首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Predation risk tends to vary in time. Thus prey animals face a problem of allocating feeding and antipredator effort across different risk situations. A recent model of Lima and Bednekoff (1999) predicts that a prey should allocate more feeding effort to low risk situations and more antipredator effort to high risk situations with increasing relative degree of risk in high risk situations (attack ratio). Furthermore when the proportion of time the prey spends in the high risk situation (p) increases, the prey have to eventually feed also in the high risk situations. However the increase in feeding effort in low risk situations should clearly exceed that in high risk situations as p increases. To test these predictions we measured feeding effort of field voles (Microtus agrestis) exposed to varying presence of least weasel (Mustela nivalis) and its feces in laboratory conditions. We generated quantitative predictions by estimating attack ratios from results of a pilot experiment. The model explained 15% of the observed variation in feeding effort of voles. Further analyses indicated that feeding effort was lower in high risk situations than in low risk situations at high attack ratio, but not at a lower one. Voles exposed to a presence of a weasel for extended periods showed signs of nutritional stress. Still we did not find any increase in feeding effort with increasing p. This was obviously due to the relatively low maximal p we used as we included only conditions likely to occur in nature.  相似文献   

2.
The risk allocation hypothesis predicts that temporal variationin predation risk can influence how animals allocate feedingbehavior among situations that differ in danger. We testedthe risk allocation model with tadpoles of the frog Rana lessonae,which satisfy the main assumptions of this model because theymust feed to reach metamorphosis within a single season, theirbehavioral defense against predators is costly, and they canrespond to changes in risk integrated over time. Our experiment switched tadpoles between artificial ponds with different numbersof caged dragonfly larvae and held them at high and low riskfor different portions of their lives. Tadpoles responded stronglyto predators, but they did not obey the risk allocation hypothesis:as the high-risk environment became more dangerous, there wasno tendency for tadpoles to allocate more feeding to the low-riskenvironment, and as tadpoles spent more time at risk, they didnot increase feeding in both environments. Our results suggestthat the model might be more applicable when the time spentunder high predation risk is large relative to the time requiredto collect resources.  相似文献   

3.
Temporal variation in predation risk may fundamentally influence antipredator responses of prey animals. To maximize lifetime fitness, prey must be able to optimize energy gain and minimize predation risk, and responses to current levels of risk may be influenced by background levels of risk. A ‘risk allocation’ model has recently been proposed to predict the intensity of antipredator responses that should occur as predation risk varies over time. Prey animals from high‐risk environments should respond to predators with relatively low intensities of antipredator behaviour because long periods of antipredator behaviour may result in unacceptable decreases in levels of foraging activity. Moreover, animals that are under frequent risk should devote more energy to foraging during brief pulses of safety compared with animals under infrequent attack. In this study, we experimentally tested the risk allocation hypothesis. We exposed juvenile rainbow trout, Oncorhynchus mykiss, to three levels of risk (high, moderate and low) crossed with two levels of temporal variation (exposed to risk three times a day and once a day). In accordance with the model, we found that trout exposed to risky situations more frequently responded with significantly less intense antipredator behaviour than trout exposed to risk infrequently. The intensity of response of trout exposed to moderate risk three times a day decreased to levels similar to situations of no risk. However, in contrast to the second prediction of the model, animals under frequent risk were not more active during periods of safety compared with animals under infrequent risk. Although behaviour in the face of predation risk was dependent on the broader temporal context in which risk varied, the specific predictions of the risk allocation model were only partly supported.  相似文献   

4.
Prey animals are often confronted with situations that differ in predation risk. According to the risk allocation hypothesis, prey animals should adaptively allocate antipredator behaviour in accordance with the magnitude and frequency of those risk situations. According to the first prediction prey animals should increase foraging in the safe situations and decrease foraging in the dangerous situations as these situations become relatively more dangerous. The second prediction is that with increased time spent in the dangerous situations, progressively more foraging effort is shown in both the dangerous and safe situations, especially in the safer ones. Prey animals may, however, show maladaptive behaviour due to behavioural correlations across risk situations. Here we test for the first time both predictions generated by the risk allocation hypothesis while considering behavioural correlations. We reared larvae of the damselfly Ischnura elegans, from the egg stage, under five rearing risk conditions: (i) in isolation, (ii) in the presence of conspecific larvae, (iii) in the presence of one fish, (iv) in the presence of two fish, and (v) in the presence of two fish for 50% of the time. For each rearing risk condition, we scored their behaviour in the absence and in the presence of fish. In accordance with the first prediction, in the absence of a predator, larvae reared under increasing risk conditions increased their level of foraging. In accordance with the second prediction, in the absence of a predator, larvae that were more frequently exposed to fish during rearing, increased foraging. However, opposite to the predictions from the risk allocation hypothesis, foraging increased both with increasing rearing risk, and with increased predator exposure frequency. The observed positive behavioural correlation of foraging activity across test situations with and without fish, may generate the combination of adaptive patterns in the absence of fish and the maladaptive patterns in the presence of fish. Former studies of the risk allocation hypothesis also found, at best, mixed support, and we hypothesize that behavioural correlations across risk situations, if present, will likely cause partial deviations from model predictions.  相似文献   

5.
Loss of foraging opportunities and intraspecific competition for prey may be important costs of using refuges, because a hiding animal is unable to use or defend its foraging area from conspecific intrusions. Thus, animals should balance antipredator demands with other requirements in deciding when to come out from a refuge after a predators unsuccessful attack. Observations on foraging and social interactions of backswimmers Notonecta maculata suggest that foraging may be costly in terms of intraspecific agonistic interactions. When prey density is low, increasing the probability of finding a prey may require active exploration of a larger area, but this also increases the probability of encountering a competitor. After simulated exposure to predators, unfed bugs resumed feeding positions after a significantly shorter hiding period than recently fed bugs. We hypothesized that hiding time may also be reduced by recent interactions with conspecific competitors, due to an increased perceived need to defend feeding opportunities. Thus, when a predator attack occurred immediately after an agonistic conspecific interaction, backswimmers resumed feeding positions more quickly, and closer to the original position from which they were disturbed, suggesting short-term defense of particular positions. We conclude that when foraging, backswimmers balance the benefits of finding prey with the costs of predation risk and social interference in deciding their foraging strategy.Communicated by P.K. McGregor  相似文献   

6.
Indirect interaction between two competing species via a shared predator may be an important determinant of population and community dynamics. We studied the effect of predation risk imposed by the least weasel Mustela nivalis nivalis on space use, foraging and activity of two competing vole species, the grey-sided vole Myodes rufocanus, and the bank vole Myodes glareolus. The experiment was conducted in a large indoor arena, consisting of microhabitat structures providing food, shelter, trees for refuge and separated areas with high and low predation risk. Voles were followed for 5 days: 2 days before, 1 day during and 2 days after the presence of weasel. Our results suggest an effect of weasel presence on the vole community. Voles of both species shifted their activity from risky to less risky areas, climbed trees more often and were less active. Seed consumption was not affected by weasel presence. The time spent in the risky and less risky area did not differ between species, but bank voles spent more time in trees than grey-sided voles. Males of both species were more exposed to predation risk than females, i.e. generally spent more time in the risky area. Proportion of time spent in the risky area, the use of area, trees and food stations were sex dependent. Activity and use of trees were species dependent. We found no evidence for despotic distribution between our two species, although bank voles seemed to be more affected by coexistence, since they lost weight during the experiment. Based on our results we conclude that predator response was largely similar between species, while the sex-specific responses dominated. Besides a stronger escape response in the bank vole, the strongest individual differences were sex specific, i.e. males were more prone to take risks in space use and activity.  相似文献   

7.
Temporal variation of antipredatory behavior and a uniform distribution of predation risk over refuges and foraging sites may create foraging patterns different from those anticipated from risk in heterogenous habitats. We studied the temporal variation in foraging behavior of voles exposed to uniform mustelid predation risk and heterogeneous avian predation risk of different levels induced by vegetation types in eight outdoor enclosures (0.25 ha). We manipulated mustelid predation risk with weasel presence or absence and avian predation risk by reducing or providing local cover at experimental food patches. Foraging at food patches was monitored by collecting giving-up densities at artificial food patches, overall activity was automatically monitored, and mortality of voles was monitored by live-trapping and radiotracking. Voles depleted the food to lower levels in the sheltered patches than in the exposed ones. In enclosures with higher avian predation risk caused by lower vegetation height, trays were depleted to lower levels. Unexpectedly, voles foraged in more trays and depleted trays to lower levels in the presence of weasels than in the absence. Weasels match their prey's body size and locomotive abilities and therefore increase predation risk uniformly over both foraging sites and refuge sites that can both be entered by the predator. This reduces the costs of missing opportunities other than foraging. Voles changed their foraging strategy accordingly by specializing on the experimental food patches with predictable returns and probably reduced their foraging in the matrix of natural food source with unpredictable returns and high risk to encounter the weasel. Moreover, after 1 day of weasel presence, voles shifted their main foraging activities to avoid the diurnal weasel. This behavior facilitated bird predation, probably by nocturnal owls, and more voles were killed by birds than by weasels. Food patch use of voles in weasel enclosures increased with time. Voles had to balance the previously missed feeding opportunities by progressively concentrating on artificial food patches.  相似文献   

8.
Mortality by moonlight: predation risk and the snowshoe hare   总被引:1,自引:0,他引:1  
Optimal behavior theory suggests that prey animals will reduceactivity during intermittent periods when elevated predationrisk outweighs the fitness benefits of activity. Specifically,the predation risk allocation hypothesis predicts that preyactivity should decrease dramatically at times of high predationrisk if there is high temporal variation in predation risk butshould remain relatively uniform when temporal variation inpredation risk is low. To test these predictions we examinedthe seasonably variable response of snowshoe hares to moonlightand predation risk. Unlike studies finding uniform avoidanceof moonlight in small mammals, we find that moonlight avoidanceis seasonal and corresponds to seasonal variation in moonlightintensity. We radio-collared 177 wild snowshoe hares to estimatepredation rates as a measure of risk and used movement distancesfrom a sample of those animals as a measure of activity. Inthe snowy season, 5-day periods around full moons had 2.5 timesmore predation than around new moons, but that ratio of theincreased predation rate was only 1.8 in the snow-free season.There was no significant increase in use of habitats with morehiding cover during full moons. Snowshoe hares' nightly movementdistances decreased during high-risk full-moon periods in thesnowy season but did not change according to moon phase in thesnow-free season. These results are consistent with the predationrisk allocation hypothesis.  相似文献   

9.
Herbivores are thought to respond to the increased risk of attack by predators during foraging activities by concentrating feeding in safe habitats and by reducing feeding in the presence of predators. We tested these hypotheses by comparing tree seedling predation by meadow voles within large outdoor enclosures treated either with scent of large mammalian predators (red fox, bobcat, coyote) or a control scent (vinegar). In addition, we compared the distribution of voles in relation to naturally occurring variation in vegetation cover and the tendency of voles to attack tree seedlings planted in small patches with cover manipulation (intact, reduced or removed cover). Predator scent did not affect the rate or spatial distribution of tree seedling predation by voles, nor did it affect giving up densities (a surrogate of patch quitting harvest rate), survival rates, body size or habitat distribution of voles. In both predator scent and vinegar treatments voles preferred abundant vegetation providing good cover, which was also the site of almost all tree seedling predation. We conclude that large mammalian predator scent does not influence the perception by voles of the general safety of habitat, which is more strongly affected by the presence of cover.  相似文献   

10.
We studied the potential influence of predation risk on the competitive ability and habitat use of foraging perch and the effect of these interactions on growth. Groups of four similar-sized young-of-the-year perch were in visual contact with a piscivorous perch during feeding. The fry had the choice of vegetation and open habitat, with food presented in the open habitat. Competitive ability, defined as proportion of prey attacks, varied between perch individuals and was unaffected by predation risk. The variation in proportion of prey attacks was affected by relative size within each replicate group, despite small size differences (±1 mm), with the largest individual being a better competitor than the smallest ones. The degree of boldness, measured as the proportion of time spent in the open habitat, was significantly related to both competitive ability and prey attack order. Observations of aggressive behaviour indicated a possible occurrence of interference competition, which may contribute to the appearance of different competitive abilities between individuals within a group of perch. A significant correlation was found between competitive ability and growth. Growth variation within groups was not affected by predation risk.  相似文献   

11.
Nonlinearity in the predation risk of prey mobility   总被引:6,自引:0,他引:6  
Odorous waste products such as urine and faeces are unavoidable for most animals and are widely exploited by predators and their prey. Consequently, waste accumulations can be risky and prey which increase their mobility in order to disperse and dilute their waste should avoid a high predation risk until this benefit is balanced by the increasing risks of random predator encounter. This hypothesis was tested for voles (Microtus spp.) in Finland which are vulnerable to predation due to the scent and ultraviolet attractiveness of their urine. The mortality and mobility of radio-collared voles showed a U-shaped relationship, regardless of vole sex, species or population cycle phase. The low risks for prey making intermediate movements suggest that predation risk can exert strong selective pressures on prey such that they have little respite from the risk of being killed.  相似文献   

12.
We know little about how temporally variable predation risk influences prey behavior. The risk allocation hypothesis predicts that prey facing more frequent risk should show weak anti-predator responses, and should be particularly active foragers during rare periods of safety, compared to prey facing infrequent risk. Several studies offer support for the risk allocation hypothesis, but how these responses might propagate through the larger ecological community remains largely unknown. We experimentally investigated the relative strength of trait- and density-mediated indirect effects of a predator on its prey’s resource across predation treatments that varied the lethality (caged or free-swimming predators) and temporal variability (always, often, or sometimes present) of predation. We performed this experiment in pond mesocosms using a giant water bug predator (Belostoma lutarium), an herbivorous pond snail (Physa gyrina), and algae as the basal resource. Snails greatly reduced the abundance of their algal resource when in the absence of predation. Lethal predation at low and medium intensities had significant positive indirect effects on the abundance of algae, mostly by reducing snail density. Snails responded behaviorally to high levels of deadly predation by foraging more and hiding less than in other situations, as predicted by the risk allocation hypothesis, and thus ameliorated the density-mediated indirect effects of predators on algae. Behavioral responses to caged predators, and the subsequent trait-mediated indirect effects, were negligible regardless of predation intensity. Our previous work has demonstrated that trait-mediated indirect effects are weak when resources are abundant, as they were in this experiment. This work demonstrates that temporal variation in predation intensity plays a key role in determining the relative strength of TMIIs and DMIIs in an aquatic food chain.  相似文献   

13.
Summary Responses of the predaceous mites Phytoseiulus persimilis, Typhlodromus (=Metaseiulus) occidentalis, and Amblyseius andersoni to spatial variation in egg density of the phytophagous mite, Tetranychus urticae, were studied in the laboratory.The oligophagous predator P. persimilis showed initially a direct density dependent foraging time allocation and variation in foraging time increased with prey density. With changes in prey density due to predation, predator foraging rates (per hour) decreased with time and density dependent foraging gradually became density independence, because P. persimilis continued to respond to initial prey density, instead of the changing prey density and distribution. The consequent spatial pattern of predation by P. persimilis was density independent, although slopes of predation rate-prey density regressions increased with time.Compared with P. persimilis, the narrowly polyphagous predator T. occidentalis responded relatively slowly to the the presence or absence of prey eggs but not to prey density: the mean and variation of foraging time spent in patches with prey did not differ with prey density, but was significantly greater in patches with prey eggs than in patches without eggs. Prey density and distribution changed only slightly due to predation and overall foraging rates remained more or less constant. The consequent spatial pattern of predation by T. occidentalis was inversely density dependent. As with P. persimilis, slopes of predation rate-prey density regressions increased with time (i.e. the inverse density dependence in T. occidentalis became weaker through time).The broadly polyphagous predator A. andersoni showed density independent foraging time allocation with variation independent of prey density. With changes in prey density over time due to prey depletion, overall foraging rates decreased. The consequent spatial pattern of predation by A. andersoni also changed through time; it initially was inversely density dependent, but soon became density independent.Overall, P. persimilis and T. occidentalis spent more time in prey patches than A. andersoni, suggesting that A. andersoni tended to spend more time moving outside patches. The overall predation rates and searching efficiency were higher in P. persimilis than in A. andersoni and T. occidentalis. Predator reproduction was highest in P. persimilis, lower in T. occidentalis and the lowest A. andersoni.The differences in response to prey distribution among the three predaceous species probably reflect the evolution of these species in environments with different patterns of prey distribution. The degree of polyphagy is a major determinant of the aggregative response, but other attributes such as handling time are also important in other aspects of phytoseiid foraging behavior (e.g. searching efficiency or predation rate).  相似文献   

14.
Temporal variation in predation risk may be an important determinant of prey antipredator behaviours. According to the risk allocation hypothesis, the strongest antipredator behaviours are expected when periods of high risk are short and infrequent. We tested this prediction in a laboratory experiment where common frog Rana temporaria tadpoles were raised form early larval stages until metamorphosis. We manipulated the time a predatory Aeshna dragonfly larva was present and recorded behavioural responses (activity) of the tadpoles at three different time points during the tadpoles' development. We also investigated how tadpole shape, size and age at metamorphosis were affected by temporal variation in predation risk. We found that during the two first time points activity was always lowest in the constant high-risk situation. However, antipredator response in the two treatments with brief high-risk situation increased as tadpoles developed, and by the third time point, when the tadpoles were close to metamorphosis, activity was as low as in the constant high-risk situation. Exposure to chemical cues of a predation event tended to reduce activity during the first time period, but caused no response later on. Induced morphological changes (deeper tail and shorter relative body length) were graded the response being stronger as the time spent in the proximity of predator increased. Tadpoles in the brief risk and chemical cue treatments showed intermediate responses. Modification of life history was only found in the constant high-risk treatment in which tadpoles had longer larval period and larger metamorphic size. Our results indicate that both behavioural and morphological defences were sensitive to temporal variation in predation risk, but behaviour did not respond in the manner predicted by the risk allocation model. We discuss the roles of concentration of predator chemical cues and prey stage-dependency in determining these responses.  相似文献   

15.
In prey communities with shared predators, variation in prey vulnerability is a key factor in shaping community dynamics. Conversely, the hunting efficiency of a predator depends on the prey community structure, preferences of the predator and antipredatory behavioural traits of the prey. We studied experimentally, under seminatural field conditions, the preferences of a predator and the antipredatory responses of prey in a system consisting of two Myodes species of voles, the grey-sided vole (M. rufocanus Sund.) and the bank vole (M. glareolus Schreb.), and their specialist predator, the least weasel (Mustela nivalis nivalis L.). To quantify the preference of the weasels, we developed a new modelling framework that can be used for unbalanced data. The two vole species were hypothesised to have different habitat-dependent vulnerabilities. We created two habitats, open and forest, to provide different escape possibilities for the voles. We found a weak general preference of the weasels for the grey-sided voles over the bank voles, and a somewhat stronger preference specifically in open habitats. The weasels clearly preferred male grey-sided voles over females, whereas in bank voles, there was no difference. The activity of voles changed over time, so that voles increased their movements immediately after weasel introduction, but later adjusted their movements to times of lowered predation risk. Females that were more active had an elevated mortality risk, whereas in the case of males, the result was the opposite. We conclude that, in vulnerability to predation, the species- or habitat-specific characteristics of these prey species are playing a minor role compared to sex-specific characteristics.  相似文献   

16.
Prey animals encountering multiple stimuli must often make behavioral tradeoffs. Many environmental cues may influence the tradeoff observed, but recent theoretical work suggests that temporal variation in risk should influence how prey animals behave during any given period of risk. As time spent under risk of predation increases, prey animals will increase their allocation of foraging during periods of risk. This model is known as the risk allocation hypothesis (RAH) ( Lima & Bednekoff 1999 ). We tested the RAH using the crayfish Orconectes virilis. We selected two frequency regimes (exposure to risk every 6 or 12 h) and three cues suggestive of increasing risk (water, snapping turtle cue, and conspecific alarm cue). Test animals were exposed to one of the six frequency × risk combinations for 24 h, followed immediately by the simultaneous introduction of a food and a risk cue. Three behaviors (burrow use, non‐ambulatory motion, and locomotion) were then recorded for 5 min. Responses were significantly influenced by the interaction of risk and frequency. Further analysis indicated that responses were not consistently influenced by frequency alone. While our results do not support the predictions of the RAH for our frequency regimes, qualitative comparison with an earlier, similar study ( Hazlett 1999 ) suggests that risk allocation is occurring in this system. We recommend that frequency of encounter with risk be considered in future studies. Ignoring temporal variation may lead to over‐ or underestimation of the subject's natural responses.  相似文献   

17.
Making the appropriate decision in the face of predation risk dictates the fate of prey, and predation risk is highest at life history boundaries such as settlement. At the end of the larval phase, most coral reef fishes enter patches of reef containing novel predators. Since vision is often obscured in the complex surroundings, chemical information released from damaged conspecific is used to forewarn prey of an active predator. However, larvae enter the reef environment with their own feeding and growth histories, which will influence their motivation to feed and take risks. The present study explored the link between recent growth, feeding history, current performance and behavioural risk taking in newly settling stages of a coral reef damselfish (Pomacentrus amboinensis). Older and larger juveniles in good body condition had a stronger response to chemical alarm cues of injured conspecifics; these fish spent a longer time in shelter and displayed a more dramatic decrease in foraging behaviour than fish in lower body condition. Feeding experiments supported these findings and emphasized the importance of body condition in affecting risk assessment. Evidently, larval growth history and body condition influences the likelihood of taking risks under the threat of predation immediately after settlement, thereby affecting the probability of survival in P. amboinensis.  相似文献   

18.
Abstract 1. Predatory arthropods lay their eggs such that their offspring have sufficient prey at their disposal and run a low risk of being eaten by conspecific and heterospecific predators, but what happens if the prey attacks eggs of the predator? 2. The egg distribution and time allocation of adult female predatory mites Iphiseius degenerans as affected by predation of their eggs by prey, the western flower thrips Frankliniella occidentalis, were studied on sweet pepper plants. The predatory mites attack the first instar of thrips but all active stages of thrips are capable of killing the eggs of the predator; however the predatory mite is used for biological control of thrips. 3. The majority of predatory mite eggs was laid on the underside of leaves in hair tufts (domatia). During the experiment, females spent increasing amounts of time in flowers where they fed on pollen and thrips larvae. The risk of predation on predator eggs by thrips was lower on leaves than in flowers where the majority of thrips resides. Moreover, predation risk was higher outside leaf domatia than inside. 4. This suggests that predators avoid ovipositing in places with abundant prey to prevent their eggs from being eaten by thrips.  相似文献   

19.
We studied the predation rate and prey selection of the least weasel ( Mustela nivalis nivalis ) on its two most common prey species in boreal environments, the bank vole ( Clethrionomys glareolus ) and the field vole ( Microtus agrestis ), in large outdoor enclosures. We also studied the response of weasels to odours of the two species in the laboratory. The enclosure experiment was conducted using constant vole densities (16 voles/ha) but with varying relative abundance of the two species. Weasels showed higher predation rates on bank voles, and males had higher predation rate than females. Females killed disproportionately more of the more abundant prey species, but they preferred bank voles to field voles when both were equally available. Overall, the predation rate also increased with increasing abundance of bank voles. Therefore our results are in agreement with earlier laboratory results showing preference for bank voles, even if no intrinsic preference for odours of either species was observed in our laboratory study. We suggest that the least weasel hunts according to prey availability, prey aggregation and suitability of hunting habitat, and that this causes the observed dependence of least weasels on field voles and emphasises the role of the field vole in the vole-weasel interaction in cyclic vole populations. Furthermore, our results suggest that predation by weasels may facilitate the coexistence of the two vole species via predator switching, and that it may cause the observed synchrony in dynamics between vole species.  相似文献   

20.
Alan E. Burger 《Oecologia》1982,52(2):236-245
Summary During winter (May through October) many Lesser Sheathbills Chionis minor at Marion Island in the sub-Antarctic were obliged to leave their preferred foraging habitat in penguin colonies to forage for invertebrates on the island's coastal plain. The study describes factors affecting feeding success, time budgets and predation risk of the sheathbills which exploited these small, patchily dispersed prey. The birds appeared to select prey 1 mm in diameter, and ignore smaller, common invertebrates.Sheathbills were highly selective of foraging habitat. During 17 censuses made through the winter, 97% of the 1,504 birdsightings were at only eight of the 19 available vegetation types. Multiple regression analysis revealed that prey density was the most important criterion in habitat preference, followed by plant canopy height and distance of the habitat from the sea. These variables accounted for 78% of the variance of habitat use. Focal-animal observations in a sample of habitats showed that feeding success was correlated with prey density and distance from the sea. Tall vegetation impeded the locomotion and foraging of sheathbills. The sheathbills reduced predation risk from skuas Catharacta lonnbergi and travelling time by foraging near the shore. The spatial distribution of prey within vegetation types was apparently unimportant in habitat selection.During winter 83% of the sheathbills in the study foraged communally and 98% roosted communally. Flocks occurred only on good quality habitat and flocking probably facilitated habitat selection. Feeding success increased initially with increasing flock size but decreased in flocks greater than 15 birds, which was attributed to localized prey deletions. The sheathbills spent 88% of the daytime foraging; and feeding, looking around and walking comprised 99% of foraging time. Feeding time increased with increasing flock size, looking around decreased but walking was unaffected. Aggression was rare, was unaffected by flock size and did not significantly affect feeding. A probability model showed that sheathbills could greatly reduce predation risk by flocking but the benefits would not improve much in flocks greater than eight birds.The habitat selection, time budgets and feeding success of adults, subadults and juveniles were very similar.The exploitation of terrestrial invertebrates by sheathbills was interpreted as an expansion of the population's trophic niche to tap an underexploited resource on a species-poor island.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号