested for nestedness, and the mechanisms potentially underlying this pattern were determined. Results and main conclusions Both the analyses at the species richness and community composition level yielded evidence for a positive species–area relation. This relation was not caused by higher habitat heterogeneity in larger patches. Patch isolation, measured in different ways, however seemed much more important in explaining species richness and community composition than fragment area. Our results indicate that area effects are overcompensated by the rescue‐effect: if a patch is close to other patches, species can disperse between them and prevent the species from going extinct. Species having a short living seed bank were also more sensitive to isolation than species with a long living seed bank, indicating that the latter most probably depend on the seed bank to survive periods when environmental conditions are harsh. Analogously to the spatial rescue‐effect, the existence of a persistent seed bank may lead to a sort of temporal rescue‐effect, where the extinction of a plant species is prevented through survival in the seed bank of a patch.  相似文献   

7.
The pattern of parasite species diversification and specialization, appreciated by host range, is investigated in fish parasites. We test whether host range is linked with phylogeny at a high taxonomic level, and if there is a relationship between host range and host species diversification. For this purpose we used two sets of data, one on macro-parasites of marine fishes of the Mediterranean Sea and the other on macro-parasites of marine and freshwater fishes of Canada. Similar patterns of host range among parasitic groups were found. Our findings suggest that habitat (marine vs freshwater) and geographic localization (Canada vs Mediterranean region) play little role in determining the observed patterns of host range. We highlight the potential influence of phylogeny (high-taxonomic level) on the level host range in parasites. We find that parasites with free-swimming larval stages and with direct life cycles have a narrower range of host species than do parasites with indirect life cycle, even if we cannot control for phylogenetic effects because of the lack of variation of life cycles within each parasitic group. Finally, a positive relationship was found between the number of known hosts and parasite species diversity in the case of Mediterranean parasite species. The relationship between host range and species diversification should be related to the mechanism of cospeciation.  相似文献   

8.
High biodiversity is an important component of sustainable agricultural systems, and previous studies have found that increases in the diversity of the natural enemies of pests are associated with decreases in pest populations. Weaver ants are well known for their highly territorial and aggressive behaviour and for their control efficiency of many insect pests in tropical crop trees. Because of this, the ants have been used as a key component in integrated pest management (IPM) programmes for tropical crop trees. In implementing the IPM programmes, we received a number of enquiries related to whether weaver ants have negative effects on arthropod diversity and other natural enemies in orchard systems due to their aggressive behaviour. To answer these questions, we regularly sampled canopy arthropods in cashew and mango orchards in the Northern Territory of Australia in 1996, 2002 and 2003. We sampled, using a vacuum sampler, orchards with and without weaver ants. Cashew and mango plots with abundant weaver ants had similar or higher canopy arthropod and natural enemy diversity and similar ratios of natural enemies to insect pests, compared with plot where the weaver ant was absent. The study also showed that the application of insecticides reduced arthropod diversity and the ratio of natural enemies to insect pests in a mango orchard. However, insecticide spray did not affect natural enemy diversity and abundance, which may be related to a high immigration rate of natural enemies in small plots surrounded by areas that were not sprayed.  相似文献   

9.
Abstract. Indices of β‐diversity are of two major types, (1) those that measure among‐plot variability in species composition independently of the position of individual plots on spatial or environmental gradients, and (2) those that measure the extent of change in species composition along predefined gradients, i.e. species turnover. Failure to recognize this distinction can lead to the inappropriate use of some β‐diversity indices to measure species turnover. Several commonly‐used indices of β‐diversity are based on Whittaker's βW (βW = γ/α, where γ is the number of species in an entire study area and α is the number of species per plot within the study area). It is demonstrated that these indices do not take into account the distribution of species on spatial or environmental gradients, and should therefore not be used to measure species turnover. The terms ‘β‐diversity’ and ‘species turnover’ should not be used interchangeably. Species turnover can be measured using matrices of compositional similarity and physical or environmental distances among pairs of study plots. The use of indices of β‐diversity and similarity‐distance curves is demonstrated using simulated data sets.  相似文献   

10.
11.
12.
Aim Spatial variation in the diversity of fleas parasitic on small mammals was examined to answer three questions. (1) Is the diversity of flea assemblages repeatable among populations of the same host species? (2) Does similarity in the composition of flea assemblages among populations of the same host species decay with geographical distance, with decreasing similarity in the composition of local host faunas, or with both? (3) Does the diversity of flea assemblages correlate with climatic variables? Location The study used previously published data on 69 species of small mammals and their fleas from 24 different regions of the Holarctic. Methods The diversity of flea assemblages was measured as both species richness and the average taxonomic distinctness of their component species. Similarity between flea assemblages was measured using both the Jaccard and Morisita–Horn indices, whereas similarity in the composition of host faunas between regions (host ‘faunal’ distance) was quantified using the Jaccard index. Where appropriate, a correction was made for the potentially confounding influence of phylogeny using the independent contrasts method. Results Flea species richness varied less within than among host species, and is thus a repeatable host species character; the same was not true of the taxonomic distinctness of flea assemblages. In almost all host species found in at least five regions, similarity in flea assemblages decreased with increases in either or both geographical and faunal distance. In most host species, the diversity of flea assemblages correlated with one or more climatic variable, in particular mean winter temperature. Main conclusions Spatial variation in flea diversity among populations of the same mammal species is constrained by the fact that it appears to be a species character, but is also driven by local climatic conditions. The results highlight how ecological processes interact with co‐evolutionary history to determine local parasite biodiversity.  相似文献   

13.
14.
Microsatellite variability is widely used to infer levels of genetic diversity in natural populations. However, the ascertainment bias caused by typically selecting only the most polymorphic markers in the genome may lead to reduced sensitivity for judging genome-wide levels of genetic diversity. To test this potential limitation of microsatellite-based approaches, we assessed the degree of nucleotide diversity in noncoding regions of eight different carnivore populations, including inbred as well as outbred populations, by sequencing 10 introns (5.4–5.7 kb) in 20 individuals of each population (wolves, coyotes, wolverines and lynxes). Estimates of nucleotide diversity varied 30-fold (7.1 × 10−5 –2.1 × 10−3), with densities of one single nucleotide polymorphism every 112–5446 bp. Microsatellite genotyping (10–27 markers) of the same animals revealed mean multilocus heterozygosities of 0.54–0.78, a 1.4-fold difference among populations. There was a positive yet not perfect ( r 2  = 0.70) correlation between microsatellite marker heterozygosity and nucleotide diversity at the population level. For example, point estimates of nucleotide diversity varied in some cases with an order of magnitude despite very similar levels of microsatellite marker heterozygosity. Moreover, at the individual level, no significant correlation was found. Our results imply that variability at microsatellite marker sets typically used in population studies may not accurately reflect the underlying genomic diversity. This suggests that researchers should consider using resequencing-based approaches for assessing genetic diversity when accurate inference is critical, as in many conservation and management contexts.  相似文献   

15.
Historically, morphological variation has been used to classify many species (and subspecies) of Lepidoptera. However, some of this variation may be unsuitable for inferring the recent evolutionary history of populations. Genetic data provide an alternative. We examine the morphological and genetic variation within and between British subspecies of Coenonympha tullia (Müller 1764) to test the hypothesis that neutral genetic variation corresponds to morphological variation. We find that most morphological and genetic variation occurs within populations and that those populations designated as subspecies based on morphological characters are not necessarily most closely related for mitochondrial DNA or nuclear DNA (amplified fragment length polymorphisms and allozymes). Thus, the notion that wing spot variation reflects population isolation and therefore genetic differentiation does not hold. The present study highlights the need for genetic data where taxonomy may be based on environmentally plastic or locally adapted characters because such characters will not reflect the true population genetic history.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 314–327.  相似文献   

16.
We review a series of related publications that combine higher‐level phylogenies of weevils (Coleoptera: Curculionoidea) with host plant information to explain the success of this megadiverse lineage in the context of a co‐evolutionary escape‐and‐radiation hypothesis. We argue that the authors' approach is marred by the cumulative effect of: (1) inadequate taxon sampling, particularly within the most diverse family Curculionidae; (2) insufficient reconciliation of systematic evidence, including the reassessment of morphological characters and necessary classificatory emendations; (3) exceedingly wide concepts of ecological similarity, leading to uninformative tests of adaptation; (4) insufficient resolution of the temporal sequence of associated weevil and angiosperm radiations; and (5) inadequate consideration of alternatives to the escape‐and‐radiation hypothesis. As a result, there are very few new and reliable inferences about the evolutionary success of weevils that depend precisely on the phylogenetic data presented in these studies. Improved taxon sampling alone is not the solution, because the existing mid‐level classification of weevils is too deficient to permit inferences about natural lineages and their ancestral traits. We therefore recommend abandoning such an approach in favour of more narrowly focused reconstructions of the evolutionary history of generic and tribal groupings.  相似文献   

17.
Aim The aim of community‐level modelling is to improve the performance of species distributional models by taking patterns of co‐occurrence among species into account. Here, we test this expectation by examining how well three community‐level modelling strategies (‘assemble first, predict later’, ‘predict first, assemble later’, and ‘assemble and predict together’) spatially project the observed composition of species assemblages. Location Europe. Methods Variation in the composition of European tree assemblages and its spatial and environmental correlates were examined with cluster analysis and constrained analysis of principal coordinates. Results were used to benchmark spatial projections from three community‐based strategies: (1) assemble first, predict later (cluster analysis first, then generalized linear models, GLMs); (2) predict first, assemble later (GLMs first, then cluster analysis); and (3) assemble and predict together (constrained quadratic ordination). Results None of the community‐level modelling strategies was able to accurately model the observed distribution of tree assemblages in Europe. Uncertainty was particularly high in southern Europe, where modelled assemblages were markedly different from observed ones. Assembling first and predicting later led to distribution models with the simultaneous occurrence of several types of assemblages in southern Europe that do not co‐occur, and the remaining strategies yielded models with the presence of non‐analogue assemblages that presently do not exist and that are much more strongly correlated with environmental gradients than with the real assemblages. Main conclusions Community‐level models were unable to characterize the distribution of European tree assemblages effectively. Models accounting for co‐occurrence patterns along environmental gradients did not outperform methods that assume individual responses of species to climate. Unrealistic assemblages were generated because of the models’ inability to capture fundamental processes causing patterns of covariation among species. The usefulness of these forms of community‐based models thus remains uncertain and further research is required to demonstrate their utility.  相似文献   

18.
A recent study by Väli et al. (2008) highlights that microsatellites will often provide a poor prediction of the genome‐wide nucleotide diversity of wild populations, but does not fully explain why. To clarify and stress the importance of identity disequilibrium and marker variability for correlations between multilocus heterozygosity and genome‐wide genetic variability, we performed a simple simulation with different types of markers, corresponding to microsatellites and SNPs, in populations with different inbreeding history. The importance of identity disequilibrium was apparent for both markers and there was a clear impact of marker variability.  相似文献   

19.
Recent empirical studies have found evidence of increased biomass production ('overyielding') in species mixtures relative to monoculture, but the interpretation of these results remains controversial, in part, because of the lack of a theoretical expectation. Here, we examined the expected frequency and stability of overyielding species mixtures using Lotka-Volterra models of species dynamics in two- and four-species systems in conjunction with community, population, and specific rate of biomass production (SRP) definitions of overyielding. Overyielding plant mixtures represented > 55% of potential species assemblages under community definitions and approximately 100% of species were either overyielding or underyielding under the population definition. Our species simulations approached their equilibria in 1-2 yr, supporting the relevancy of an equilibrial analysis. The range of parameter space that we explored produced realistic values of plot biomass, supporting their biological relevance. We show that overyielding is expected to be common under community definitions and population definitions. Overyielding, under community or population definitions, does not imply an actual increase in the specific rate of biomass production. In addition, assemblages of overyielding and underyielding species under all three definitions can be stable over time with underyielding species persisting in the presence of overyielding species.  相似文献   

20.
Recent null models that place species ranges randomly within a bounded domain have produced controversial results. Many such geometric constraint models predict a peak in species richness in the centre of domains in the absence of underlying environmental gradients or interspecific interactions. We used two-dimensional simulation models to explore different ways that species ranges could interact with the domain boundary. In the rejection model, a randomly generated range that overlaps a domain boundary is removed from the simulation. In the reshaping model, a range that overlaps the domain boundary is reshaped so that the entire range is placed within the domain. The truncation model allows potential ranges to extend across the boundary, but only that portion of the range within the domain is included in the realized range. Both rejection and reshaping models produced a drop in species richness near domain boundaries, though the effect was less pronounced in the reshaping model. Our truncation model did not produce any spatial pattern in species richness. Thus the random placement of species ranges within a bounded domain does not necessarily lead to a mid-domain effect.
  Range truncation is consistent with bioclimate envelope models, which can successfully predict a species range in response to the availability of appropriate climate conditions. We argue that such flexible range sizes are more realistic than the assumption that range size is an unvarying characteristic of a species. Other range characteristics, including size and shape, can change near domain boundaries in the null models, including the truncation model. A broader consideration of range characteristics near domain boundaries could be productive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号