首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
A 81-fold purification of human seminal plasma acid phosphatase was obtained by a three-step procedure, involving ammonium sulfate precipitation, DEAE-cellulose chromatography and Sephadex G-200 gel filtration. Homogeneity of the preparation during purification steps was tested by polyacrylamide gel electrophoresis and only one major band was obtained after the final step. The pH optimum for the activity of the purified enzyme was 5.6 and thermal stability was obtained even up to 40 degrees C. PNPP was the most specific synthetic substrate. The Km of purified seminal acid phosphatase towards PNPP was 1.5 X 10(-3) M. Among the metal ions tested, Hg+2 showed an I50 value of 4.2 X 10(-7) M. Studies with PCMB, PMSF and EDTA did not show any inhibition, whereas NaF and L(+)tartrate, at 1 mM concentration, inhibited the enzyme by 95% and 85%, respectively.  相似文献   

2.
S-Adenosylhomocysteine hydrolase [EC 3.3.1.1] was purified to electrophoretic homogeneity from mastocytoma P-815 cells. The purified enzyme had a molecular weight of 190,000, as estimated by Sephadex G-200 chromatography, and a monomer molecular weight of 45,000, as determined by polyacrylamide gel electrophoresis in the presence of SDS. The Km value for adenosine was 0.29 microM and the Vmax value 4.5 mumol S-adenosylhomocysteine X min-1 X mg-1 in the synthetic reaction, while the Km value for S-adenosylhomocysteine was 0.77 microM and the Vmax 0.48 mumol adenosine X min-1 X mg-1 in the hydrolytic reaction. The purified enzyme also had one binding site for adenosine (KD = 2.61 X 10(-7) M) and one for cAMP (KD = 1.6 X 10(-7) M). Using rabbit antiserum raised against the purified enzyme, it was shown that the enzyme activity and enzyme synthesis fluctuated during the cell cycle of mastocytoma cells, reaching the maximum levels as the cells changed from the G1/S phase to the G2 phase.  相似文献   

3.
A phospholipase C which hydrolyzes [14C]phosphatidylcholine has been purified 1782-fold from 70% ammonium sulfate extract of bull seminal plasma. Purification steps included acid precipitation, chromatography on DEAE-Sephacel, concanavalin A, octyl-Sepharose 4B and Ultrogel AcA 34. The final step provided homogeneous phospholipase C as determined by polyacrylamide gel electrophoresis. The enzyme comprised two subunits, Mr 69,000 and Mr 55,000, respectively. The enzyme had an optimum at pH 7.2 and pI 5.0. EDTA, Cd2+, Pb2+, Ni2+, Fe2+, and Zn2+ inhibited phospholipase C activity. Km and Vmax on p-nitrophenyl phosphorylcholine and phosphatidylcholine substrates were 20 mM and 17 mumol/min/mg of the purified enzyme and 100 microM and 18 mumol/min/mg of the purified enzyme, respectively. The enzyme appeared to be localized in the acrosome as judged by the binding of anti-phospholipase C to the acrosome. This phospholipase C, unlike other known phospholipases (C), did not hydrolyze [1-14C]phosphatidylinositol. The testicular extract of the guinea pig contained inactive phospholipase C which was activated on incubation with acrosin and trypsin but not chymotrypsin.  相似文献   

4.
alpha-Glucosidase (EC 3.2.1.20) was purified to homogeneity from logarithmically growing cells of Saccharomyces carlsbergensis. The purification involved the following steps: (a) ammonium sulfate fractionation; (b) Sephadex G-100 chromatography; (c) DEAE-cellulose chromatography; and (d) hydroxylapatite chromatography. This procedure gave a preparation judged to be greater than 98% pure by Na-DodSO4-polyacrylamide gel electrophoresis. The enzyme was shown to be a monomer of 63 000 daltons by gel filtration on Sephacryl S-200 under native conditions and by polyacrylamide gel electrophoresis under denaturing conditions. The Km values of the enzyme for the substrates maltose and p-nitrophenyl alpha-D-glucoside were found to be 1.66 X 10(-2) and 3.1 X 10(-4) M, respectively. The corresponding Vmax value for maltose was 44.8 X 10(-6) mol min(-1) mg(-1) and that for p-nitrophenyl alpha-D-glucoside was 134 X 10(-6) mol min-1 mg-1. The pH optimum for the purified enzyme was found to be between pH 6.7 and 6.8. The enzyme has an absolute anomeric specificity for alpha-glycosidic linkages and appears to recognize a glucosyl residue in alpha linkage on the nonreducing end of its substrate. For the strain used in this study, which carries the MAL 6 locus, only a single form of the enzyme was detected.  相似文献   

5.
An NAD+-linked 17 beta-hydroxysteroid dehydrogenase was purified to homogeneity from a fungus, Cylindrocarpon radicicola ATCC 11011 by ion exchange, gel filtration, and hydrophobic chromatographies. The purified preparation of the dehydrogenase showed an apparent molecular weight of 58,600 by gel filtration and polyacrylamide gel electrophoresis. SDS-gel electrophoresis gave Mr = 26,000 for the identical subunits of the protein. The amino-terminal residue of the enzyme protein was determined to be glycine. The enzyme catalyzed the oxidation of 17 beta-hydroxysteroids to the ketosteroids with the reduction of NAD+, which was a specific hydrogen acceptor, and also catalyzed the reduction of 17-ketosteroids with the consumption of NADH. The optimum pH of the dehydrogenase reaction was 10 and that of the reductase reaction was 7.0. The enzyme had a high specific activity for the oxidation of testosterone (Vmax = 85 mumol/min/mg; Km for the steroid = 9.5 microM; Km for NAD+ = 198 microM at pH 10.0) and for the reduction of androstenedione (Vmax = 1.8 mumol/min/mg; Km for the steroid = 24 microM; Km for NADH = 6.8 microM at pH 7.0). In the purified enzyme preparation, no activity of 3 alpha-hydroxysteroid dehydrogenase, 3 beta-hydroxysteroid dehydrogenase, delta 5-3-ketosteroid-4,5-isomerase, or steroid ring A-delta-dehydrogenase was detected. Among several steroids tested, only 17 beta-hydroxysteroids such as testosterone, estradiol-17 beta, and 11 beta-hydroxytestosterone, were oxidized, indicating that the enzyme has a high specificity for the substrate steroid. The stereospecificity of hydrogen transfer by the enzyme in dehydrogenation was examined with [17 alpha-3H]testosterone.  相似文献   

6.
Pyruvate kinase (ATP: pyruvate 2-0-phosphotransferase, EC 2. 7. 1. 40) from bovine adrenal cortex was purified 243 fold. The whole purification procedure included ammonium sulphate fractionation, heat treatment, Sephadex HW-55 chromatography and phosphocellulose chromatography. The specific activity of the preparation is 15.6 U/mg at 30 degrees C, the yield--36%. Pyruvate kinase showed only one protein band as judged by sodium dodecyl sulphate acrylamide gel electrophoresis. The enzyme displayed a hyperbolic saturation curve with respect to P-enolpyruvate. The apparent Km for this substrate was 0.55 X 10(-4) M, pH optimum--6.8-7.0. K+ concentrations above 0.1 M inhibit the enzyme.  相似文献   

7.
J Y Le Deaut  M Ledig  P Mandel 《Biochimie》1976,58(9):1017-1029
A method for isolation of a soluble ATPase from rat liver mitochondria after freeze thaw cycling is described. Two enzymatically active fractions were separated by DEAE-cellulose chromatography (ATPase 1 and ATPase 2). ATPase 1 has been purified 300 fold. ATPase 1 was homogenous as judged by polyacrylamide gel electrophoresis. The optimum pH of the enzyme was 5.8-6.0 and the optimum temperature was 45 degrees C. The enzyme follows Michaelis-Menten kinetics: Km (9 X 10(-4) M), Vmax (23,6 mumoles Pi released X min -1 X mg protein -1). The enzyme hydrolysed nucleoside triphosphates, but was inactive upon nucleoside di and monophosphates, glucose 6-phosphate, phosphoserine, pyrophosphate and glycerol 2-phosphate. In contrast to membrane bound ATPase, cations have no effect on the enzyme activity. Nucleoside di and mono phosphates and glycerol 2 phosphate inhibited competitively the enzyme. The enzyme was not affected by oligomycin, but was stimulated by lactate, 2-mercaptoethanol and dithiothreitol.  相似文献   

8.
We have stabilized and studied choline acetyltransferase from the nematode Caenorhabditis elegans. The enzyme is soluble, and two discrete forms were resolved by gel filtration. The larger of these two forms (MW approximately 154,000) was somewhat unstable and in the presence of 0.5 M NaI was converted to a form indistinguishable from the "native" small form (MW approximately 71,000). We have purified the small form of the enzyme greater than 3,300-fold by a combination of gel filtration, ion-exchange chromatography, and nucleotide affinity chromatography. The purified preparation has a measured specific activity of 3.74 mumol/min/mg protein, and is free of acetylcholinesterase and acetyl-CoA hydrolase activities. The Vmax of the purified enzyme is stimulated by NaCl, with half-maximal stimulation at 80 mM NaCl. The Km for each substrate is also affected by salt, but in different manners from each other and the Vmax; the kinetic parameter Vmax/Km thus changes significantly as a function of the salt concentration.  相似文献   

9.
The major inducible trimethylamine oxide reductase was purified from Salmonella typhimurium LT2. The molecular weights of the native enzyme were estimated to be 332,000 by gel filtration and 170,000 by nondenaturing disc gel electrophoresis. In sodium dodecyl sulfate-gel electrophoresis, the enzyme formed a single band of molecular weight 84,000. The isoelectric point was 4.28. Maximum activity was at pH 5.65 and 45 degrees C. Reduced flavin mononucleotide, but not reduced flavin adenine dinucleotide, served as an electron donor. The Km for trimethylamine oxide was 0.89 mM and Vmax was 1,450 U/mg of protein. The enzyme reduced chlorate with a Km of 2.2 mM and a Vmax of 350 U/mg of protein.  相似文献   

10.
An enzyme (splitting enzyme 2) which catalyzes the splitting of carbon-mercury linkage of arylmercury compounds was found in extracts of mercury-resistant Pseudomonas K-62. This enzyme was purified about 725-fold by treatment with streptomycin, precipitation with ammonium sulfate, and successive chromatography on Sephadex G-75 and diethylaminoethyl-cellulose. A purified preparation of the enzyme showed a single band in electrophoresis either on polyacrylamide or sodium dodecyl sulfate-containing polyacrylamide gels. The molecular weight of the enzyme was estimated to be 20,000 (determined by Sephadex G-75 gel filtration) 17,000 (determined by sodium dodecyl sulfate-polyacrylamide disc gel electrophoresis). The enzyme showed a Km of 180 micron and a Vmax of 3.1 mumol/min per mg for p-chloromercuribenzoic acid and a Km of 250 micron and a Vmax of 20 mumol/min per mg for phenylmercuric acetate. The optimum temperature and pH for the reaction were 40 degrees C and 5.0, respectively.  相似文献   

11.
Using ammonium sulfate precipitation, gel filtration, and affinity chromatography, inosine monophosphate (IMP) oxidoreductase (EC 1.2.1.14) was isolated from the soluble proteins of the plant cell fraction of nitrogen-fixing nodules of cowpea (Vigna unguiculata L. Walp). The enzyme, purified more than 140-fold with a yield of 11%, was stabilized with glycerol and required a sulfydryl-reducing agent for maximum activity. Gel filtration indicated a molecular weight of 200,000, and sodium dodecyl sulfate-gel electrophoresis a single subunit of 50,000 Da. The final specific activity ranged from 1.1 to 1.5 mumol min-1 mg protein-1. The enzyme had an alkaline pH optimum and showed a high affinity for IMP (Km = 9.1 X 10(-6) M at pH 8.8 and NAD levels above 0.25 mM) and NAD (Km = 18-35 X 10(-6) M at pH 8.8). NAD was the preferred coenzyme, with NADP reduction less than 10% of that with NAD, while molecular oxygen did not serve as an electron acceptor. Intermediates of ureide metabolism (allantoin, allantoic acid, uric acid, inosine, xanthosine, and XMP) did not affect the enzyme, while AMP, GMP, and NADH were inhibitors. GMP inhibition was competitive with a Ki = 60 X 10(-6) M. The purified enzyme was activated by K+ (Km = 1.6 X 10(-3) M) but not by NH+4. The K+ activation was competitively inhibited by Mg2+. The significance of the properties of IMP oxidoreductase for regulation of ureide biosynthesis in legume root nodules is discussed.  相似文献   

12.
A procedure for isolation and purification of restriction endonuclease Sac I from Streptomyces achromogenes ATCC 12767 is proposed. It allows to obtain an electrophoretically homogeneous enzyme preparation with the purification degree 1097 and the enzyme yield by activity 3.7%. The molecular weight of SacI was found to be 52,000 +/- 5,000 D, and isoelectric point 6.2. The enzyme consists of two subunits, which was found by polyacrylamide gel electrophoresis under denaturing conditions. Km and Vmax values were determined for the enzymatic reaction; they are equal to 4.6 X 10(-9) M and 9.19 X 10(-10) M/min, respectively.  相似文献   

13.
The release of free arachidonic acid from membrane phospholipids is believed to be the rate-controlling step in the production of the prostaglandins, leukotrienes, and related metabolites in inflammatory cells such as the macrophage. We have previously identified several different phospholipases in the macrophage-like cell line P388D1 potentially capable of controlling arachidonic acid release. Among them, a membrane-bound, alkaline pH optimum, Ca2+-dependent phospholipase A2 is of particular interest because of the likelihood that the regulatory enzyme has these properties. This phospholipase A2 has now been solubilized from the membrane fraction with octyl glucoside and partially purified. The first two steps in this purification are butanol extractions that yield a lyophilized, stable preparation of phospholipase A2 lacking other phospholipase activities. This phospholipase A2 shows considerably more activity when assayed in the presence of glycerol, regardless of whether the substrate, dipalmitoylphosphatidylcholine, is in the form of sonicated vesicles or mixed micelles with the nonionic surfactant Triton X-100. Glycerol (70%) increases both the Vmax and the Km with both substrate forms, giving a Vmax of about 15 nmol min-1 mg-1 and an apparent Km of about 60 microM for vesicles and a Vmax of about 100 nmol min-1 mg-1 and an apparent Km of about 1 mM for mixed micelles. Vmax/Km is slightly greater for vesicles than for mixed micelles. The lyophilized preparation of the enzyme is routinely purified about 60-fold and is suitable for evaluating phospholipase A2 inhibitors such as manoalide analogues. Subsequent steps in the purification are acetonitrile extraction followed by high performance liquid chromatography on an Aquapore BU-300 column and a Superose 12 column. This yields a 2500-fold purification of the membrane-bound phospholipase A2 with a 25% recovery and a specific activity of about 800 nmol min-1 mg-1 toward 100 microM dipalmitoylphosphatidylcholine in mixed micelles. When this material was subjected to analysis on a Superose 12 sizing column, the molecular mass of the active fraction was approximately 18,000 daltons.  相似文献   

14.
A carboxypeptidase which cleaves the C-terminal arginine or lysine from peptides was purified by a two-step procedure; gel filtration on Sephacryl S-300 and affinity chromatography on arginine-Sepharose. The activity increased 280% after the first step, indicating the removal of an inhibitor from the crude starting material. The activity in the crude seminal plasma eluted from the Sephacryl S-300 column with an apparent Mr 98,000 and after purification with an Mr 67,000, indicating that it binds to another protein in the crude seminal plasma. When analyzed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, a single band at Mr 53,000 was seen which was converted to two smaller bands (Mr 32,000 and/or 26,000) after reduction. The seminal plasma carboxypeptidase has a neutral pH optimum, is inhibited by o-phenanthroline and by the inhibitor of carboxypeptidase B-type enzymes, 2-mercaptomethyl-3-guanidinoethylthiopropanoic acid, and can be activated by cobalt. The purified enzyme has a high specific activity (67.8 mumol/min/mg) with the ester substrate benzoyl (Bz)-Gly-argininic acid and readily cleaves Bz-Ala-Lys, Bz-Gly-Arg, and Bz-Gly-Lys. It also hydrolyzes biologically active peptides such as bradykinin (Km = 6 microM, kcat = 43 min-1), Arg6-Met5-enkephalin (Km = 103 microM, kcat = 438 min-1), and Lys6-Met5-enkephalin (Km = 848 microM, kcat = 449 min-1). The seminal plasma carboxypeptidase did not cross-react with antiserum to human plasma carboxypeptidase N; other properties distinguish it from the blood plasma enzyme as well as from pancreatic carboxypeptidase B and granular, acid carboxypeptidase H (enkephalin convertase). The carboxypeptidase could be involved in the control of fertility by activating or inactivating peptide hormones in the seminal plasma. In addition it could contribute to the degradation of basic proteins during semen liquefaction.  相似文献   

15.
Short-chain lecithin/long-chain phospholipid unilamellar vesicles (SLUVs), unlike pure long-chain lecithin vesicles, are excellent substrates for water-soluble phospholipases. Hemolysis assays show that greater than 99.5% of the short-chain lecithin is partitioned in the bilayer. In these binary component vesicles, the short-chain species is the preferred substrate, while the long-chain phospholipid can be treated as an inhibitor (phospholipase C) or poor substrate (phospholipase A2). For phospholipase C Bacillus cereus, apparent Km and Vmax values show that bilayer-solubilized diheptanoylphosphatidylcholine (diheptanoyl-PC) is nearly as good a substrate as pure micellar diheptanoyl-PC, although the extent of short-chain lecithin hydrolysis depends on the phase state of the long-chain lipid. For phospholipase A2 Naja naja naja, both Km and Vmax values show a greater range: in a gel-state matrix, diheptanoyl-PC is hydrolyzed with micellelike kinetic parameters; in a liquid-crystalline matrix, the short-chain lecithin becomes comparable to the long-chain component. Both enzymes also show an anomalous increase in specific activity toward diheptanoyl-PC around the phase transition temperature of the long-chain phospholipid. Since the short-chain lecithin does not exhibit a phase transition, this must reflect fluctuations in head-group area or vertical motions of the short-chain lecithin caused by surrounding long-chain lecithin molecules. These results are discussed in terms of a specific model for SLUV hydrolysis and a general explanation for the "interfacial activation" observed with water-soluble phospholipases.  相似文献   

16.
Hepatic inositol (1,3,4,5)-tetrakisphosphate 3-phosphatase activity was detected in a 100,000 x g soluble fraction and a detergent-solubilized particulate fraction. Activity in both fractions increased up to 40-fold after anion-exchange chromatography due to removal of endogenous inhibitors (Hodgson, M.E., and Shears, S.B. (1990) Biochem. J. 267, 831-834); at this stage the detergent-solubilized particulate activity comprised over 90% of total activity. The particulate phosphatase was further purified by affinity chromatography using heparin-agarose and red-agarose. The latter column resolved two peaks of enzyme activity (designated 1 and 2 by their order of elution from the column). Their proportions varied between experiments, but peak 2 generally predominated and so this was further purified by hydroxylapatite chromatography. The final preparation was typically 38,000-fold purified with a 7% yield. The apparent molecular mass of this enzyme was 66 kDa, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration. The enzyme had little or no affinity for the following: inositol (1,3,4,6)-tetrakisphosphate, inositol (1,3,4)-trisphosphate, inositol (1,3)-bisphosphate, inositol (3,4)-bisphosphate, and para-nitrophenylphosphate. At pH 7.4 the Km for inositol (1,3,4,5)-tetrakisphosphate was 130 nM and the Vmax was 4250 nmol/mg protein/min. The purified enzyme also dephosphorylated inositol (1,3,4,5,6)-pentakisphosphate to inositol (1,4,5,6)-tetrakisphosphate (Km = 40 nM, Vmax = 211 nmol/mg protein/min), and inositol hexakisphosphate to at least five isomers of inositol pentakisphosphate (Km = 0.3 nM, Vmax = 12 nmol/mg protein/min). The latter affinity is the highest yet defined for an enzyme involved in inositol phosphate metabolism. Determinations of IC50 values, and Dixon plots, revealed that with the (1,3,4,5)-tetrakisphosphate as substrate, the pentakis- and hexakisphosphates were potent competitive inhibitors; the Ki values (25 and 0.5 nM, respectively) were similar to their substrate Km values. The kinetic properties of this enzyme, as well as estimates of the cellular levels of its potential substrates, indicate that inositol pentakisphosphate and inositol hexakisphosphate are likely to be the preferred substrates in vivo.  相似文献   

17.
Malonyl coenzyme A synthetase (EC 6.2.1.14) was induced in Pseudomonas fluorescens grown on malonate as a sole carbon source. This enzyme was purified, for the first time, over 30-fold by the combination of ammonium sulfate precipitation, Sephadex G-150 gel filtration, DEAE-Sephacel ion exchange chromatography, and hydroxylapatite chromatography. The purified enzyme, which had a specific activity of about 0.512 mumol/min/mg, appeared to be electrophoretically homogeneous. The molecular size of the enzyme was determined to be 98,000 Da which is composed of two 49,000-Da subunits. The optimum pH for the enzyme was 7.5. Malonyl coenzyme A synthetase requires ATP, CoA, and Mg2+ for the full enzyme activity. With succinate or acetate, the synthetic rate of CoA derivative was 40% of that observed with malonate. The malonyl coenzyme A synthetase showed typical Michaelis-Menten kinetics for the substrate, malonate, ATP, and coenzyme A, from which the Km values were calculated to be 3.8 X 10(-4) M, 2 X 10(-3) M, and 10(-4) M and Vmax values to be 0.117 mumol/min/mg, 0.111 mumol/min/mg, and 0.142 mumol/min/mg, respectively. The purified malonyl coenzyme A synthetase was immunogenic in the rabbit and Ouchterlony double diffusion analysis revealed a single precipitant line with the enzyme. The antiserum inhibited the enzyme activity and the extent of inhibition was dependent on the amount of the serum added.  相似文献   

18.
Purification of pancreatic phospholipase A2 from human duodenal juice   总被引:1,自引:0,他引:1  
Phospholipase A2 (EC 3.1.1.4) was purified from delipidated human duodenal juice by hydrophobic and cation exchange chromatography, followed by molecular sieving on an HPLC column. The resulting enzyme preparation of phospholipase A2 had a molecular weight of 14 kDa, a specific activity of 2000 U/mg protein, and an N-terminal amino acid sequence which was characteristic for human pancreatic phospholipase A2.  相似文献   

19.
Maleylacetate reductase of Pseudomonas sp. strain B13 was purified to homogeneity by chromatography on DEAE-cellulose, Butyl-Sepharose, Blue-Sepharose, and Sephacryl S100. The final preparation gave a single band by polyacrylamide gel electrophoresis under denaturing conditions and a single symmetrical peak by gel filtration under nondenaturing conditions. The subunit M(r) value was 37,000 (determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis). Estimation of the native M(r) value by gel filtration gave a value of 74,000 with a Superose 6 column, indicating that the enzyme is dimeric. The pH and temperature optima were 5.4 and 50 degrees C, respectively. The pI of the enzyme was estimated to be 7.0. The apparent Km values for maleylacetate and NADH were 58 and 30 microM, respectively, and the maximum velocity was 832 U/mg of protein for maleylacetate. Maleylacetate and various substituted maleylacetates, such as 2-chloro- and 2-methyl-maleylacetate, were reduced at significant rates. NADPH was also used as a cofactor instead of NADH with nearly the same Vmax value, but its Km value was estimated to be 77 microM. Reductase activity was inhibited by a range of thiol-blocking reagents. The absorption spectrum indicated that there was no bound cofactor or prosthetic group in the enzyme.  相似文献   

20.
The in vitro uptake of [3H]5HT was investigated in tissue slices of the cestode Hymenolepis diminuta. A concentrative, sodium sensitive, high affinity uptake mechanism (Km 1.43 X 10(-6) M; Vmax 222 fmoles/mg wet wt/min), together with a sodium insensitive component (linear up to 5 X 10(-6) M) were present. In the presence of 2-nitroimipramine the sodium sensitive component was significantly suppressed (Vmax 33 fmoles/mg/wet wt/min) although the Km (1.37 X 10(-6) M) was not affected. Nitroimipramine showed an IC50 of approximately 2 X 10(-6) M. The sodium insensitive component was not affected by nitroimipramine. Biogenic amines and related indoleamines were weak inhibitors of the sodium sensitive and sodium insensitive components of 5HT uptake. The tricyclic antidepressants and fluoxetine were effective inhibitors of the sodium sensitive component of 5-HT uptake; receptor ligands were weak inhibitors or without effect. The metabolism of [3H]5HT in tissue slices of H. diminuta was examined by HPLC. The role of the sodium sensitive uptake and metabolism of 5HT in terms of inactivation and recycling of neurally released 5HT and the possible importance of exogenous recruitment of 5HT are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号