首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Plants differ in how much the response of net photosynthetic rate (P N) to temperature (T) changes with the T during leaf development, and also in the biochemical basis of such changes in response. The amount of photosynthetic acclimation to T and the components of the photosynthetic system involved were compared in Arabidopsis thaliana and Brassica oleracea to determine how well A. thaliana might serve as a model organism to study the process of photosynthetic acclimation to T. Responses of single-leaf gas exchange and chlorophyll fluorescence to CO2 concentration measured over the range of 10–35 °C for both species grown at 15, 21, and 27 °C were used to determine the T dependencies of maximum rates of carboxylation (VCmax), photosynthetic electron transport (Jmax), triose phosphate utilization rate (TPU), and mesophyll conductance to carbon dioxide (gm). In A. thaliana, the optimum T of P N at air concentrations of CO2 was unaffected by this range of growth T, and the T dependencies of VCmax, Jmax, and gm were also unaffected by growth T. There was no evidence of TPU limitation of P N in this species over the range of measurement conditions. In contrast, the optimum T of P N increased with growth T in B. oleracea, and the T dependencies of VCmax, Jmax, and gm, as well as the T at which TPU limited P N all varied significantly with growth T. Thus B. oleracea had much a larger capacity to acclimate photosynthetically to moderate T than did A. thaliana.  相似文献   

2.
Temperature response curves of chlorophyll a fluorescence parameters were used to assess minimum sub-zero temperature assuring functioning of photosynthetic photochemical processes in photosystem II (PS II) of Antarctic lichens. Umbilicaria Antarctica and Xanthoria elegans were measured within the temperature range from −20 to +10°C by a fluorometric imaging system. For potential (F V/F M) and actual (Φ II) quantum yields of photochemical processes the minimum temperature was found to be between −10 and −20°C. Non-photochemical quenching (NPQ) of absorbed excitation energy increased with temperature drop reaching maximum NPQ at −15°C. Image analysis revealed intrathalline heterogeneity of chlorophyll a fluorescence parameters with temperature drop. Temperature response of Φ II exhibited an S-curve with pronounced intrathalline differences in X. elegans. The same relation was linear with only limited intrathalline difference in U. antarctica. The results showed that Antarctic lichen species were well adapted to sub-zero temperatures and capable of performing primary photosynthesis at −15°C.  相似文献   

3.
We conducted a novel non-visual screen for cuticular wax mutants in Arabidopsis thaliana (L.) Heynh. Using gas chromatography we screened over 1,200 ethyl methane sulfonate (EMS)-mutagenized lines for alterations in the major A. thaliana wild-type stem cuticular chemicals. Five lines showed distinct differences from the wild type and were further analyzed by gas chromatography and scanning electron microscopy. The five mutants were mapped to specific chromosome locations and tested for allelism with other wax mutant loci mapping to the same region. Toward this end, the mapping of the cuticular wax (cer) mutants cer10 to cer20 was conducted to allow more efficient allelism tests with newly identified lines. From these five lines, we have identified three mutants defining novel genes that have been designated CER22, CER23, and CER24. Detailed stem and leaf chemistry has allowed us to place these novel mutants in specific steps of the cuticular wax biosynthetic pathway and to make hypotheses about the function of their gene products.Abbreviations EMS Ethyl methane sulfonate - SEM Scanning electron microscopy - SSLP Simple sequence length polymorphism - WT Wild type  相似文献   

4.
5.
A family of 40 terpenoid synthase genes ( AtTPS) was discovered by genome sequence analysis in Arabidopsis thaliana. This is the largest and most diverse group of TPS genes currently known for any species. AtTPS genes cluster into five phylogenetic subfamilies of the plant TPS superfamily. Surprisingly, thirty AtTPS closely resemble, in all aspects of gene architecture, sequence relatedness and phylogenetic placement, the genes for plant monoterpene synthases, sesquiterpene synthases or diterpene synthases of secondary metabolism. Rapid evolution of these AtTPS resulted from repeated gene duplication and sequence divergence with minor changes in gene architecture. In contrast, only two AtTPS genes have known functions in basic (primary) metabolism, namely gibberellin biosynthesis. This striking difference in rates of gene diversification in primary and secondary metabolism is relevant for an understanding of the evolution of terpenoid natural product diversity. Eight AtTPS genes are interrupted and are likely to be inactive pseudogenes. The localization of AtTPS genes on all five chromosomes reflects the dynamics of the Arabidopsis genome; however, several AtTPS genes are clustered and organized in tandem repeats. Furthermore, some AtTPS genes are localized with prenyltransferase genes ( AtGGPPS, geranylgeranyl diphosphate synthase) in contiguous genomic clusters encoding consecutive steps in terpenoid biosynthesis. The clustered organization may have implications for TPS gene evolution and the evolution of pathway segments for the synthesis of terpenoid natural products. Phylogenetic analyses highlight events in the divergence of the TPS paralogs and suggest orthologous genes and a model for the evolution of the TPS gene family.  相似文献   

6.
7.
8.
Arabidopsis thaliana (L.) Heynh. cv. Landsberg erecta was grown under light regimes of differing spectral qualities, which results in differences in the stoichiometries of the two photosynthetic reaction centres. The acclimative value of these changes was investigated by assessing photosynthetic function in these plants when exposed to two spectrally distinct actinic lights. Plants grown in an environment enriched in far-red light were better able to make efficient use of non-saturating levels of actinic light enriched in long-wavelength red light. Simultaneous measurements of chlorophyll fluorescence and absorption changes at 820 nm indicated that differences between plants grown under alternative light regimes can be ascribed to imbalances in excitation of photosystems I and II (PSI, PSII). Measurements of chlorophyll fluorescence emission and excitation spectra at 77 K provided strong evidence that there was little or no difference in the composition or function of PSI or PSII between the two sets of plants, implying that changes in photosynthetic stoichiometry are primarily responsible for the observed differences in photosynthetic function.Abbreviations Chl chlorophyll - FR far-red light - HF highirradiance FR-enriched light (400 mol·m–2·s–1, RFR = 0.72) - HW high-irradiance white light (400 mol·m–2 1·1 s–1RFR = 1.40) - LHCI, LHCII light-harvesting complex of PSI, PSII - qO quenching of dark-level chlorophyll fluorescence - qN non-photochemical quenching of variable chlorophyll fluorescence - qP photochemical quenching of variable chlorophyll fluorescence - R red light - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase We thank Dr. Sasha Ruban for assistance with the 77 K fluorescence measurements and for helpful discussions. This work was supported by Natural Environment Research Council Grant GR3/7571A.  相似文献   

9.
10.
The shoot apical meristem of higher plants consists of a population of stem cells at the tip of the plant body that continuously gives rise to organs such as leaves and flowers. Cells that leave the meristem differentiate and must be replaced to maintain the integrity of the meristem. The balance between differentiation and maintenance is governed both by the environment and the developmental status of the plant. In order to respond to these different stimuli, the meristem has to be plastic thus ensuring the stereotypic shape of the plant body. Meristem plasticity requires the ZWILLE (ZLL) gene. In zll mutant embryos, the apical cells are misspecified causing a variability of the meristems size and function. Using specific antibodies against ZLL, we show that the zll phenotype is due to the complete absence of the ZLL protein. In immunohistochemical experiments we confirm the observation that ZLL is solely localized in vascular tissue. For a better understanding of the role of ZLL in meristem stability, we analysed the genetic interactions of ZLL with WUSCHEL (WUS) and the CLAVATA1, 2 and 3 (CLV) genes that are involved in size regulation of the meristem. In a zll loss-of-function background wus has a negative effect whereas clv mutations have a positive effect on meristem size. We propose that ZLL buffers meristem stability non-cell-autonomously by ensuring the critical number of apical cells required for proper meristem function.Edited by G. JürgensAn erratum to this article can be found at  相似文献   

11.
Stable transformation ofArabidopsis thaliana is a lengthy process that involves up to 3 mo of plant growth and seed selection. We have developed a rapid, 3-wk transient assay system to test the functionality ofcis-regulatory regions controlling expression of a reporter gene in plants before undertaking stable transformation. Two-week-oldArabidopsis seedlings were vacuum-infiltrated withAgrobacterium tumefaciens cultures carrying various upstream regulatory regions controllinguidA (β-glucuronidase [GUS]) expression. Seedlings were fixed and stained for GUS activity 3–5 d following infiltration. Regulatory regions tested in this system include the cauliflower mosaic virus (CaMV)35S promoter, the upstream regulatory region of ribosomal protein geneL23A-1, and a temperature-inducible regulatory region (HSP101B) also fromArabidopsis. The percentage of seedlings positive for GUS activity varied depending on the construct used, with the CaMV35S promoter producing the highest number of GUS-positive seedlings. Temperature induction treatments elicited increased GUS expression in seedlings transformed with theHSP101B regulatory region. Regardless of construct, GUS expression levels were higher in seedlings collected 5 d followingAgrobacterium infiltration than those collected 3–4 d postinfiltration.  相似文献   

12.
We have analyzed the expression patterns of two Fox genes, FoxE and FoxQ, in the ascidian Ciona intestinalis. Expression of Ci-FoxE was specific to the endostyle of adults, being prominent in the thyroid-equivalent region of zone 7. Ci-FoxQ was expressed in several endodermal organs of adult ascidians, such as the endostyle, branchial sac and esophagus. In the endostyle, the pattern of Ci-FoxQ expression was similar to that of CiTTF-1, being prominent in the thyroid-equivalent regions of zones 7 and 8. Therefore, these Fox genes may perform thyroid-equivalent functions in the ascidian endostyle.Edited by N. Satoh  相似文献   

13.
The activities of electron transport are compared between wild-type Arabidopsis and two Arabidopsis mutants deficient for the chloroplastic NAD(P)H dehydrogenase (NDH) which catalyzes cyclic electron transport around photosystem I. The quantum yield of photosystem II and the degree of non-photochemical quenching of chlorophyll fluorescence were of similar levels in the two NDH-deficient mutants and the wild type under non-stressed standard growth conditions. Stromal over-reduction was induced in Arabidopsis NDH mutants with high light treatment, as is the case in tobacco NDH mutants. However, unlike tobacco mutants, photoinhibition was not observed in the Arabidopsis NDH mutants.  相似文献   

14.
A meiotic time-course for Arabidopsis pollen mother cells has been established based on BrdU pulse-labelling of nuclear DNA in the meiotic S-phase. Labelled flower buds were sampled at intervals and the progress of labelled cells through meiosis assessed by anti-BrdU antibody detection. The overall duration of meiosis from the end of meiotic S-phase to the tetrad stage, at 18.5°C, was 33 h, which is about three times longer than the mitotic cell cycle in seedlings. The onset of leptotene was defined by reference to the loading of the axis-associated protein Asy1, and this permitted the detection of a definite G2 stage, having a maximum duration of 9 h. It is likely, from two independent sources of evidence, that the meiotic S-phase has a duration similar to that of G2. The durations of leptotene and zygotene/pachytene are 6 h and 15.3 h, respectively, but the remaining meiotic division stages are completed very rapidly, within 3 h. The establishment of a meiotic time-course provides a framework for determining the relative timing and durations of key molecular events of meiosis in Arabidopsis in relation to cytologically defined landmarks. In addition, it will be important in a broader developmental context for determining the timing of epigenetic mechanisms that are known or suspected to occur during meiosis.  相似文献   

15.
Bellaoui M  Gruissem W 《Planta》2004,219(5):819-826
The DCL (defective chloroplasts and leaves) gene of tomato (Lycopersicon esculentum Mill.) is required for chloroplast development, palisade cell morphogenesis, and embryogenesis. Previous work suggested that DCL protein is involved in 4.5S rRNA processing. The Arabidopsis thaliana (L.) Heynh. genome contains five sequences encoding for DCL-related proteins. In this paper, we investigate the function of AtDCL protein, which shows the highest amino acid sequence similarity with tomato DCL. AtDCL mRNA was expressed in all tissues examined and a fusion between AtDCL and green fluorescent protein (GFP) was sufficient to target GFP to plastids in vivo, consistent with the localization of AtDCL to chloroplasts. In an effort to clarify the function of AtDCL, transgenic plants with altered expression of this gene were constructed. Deregulation of AtDCL gene expression caused multiple phenotypes such as chlorosis, sterile flowers and abnormal cotyledon development, suggesting that this gene is required in different organs. The processing of the 4.5S rRNA was significantly altered in these transgenic plants, indicating that AtDCL is involved in plastid rRNA maturation. These results suggest that AtDCL is the Arabidopsis ortholog of tomato DCL, and indicate that plastid function is required for normal plant development.Abbreviations DCL Defective chloroplasts and leaves - GFP Green fluorescent protein  相似文献   

16.
The Lotus japonicus LjSYM2 gene, and the Pisum sativum orthologue PsSYM19, are required for the formation of nitrogen-fixing root nodules and arbuscular mycorrhiza. Here we describe the map-based cloning procedure leading to the isolation of both genes. Marker information from a classical AFLP marker-screen in Lotus was integrated with a comparative genomics approach, utilizing Arabidopsis genome sequence information and the pea genetic map. A network of gene-based markers linked in all three species was identified, suggesting local colinearity in the region around LjSYM2/PsSYM19. The closest AFLP marker was located just over 200 kb from the LjSYM2 gene, the marker SHMT, which was converted from a marker on the pea map, was only 7.9 kb away. The LjSYM2/PsSYM19 region corresponds to two duplicated segments of the Arabidopsis chromosomes AtII and AtIV. Lotus homologues of Arabidopsis genes within these segments were mapped to three clusters on LjI, LjII and LjVI, suggesting that during evolution the genomic segment surrounding LjSYM2 has been subjected to duplication events. However, one marker, AUX-1, was identified based on colinearity between Lotus and Arabidopsis that mapped in physical proximity of the LjSym2 gene.Communicated by J.S. Heslop-Harrison  相似文献   

17.
18.
Two albino mutants (ab1 and ab2) have been derived from long-term shoot proliferation of Bambusa edulis. Based on transmission electronic microscopy data, the chloroplasts of these mutants were abnormal. To study the mutation of gene regulation in the aberrant chloroplasts, we designed 19 pairs of chloroplast-encoded gene primers for genomic and RT-PCR. Only putative NAD(P)H-quinone oxidoreductase chain 4L (ndhE; DQ908943) and ribosomal protein S7 (rps7; DQ908931) were conserved in both the mutant and wild-type plants. The deletions in the chloroplast genome of these two mutants were different: nine genes were deleted in the chloroplast genomic aberration in ab1 and 11 genes in ab2. The chloroplast genes, NAD(P)H-quinone oxidoreductase chain 4 (ndhD; DQ908944), chloroplast 50S ribosomal protein L14 (rpl14; DQ908934), and ATP synthase beta chain (atpB; DQ908948) were abnormal in both mutants. The gene expressions of 18 of these 20 genes were correlated with their DNA copy number. The two exceptions were: ATP synthase CF0 A chain (atpI; DQ908946), whose expression in both mutants was not reduced even though the copy number was reduced; ribosomal protein S19 (rps19; DQ908949), whose expression was reduced or it was not expressed at all even though there was no difference in genomic copy number between the wild-type and mutant plants. The genomic PCR results showed that chloroplast genome aberrations do occur in multiple shoot proliferation, and this phenomenon may be involved in the generation of albino mutants.  相似文献   

19.
Genomic, proteomic, phylogenetic and evolutionary aspects of a novel gene encoding a putative chloroplast-targeted sulfate permease of prokaryotic origin in the green alga Chlamydomonas reinhardtii are described. This nuclear-encoded sulfate permease gene (SulP) contains four introns, whereas all other known chloroplast sulfate permease genes lack introns and are encoded by the chloroplast genome. The deduced amino acid sequence of the protein showed an extended N-terminus, which includes a putative chloroplast transit peptide. The mature protein contains seven transmembrane domains and two large hydrophilic loops. This novel prokaryotic-origin gene probably migrated from the chloroplast to the nuclear genome during evolution of C. reinhardtii. The SulP gene, or any of its homologues, has not been retained in vascular plants, e.g. Arabidopsis thaliana, although it is encountered in the chloroplast genome of a liverwort (Marchantia polymorpha). A comparative structural analysis and phylogenetic origin of chloroplast sulfate permeases in a variety of species is presented.  相似文献   

20.
Seasonal changes in chlorophyll fluorescence parameters of corticular chlorenchyma in the main trunk of Prunus cerasus were followed in the field under ambient temperature and light conditions during bright days. Concomitantly, measurements of periderm light transmittance also allowed the calculation of linear electron transport rates along PSII. Pre-dawn PSII photochemical efficiency was high during late spring, summer and early autumn, but low during winter in the North-facing, permanently shaded, side and extremely low in the South-facing, exposed side. Corresponding mid-day PSII effective yield and linear electron transport rates peaked at late spring and early summer with the exposed side always displaying lower values for effective yield, but higher values for electron transport rate. However, corticular electron transport rates were more than sixfold lower compared to leaves. Non-photochemical quenching was higher in the exposed side throughout the year while peak values appeared at early autumn. Although a photoinhibitory damage during winter can be claimed, we may note that Mediterranean winter temperatures are mild, while the light reaching the trunk photosynthetic tissues is very low (maximum at 30 and 280 μmol m−2 s−1 in the shaded and the exposed side, respectively) to be considered as photoinhibitory. Based on recent findings for the retention of PSI activity and a concomitant inhibition of PSII under low temperatures in leaves, together with an adequate cyclic electron flow found in bark chlorenchyma, we suggest a temperature-dependent adaptive adjustment in the relative rates of PSI over PSII activity, possibly linked to seasonally changing needs for metabolic energy supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号