首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lima L  Seabra A  Melo P  Cullimore J  Carvalho H 《Planta》2006,223(3):558-567
In this report we demonstrate that plastid glutamine synthetase of Medicago truncatula (MtGS2) is regulated by phosphorylation and 14-3-3 interaction. To investigate regulatory aspects of GS2 phosphorylation, we have produced non-phosphorylated GS2 proteins by expressing the plant cDNA in E. coli and performed in vitro phosphorylation assays. The recombinant isoenzyme was phosphorylated by calcium dependent kinase(s) present in leaves, roots and nodules. Using an (His)6-tagged 14-3-3 protein column affinity purification method, we demonstrate that phosphorylated GS2 interacts with 14-3-3 proteins and that this interaction leads to selective proteolysis of the plastid located isoform, resulting in inactivation of the isoenzyme. By site directed mutagenesis we were able to identify a GS2 phosphorylation site (Ser97) crucial for the interaction with 14-3-3s. Phosphorylation of this target residue can be functionally mimicked by replacing Ser97 by Asp, indicating that the introduction of a negative charge contributes to the interaction with 14-3-3 proteins and subsequent specific proteolysis. Furthermore, we document that plant extracts contain protease activity that cleaves the GS2 protein only when it is bound to 14-3-3 proteins following either phosphorylation or mimicking of phosphorylation by Ser97Asp.  相似文献   

2.
 The nitrate reductase activity from Chlamydomonas reinhardtii was not altered when extracts were incubated with yeast 14-3-3 proteins in the presence of Mg-ATP. However, the C. reinhardtii extracts contained 14-3-3 proteins capable of inhibiting the spinach nitrate reductase, raising the question of their physiological substrates. Two C. reinhardtii proteins of about 48 and 35 kDa were eluted from 14-3-3 affinity chromatography columns and bound to 14-3-3s in overlay assays. The 48-kDa protein corresponded to the cytosolic isoform of glutamine synthetase (GS1). The GS1 was phosphorylated by a Ca2+- and calmodulin-dependent protein kinase partially purified from the alga. However, neither phosphorylation nor 14-3-3 binding seemed to change GS catalytic activity. Received: 3 February 2000 / Accepted: 6 May 2000  相似文献   

3.
It was reported recently that the plastid-located glutamine synthetase (GS2) from Medicago truncatula is regulated by phosphorylation catalysed by a calcium-dependent protein kinase and 14-3-3 interaction. Here it is shown that the two cytosolic GS isoenzymes, GS1a and GS1b, are also regulated by phosphorylation but, in contrast to GS2, GS1 phosphorylation is catalysed by calcium-independent kinase(s) and the phosphorylated enzymes fail to interact with 14-3-3s. Phosphorylation of GS1a occurs at more than one residue and was found to increase the affinity of the enzyme for the substrate glutamate. In vitro phosphorylation assays were used to compare the activity of GS kinase, present in different plant organs, against the three M. truncatula GS isoenzymes. All three GS proteins were phosphorylated by kinases present in leaves, roots, and nodules, but to different extents, suggesting a differential regulation under different metabolic contexts. Cytosolic GS phosphorylation was found to be affected by light in leaves and by active nitrogen fixation in root nodules, whereas GS2 phosphorylation was unaffected by these conditions. Some putative GS-binding phosphoproteins were identified showing both isoenzyme and organ specificity. Two phosphoproteins of 70 and 72 kDa were specifically bound to the cytosolic GS isoenzymes. Interestingly, phosphorylation of these proteins was also influenced by the nitrogen-fixing status of the nodule, suggesting that their phosphorylation and/or binding to GS are related to nitrogen fixation. Taken together, the results presented indicate that GS phosphorylation is modulated by nitrogen fixation in root nodules; these findings open up new possibilities to explore the involvement of this post-translational mechanism in nodule functioning.  相似文献   

4.
The Raf-1 protein kinase is a major activator of the ERK MAPK pathway, which links signaling by a variety of cell surface receptors to the regulation of cell proliferation, survival, differentiation and migration. Signaling by Raf-1 is regulated by a complex and poorly understood interplay between phosphorylation events and protein–protein interactions. One important mode of Raf-1 regulation involves the phosphorylation-dependent binding of 14-3-3 proteins. Here, we have examined the mechanism whereby the C-terminal 14-3-3 binding site of Raf-1, S621, controls the activation of MEK-ERK signaling. We show that phosphorylation of S621 turns over rapidly and is enriched in the activated pool of endogenous Raf-1. The phosphorylation on this site can be mediated by Raf-1 itself but also by other kinase(s). Mutations that prevent the binding of 14-3-3 proteins to S621 render Raf-1 inactive by specifically disrupting its capacity to bind to ATP, and not by gross conformational alteration as indicated by intact MEK binding. Phosphorylation of S621 correlates with the inhibition of Raf-1 catalytic activity in vitro, but 14-3-3 proteins can completely reverse this inhibition. Our findings suggest that 14-3-3 proteins function as critical cofactors in Raf-1 activation, which induce and maintain the protein in a state that is competent for both ATP binding and MEK phosphorylation.  相似文献   

5.
A polyclonal antibody was raised against a Toxoplasma gondii 14-3-3-gluthatione S-transferase fusion protein obtained by cloning a 14-3-3 cDNA sequence determined from the T. gondii database. This antibody specifically recognized T. gondii 14-3-3 without any cross-reaction with mammalian proteins. Immunofluorescence microscopy studies of the tachyzoites or the T. gondii-infected cells suggested cytosolic and membranous localizations of 14-3-3 protein. Different subcellular fractions were prepared for electrophoresis analysis and immunodetection. 14-3-3 proteins were found in the cytosol, the membrane fraction and Triton X-100-resistant membranes. Two 14-3-3 isoforms were detected. The major one was mainly cytoplasmic and to a lesser extent membrane-associated, whereas the minor isoform was associated with the detergent-resistant lipid rafts.  相似文献   

6.
Dual-specificity tyrosine(Y) regulated kinase 1A (DYRK1A) is a serine/threonine protein kinase implicated in mental retardation resulting from Down syndrome. In this study, we carried out yeast two-hybrid screening to find proteins regulating DYRK1A kinase activity. We identified 14-3-3 as a Dyrk1A interacting protein, which is consistent with the previous finding of the interaction between the yeast orthologues Yak1p and Bmh1/2p. We showed the interaction between Dyrk1A and 14-3-3 in vitro and in vivo. The binding required the N-terminus of Dyrk1A and was independent of the Dyrk1A phosphorylation status. Functionally, 14-3-3 binding increased Dyrk1A kinase activity in a dose dependent manner in vitro. In vivo, a small peptide inhibiting 14-3-3 binding, sc138, decreased Dyrk1A kinase activity in COS7. In summary, these results suggest that DYRK1A kinase activity could be regulated by the interaction of 14-3-3.  相似文献   

7.
Fructose 2,6-bisphosphate (fru-2,6-P2) is a signalling metabolite that regulates photosynthetic carbon partitioning in plants. The content of fru-2,6-P2 in Arabidopsis leaves varied in response to photosynthetic activity with an abrupt decrease at the start of the photoperiod, gradual increase through the day, and modest decrease at the start of the dark period. In Arabidopsis suspension cells, fru-2,6-P2 content increased in response to an unknown signal upon transfer to fresh culture medium. This increase was blocked by either 2-deoxyglucose or the protein phosphatase inhibitor, calyculin A, and the effects of calyculin A were counteracted by the general protein kinase inhibitor K252a. The changes in fru-2,6-P2 at the start of dark period in leaves and in the cell experiments generally paralleled changes in nitrate reductase (NR) activity. NR is inhibited by protein phosphorylation and binding to 14-3-3 proteins, raising the question of whether fructose-6-phosphate,2-kinase/fructose-2,6-bisphosphatase protein from Arabidopsis thaliana (AtF2KP), which both generates and hydrolyses fru-2,6-P2, is also regulated by phosphorylation and 14-3-3s. Consistent with this hypothesis, AtF2KP and NR from Arabidopsis cell extracts bound to a 14-3-3 column, and were eluted specifically by a synthetic 14-3-3-binding phosphopeptide (ARAApSAPA). 14-3-3s co-precipitated with recombinant glutathione S-transferase (GST)-AtF2KP that had been incubated with Arabidopsis cell extracts in the presence of Mg-ATP. 14-3-3s bound directly to GST-AtF2KP that had been phosphorylated on Ser220 (SLSASGpSFR) and Ser303 (RLVKSLpSASSF) by recombinant Arabidopsis calcium-dependent protein kinase isoform 3 (CPK3), or on Ser303 by rat liver mammalian AMP-activated protein kinase (AMPK; homologue of plant SNF-1 related protein kinases (SnRKs)) or an Arabidopsis cell extract. We have failed to find any direct effect of 14-3-3s on the F2KP activity in vitro to date. Nevertheless, our findings indicate the possibility that 14-3-3 binding to SnRK1-phosphorylated sites on NR and F2KP may regulate both nitrate assimilation and sucrose/starch partitioning in leaves.  相似文献   

8.
Trehalose-6-phosphate is a 'sugar signal' that regulates plant metabolism and development. The Arabidopsis genome encodes trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphatase (TPP) enzymes. It also encodes class II proteins (TPS isoforms 5-11) that contain both TPS-like and TPP-like domains, although whether these have enzymatic activity is unknown. In this paper, we show that TPS5, 6 and 7 are phosphoproteins that bind to 14-3-3 proteins, by using 14-3-3 affinity chromatography, 14-3-3 overlay assays, and by co-immunoprecipitating TPS5 and 14-3-3 isoforms from cell extracts. GST-TPS5 bound to 14-3-3s after in vitro phosphorylation at Ser22 and Thr49 by either mammalian AMP-activated protein kinase (AMPK) or partially purified plant Snf1-related protein kinase 1 (SnRK1s). Dephosphorylation of TPS5, or mutation of either Ser22 or Thr49, abolished binding to 14-3-3s. Ser22 and Thr49 are both conserved in TPS5, 7, 9 and 10. When GST-TPS5 was expressed in human HEK293 cells, Thr49 was phosphorylated in response to 2-deoxyglucose or phenformin, stimuli that activate the AMPK via the upstream kinase LKB1. 2-deoxyglucose stimulated Thr49 phosphorylation of endogenous TPS5 in Arabidopsis cells, whereas phenformin did not. Moreover, extractable SnRK1 activity was increased in Arabidopsis cells in response to 2-deoxyglucose. The plant kinase was inactivated by dephosphorylation and reactivated by phosphorylation with human LKB1, indicating that elements of the SnRK1/AMPK pathway are conserved in Arabidopsis and human cells. We hypothesize that coordinated phosphorylation and 14-3-3 binding of nitrate reductase (NR), 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (F2KP) and class II TPS isoforms mediate responses to signals that activate SnRK1.  相似文献   

9.
The microtubule associated protein tau is a major component of neurofibrillary tangles in Alzheimer disease brain, however the neuropathological processes behind the formation of neurofibrillary tangles are still unclear. Previously, 14-3-3 proteins were reported to bind with tau. 14-3-3 Proteins usually bind their targets through specific serine/threonine –phosphorylated motifs. Therefore, the interaction of tau with 14-3-3 mediated by phosphorylation was investigated. In this study, we show that the phosphorylation of tau by either protein kinase A (PKA) or protein kinase B (PKB) enhances the binding of tau with 14-3-3 in vitro . The affinity between tau and 14-3-3 is increased 12- to 14-fold by phosphorylation as determined by real time surface plasmon resonance studies. Mutational analyses revealed that Ser214 is critical for the phosphorylation-mediated interaction of tau with 14-3-3. Finally, in vitro aggregation assays demonstrated that phosphorylation by PKA/PKB inhibits the formation of aggregates/filaments of tau induced by 14-3-3. As the phosphorylation at Ser214 is up-regulated in fetal brain, tau's interaction with 14-3-3 may have a significant role in the organization of the microtubule cytoskeleton in development. Also as the phosphorylation at Ser214 is up-regulated in Alzheimer's disease brain, tau's interaction with 14-3-3 might be involved in the pathology of this disease.  相似文献   

10.
Transglutaminase 2 (TG2) is a multifunctional ubiquitous enzyme which is present in various cellular compartments and is subject to phosphorylation by PKA. To better understand the relevance of PKA induced phosphorylation of TG2, we performed pull-down assays using phosphorylated biotinylated-TG2(209-223) peptides spanning PKA induced phosphorylation sites as a bait. Subsequent analysis of pull-down protein by SDS-PAGE and LC/MS identified 14-3-3epsilon as the binding partner for TG2 which was further confirmed by immunoblotting with 14-3-3 specific antiserum. In contrast, non-phosphorylated and/or phosphorylation site substituted peptides fail to pull-down 14-3-3. Furthermore, we demonstrate that 14-3-3 co-immunoprecipitated with TG2 antiserum after activation of PKA from mouse embryonic fibroblasts (MEF)(TG2+/+) cells but not from MEF(TG2-/-) cells. In summary, we provide convincing evidence that phosphorylation of TG2 by PKA creates binding site(s) for 14-3-3 both in vitro and in vivo.  相似文献   

11.
In higher eukaryotes, 14-3-3 proteins participate in numerous cellular processes, and carry out their function through a variety of different molecular mechanisms, including regulation of protein localization and enzyme activation. Here, it is shown that the two yeast 14-3-3 homologues, Bmh1p and Bmh2p, form a complex with neutral trehalase (Nth1p), an enzyme that is responsible for trehalose degradation and is required in a variety of stress conditions. In a purified in vitro system, either one of the two 14-3-3 yeast isoforms are necessary for complete activation of neutral trehalase (Nth1p) after phosphorylation by PKA. It is further demonstrated that Bmh1p and Bmh2p bind to the amino-terminal region of phosphorylated trehalase, thereby modulating its enzymatic activity. This work represents the first demonstration of enzyme activation mediated by 14-3-3 binding in yeast.  相似文献   

12.
Chen HP  He M  Xu YL  Huang QR  Zeng GH  Liu D  Liao ZP 《Life sciences》2007,81(5):372-379
Anoxic preconditioning (APC) attenuates myocardial injury caused by ischemia/reperfusion. The protective mechanisms of APC involve up-regulation of the protective proteins and inhibition of apoptosis. 14-3-3 protein, as a molecular chaperone, plays an important role in regulating cell survival and apoptosis. However, the role of 14-3-3 protein in cardioprotection of APC and the pathways determining 14-3-3 protein expression during APC are not clear. In this work, Western blotting analysis was used to detect the 14-3-3 protein expression and activity of extracellular signal-regulated protein kinase 1/2 (ERK1/2) in cardiomyocytes subjected to anoxia-reoxygenation injury with and without APC and control. The cardiomyocytes from APC group were more resistant to injury induced by anoxia-reoxygenation and had much stronger phosphorylation of ERK1/2 than the control. The 14-3-3 protein expression was positively correlated with the phosphorylation of ERK1/2. Furthermore, inhibition of the ERK1/2 with PD98059 abolished the 14-3-3 protein up-regulation in cardiomyocytes induced by APC. The results indicate that APC up-regulates 14-3-3 protein expression through the ERK1/2 signaling pathways.  相似文献   

13.
14.
15.
Tyrosine hydroxylase (TH) has been reported to require binding of 14-3-3 proteins for optimal activation by phosphorylation. We examined the effects of phosphorylation at Ser19, Ser31 and Ser40 of bovine TH and human TH isoforms on their binding to the 14-3-3 proteins BMH1/BMH2, as well as 14-3-3 zeta and a mixture of sheep brain 14-3-3 proteins. Phosphorylation of Ser31 did not result in 14-3-3 binding, however, phosphorylation of TH on Ser40 increased its affinity towards the yeast 14-3-3 isoforms BMH1/BMH2 and sheep brain 14-3-3, but not for 14-3-3 zeta. On phosphorylation of both Ser19 and Ser40, binding to the 14-3-3 zeta isoform also occurred, and the binding affinity to BMH1 and sheep brain 14-3-3 increased. Both phosphoserine-specific antibodies directed against the 10 amino acids surrounding Ser19 or Ser40 of TH, and the phosphorylated peptides themselves, inhibited the association between phosphorylated TH and 14-3-3 proteins. This was also found when heparin was added, or after proteolytic removal of the N-terminal 37 amino acids of Ser40-phosphorylated TH. Binding of BMH1 to phosphorylated TH decreased the rate of dephosphorylation by protein phosphatase 2A, but no significant change in enzymatic activity was observed in the presence of BMH1. These findings further support a role for 14-3-3 proteins in the regulation of catecholamine biosynthesis and demonstrate isoform specificity for both TH and 14-3-3 proteins.  相似文献   

16.
Abstract: The 14-3-3 protein family, which is present at particularly high concentrations in mammalian brain, is known to be involved in various cellular functions, including protein kinase C regulation and exocytosis. Despite the fact that most of the 14-3-3 proteins are cytosolic, a small but significant proportion of 14-3-3 in brain is tightly and selectively associated with some membranes. Using a panel of isoform-specific antisera we find that the ε, η, γ, β, and ζ isoforms are all present in purified synaptic membranes but absent from mitochondrial and myelin membranes. In addition, the η, ε, and γ isoforms but not the β and ζ isoforms are associated with isolated synaptic junctions. When different populations of synaptosomes were fractionated by a nonequilibrium Percoll gradient procedure, the ε and γ isoforms were present and the β and ζ isoforms were absent from the membranes of synaptosomes sedimenting in the more dense parts of the gradient. The finding that these proteins are associated with different populations of synaptic membranes suggests that they are selectively expressed in different classes of neurones and raises the possibility that some or all of them may influence neurotransmission by regulating exocytosis and/or phosphorylation.  相似文献   

17.
14-3-3蛋白是一种在真核生物细胞中普遍存在且高度保守的蛋白。该蛋白在大多数物种中由一个基因家族编码,并以同源或异源二聚体的形式存在。不同的14-3-3蛋白同工型具有不同的细胞特异性,可通过识别特异的磷酸化或非磷酸化序列与靶蛋白相互作用。14-3-3蛋白在植物生长和发育的各个方面都起重要作用。本文主要围绕植物14-3-3蛋白的种类、结构、磷酸化或非磷酸化识别序列及其响应干旱、冷冻、盐碱、营养和机械胁迫等的分子机制研究进展进行综述。  相似文献   

18.
Under drought stress, ABA promotes stomatal closure to prevent water loss. Although protein phosphorylation plays an important role in ABA signaling, little is known about these processes at the biochemical level. In this study, we searched for substrates of protein kinases in ABA signaling through the binding of a 14-3-3 protein to phosphorylated proteins using Vicia guard cell protoplasts. ABA induced binding of a 14-3-3 protein to proteins with molecular masses of 61, 43 and 39 kDa, with the most remarkable signal for the 61 kDa protein. The ABA-induced binding to the 61 kDa protein occurred only in guard cells, and reached a maximum within 3 min at 1 microM ABA. The 61 kDa protein localized in the cytosol. ABA induced the binding of endogenous vf14-3-3a to the 61 kDa protein in guard cells. Autophosphorylation of ABA-activated protein kinase (AAPK), which mediates anion channel activation, and ABA-induced phosphorylation of the 61 kDa protein showed similar time courses and similar sensitivities to the protein kinase inhibitor K-252a. AAPK elicits the binding of the 14-3-3 protein to the 61 kDa protein in vitro when AAPK in guard cells was activated by ABA. The phosphorylation of the 61 kDa protein by ABA was not affected by the NADPH oxidase inhibitor, H(2)O(2), W-7 or EGTA. From these results, we conclude that the 61 kDa protein may be a substrate for AAPK and that the 61 kDa protein is located upstream of H(2)O(2) and Ca(2+), or on Ca(2+)-independent signaling pathways in guard cells.  相似文献   

19.
Interaction of 14-3-3 proteins with their targets depends not only on the phosphorylation status of the target but also on that of 14-3-3 (Fu et al., 2000). In this work we demonstrated that the maize 14-3-3 isoform GF14-6 is a substrate of the tyrosine kinase insulin growth factor receptor 1. By means of site-directed mutants of GF14-6, we identified Tyr-137 as the specific tyrosine residue phosphorylated by the insulin growth factor receptor 1. Phosphorylation of GF14-6 on Tyr-137 lowered its affinity for a peptide mimicking the 14-3-3 binding site of the plant plasma membrane H+-ATPase. Moreover, phosphorylation in planta of 14-3-3 tyrosine residues, resulting from incubation with the tyrosine phosphatase inhibitor, phenylarsine oxide, decreased their association to the H+-ATPase.  相似文献   

20.
14-3-3s are abundant proteins that regulate essentially all aspects of cell biology, including cell cycle, motility, metabolism, and cell death. 14-3-3s work by docking to phosphorylated Ser/Thr residues on a large network of client proteins and modulating client protein function in a variety of ways. In recent years, aided by improvements in proteomics, the discovery of 14-3-3 client proteins has far outpaced our ability to understand the biological impact of individual 14-3-3 interactions. The rate-limiting step in this process is often the identification of the individual phospho-serines/threonines that mediate 14-3-3 binding, which are difficult to distinguish from other phospho-sites by sequence alone. Furthermore, trial-and-error molecular approaches to identify these phosphorylations are costly and can take months or years to identify even a single 14-3-3 docking site phosphorylation. To help overcome this challenge, we used machine learning to analyze predictive features of 14-3-3 binding sites. We found that accounting for intrinsic protein disorder and the unbiased mass spectrometry identification rate of a given phosphorylation significantly improves the identification of 14-3-3 docking site phosphorylations across the proteome. We incorporated these features, coupled with consensus sequence prediction, into a publicly available web app, called “14-3-3 site-finder”. We demonstrate the strength of this approach through its ability to identify 14-3-3 binding sites that do not conform to the loose consensus sequence of 14-3-3 docking phosphorylations, which we validate with 14-3-3 client proteins, including TNK1, CHEK1, MAPK7, and others. In addition, by using this approach, we identify a phosphorylation on A-kinase anchor protein-13 (AKAP13) at Ser2467 that dominantly controls its interaction with 14-3-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号