首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Neuropilin-1 (NRP1) is a transmembrane receptor playing a pivotal role in the control of semaphorins and VEGF signaling pathways. The exact mechanism controlling semaphorin receptor complex formation is unknown. A structural analysis and modeling of NRP1 revealed a putative dimerization GxxxG motif potentially important for NRP1 dimerization and oligomerization. Our data show that this motif mediates the dimerization of the transmembrane domain of NRP1 as demonstrated by a dimerization assay (ToxLuc assay) performed in natural membrane and FRET analysis. A synthetic peptide derived from the transmembrane segment of NRP1 abolished the inhibitory effect of Sema3A. This effect depends on the capacity of the peptide to interfere with NRP1 dimerization and the formation of oligomeric complexes. Mutation of the GxxxG dimerization motif in the transmembrane domain of NRP1 confirmed its biological importance for Sema3A signaling. Overall, our results shed light on an essential step required for semaphorin signaling and provide novel evidence for the crucial role of transmembrane domain of bitopic protein containing GxxxG motif in the formation of receptor complexes that are a prerequisite for cell signaling.  相似文献   

2.
Semaphorins are a large family of secreted and membrane-bound molecules initially implicated in the development of the nervous system and in axon guidance. More recently, they have been found to regulate cell adhesion and cell motility, angiogenesis, immune function and tumour progression. Notably, Semaphorins have been implicated with opposite functions in cancer: either as putative tumor suppressors and anti-angiogenic factors, or as mediating tumour angiogenesis, invasion and metastasis. Interestingly, Semaphorins may display divergent activities in different cell types. These multifaceted functions may be explained by the involvement of different kinds of semaphorin receptor complexes, and by the consequent activation of multiple signaling pathways, in different cells or different functional stages. Semaphorin signaling is largely mediated by the Plexins. However, semaphorin receptor complexes may also include Neuropilins and tyrosine kinases implicated in cancer. In this review, we will focus on major open questions concerning the potential role of Semaphorin signals in cancer.  相似文献   

3.
Semaphorin-plexin signaling guides patterning of the developing vasculature   总被引:4,自引:0,他引:4  
Major vessels of the vertebrate circulatory system display evolutionarily conserved and reproducible anatomy, but the cues guiding this stereotypic patterning remain obscure. In the nervous system, axonal pathways are shaped by repulsive cues provided by ligands of the semaphorin family that are sensed by migrating neuronal growth cones through plexin receptors. We show that proper blood vessel pathfinding requires the endothelial receptor PlexinD1 and semaphorin signals, and we identify mutations in plexinD1 in the zebrafish vascular patterning mutant out of bounds. These results reveal the fundamental conservation of repulsive patterning mechanisms between axonal migration in the central nervous system and vascular endothelium during angiogenesis.  相似文献   

4.
The hallmarks of cancer include multiple alterations in the physiological processes occurring in normal tissues, such as cell proliferation, apoptosis, and restricted cell migration. These aberrant behaviors are due to genetic and epigenetic changes that affect signaling pathways controlling cancer cells, as well as the surrounding “normal” cells in the tumor microenvironment. Semaphorins and their receptors (mainly plexins and neuropilins) are aberrantly expressed in human tumors, and multiple family members are emerging as pivotal signals deregulated in cancer. Notably, different semaphorins can promote or inhibit tumor progression, depending on the implicated receptor complexes and responsive cell type. The important role of semaphorin signals in the regulation of tumor angiogenesis, invasion and metastasis has initiated multiple experimental approaches aimed at targeting these pathways to inhibit cancer.  相似文献   

5.
Semaphorins are developmental axon guidance cues that continue to be expressed during adulthood and are regulated by neural injury. During the formation of the nervous system, repulsive semaphorins guide axons to their targets by restricting and channelling their growth. They affect the growth cone cytoskeleton through interactions with receptor complexes that are linked to a complicated intracellular signal transduction network. Following injury, regenerating axons stop growing when they reach the border of the glial-fibrotic scar, in part because they encounter a potent molecular barrier that inhibits growth cone extension. A number of secreted semaphorins are expressed in the glial-fibrotic scar and at least one transmembrane semaphorin is upregulated in oligodendrocytes surrounding the lesion site. Semaphorin receptors, and many of the signal transduction components required for semaphorin signalling, are present in injured central nervous system neurons. Here, we review evidence that supports a critical role for semaphorin signalling in axon regeneration, and highlight a number of challenges that lie ahead with respect to advancing our understanding of semaphorin function in the normal and injured adult nervous system.  相似文献   

6.
Semaphorins were discovered 11 years ago as molecular cues for axon guidance that are conserved from invertebrates to humans. More than 20 semaphorin genes have been identified in mammals and their protein products are now known to be involved in a range of processes from the guidance of cell migration to the regulation of the immune response, angiogenesis and cancer. Plexins, either alone or in association with neuropilins, constitute high-affinity semaphorin receptors. However, other transmembrane molecules have been implicated in semaphorin receptor complexes, and interactions between plexins and a range of intracellular effectors have been reported. These data indicate that semaphorins might be able to elicit responses through more than one signalling pathway. Interestingly, according to recent findings, the semaphorin-dependent control of cell migration crucially involves integrin-based adhesive structures through which polarized cell-membrane protrusion is coupled to cytoskeletal dynamics. This review focuses on the mechanisms whereby semaphorins are thought to regulate cell migration.  相似文献   

7.
Semaphorins were initially characterized according to their role in repulsive axon guidance but are now recognized as crucial regulators of morphogenesis and homeostasis over a wide range of organ systems. The pleiotropic nature of semaphorin signaling and its implication in human disease has triggered an enormous interest in the receptor and intracellular signaling mechanisms that direct the cell-type-specific and diverse biological effects of semaphorins. Recent breakthroughs in our understanding of semaphorin signaling link integrin and semaphorin signaling pathways, identify novel ligand-receptor interactions and provide insight into the cellular and molecular bases of bifunctional and reverse signaling events. These discoveries could lead to therapeutic advances in axonal regeneration, cancer and other diseases.  相似文献   

8.
We recently showed that mouse semaphorin H (MSH), a secreted semaphorin molecule, acts as a chemorepulsive factor on sensory neurites. In this study, we found for the first time that MSH induces neurite outgrowth in PC12 cells in a dose-dependent manner. Comparison of Ras-mitogen-activated protein kinase (MAPK) signaling pathways between MSH and nerve growth factor (NGF) revealed that these pathways are crucial for MSH action as well as NGF. K-252a, an inhibitor of tyrosine autophosphorylation of tyrosine kinase receptors (Trks), did not inhibit the action of MSH, suggesting that MSH action occurs via a different receptor than NGF. L- and N-types of voltage-dependent Ca(2+) channel blockers, diltiazem and omega-conotoxin, inhibited MSH-induced neurite outgrowth and MAPK phosphorylation in a Ca(2+)-dependent manner. A transient elevation in intracellular Ca(2+) level was observed upon MSH stimulation. These findings suggest that extracellular Ca(2+) influx, followed by activation of the Ras-MAPK signaling pathway, is required for MSH induced PC12 cell neurite outgrowth.  相似文献   

9.
Abrogation of the endothelial cell-specific semaphorin receptor PlexinD1 in zebrafish and mouse reveals semaphorin functions selectively affecting the cardiovascular system. Neuropilins team up with PlexinD1 to form a novel endothelial receptor complex for class 3 semaphorins.  相似文献   

10.
Ten years ago nothing was known of the three-dimensional structure of members of the semaphorin family of cell guidance cues, nor of their major receptors, the plexins. The structural biology of this cell surface ligand–receptor system has now come of age. Detailed atomic level information is available on the architecture of semaphorin and plexin ectodomains and their recognition complexes. Similarly the structure of the plexin cytoplasmic region, and its interactions with members of the Rho family of small GTPases have been unveiled. These structural analyses, in combination with biochemical, biophysical and cellular studies, have progressed our understanding of this signalling system into the realm of molecular mechanism.  相似文献   

11.
Semaphorin junction: making tracks toward neural connectivity   总被引:14,自引:0,他引:14  
Semaphorins constitute one of the largest families of repulsive and attractive growth cone guidance proteins. They affect the growth cone's actin cytoskeleton through interactions with receptor complexes composed of ligand-binding, signal-transducing, and modulatory subunits. Our understanding of the intracellular signal transduction machinery linking semaphorins to actin dynamics is limited; however, recent advances provide a more comprehensive view of the molecular basis of neuronal semaphorin signaling.  相似文献   

12.
Mical, a redox enzyme, binds the cytoplasmic domain of the semaphorin receptor plexin A and mediates semaphorin-signaled collapse of the actin cytoskeleton. Recent work now shows that Mical's ability to bind actin filaments and destabilize them in a NADPH-dependent manner is responsible for semaphorin 1a's effects.  相似文献   

13.
Plexin receptors play a crucial role in the transduction of axonal guidance events elicited by semaphorin proteins. In Drosophila, Plexin A (PlexA) is a receptor for the transmembrane semaphorin semaphorin-1a (Sema-1a) and is required for motor and central nervous system (CNS) axon guidance in the developing embryonic nervous system. However, it remains unknown how PlexB functions during neural development and which ligands serve to activate this receptor. Here, we show that plexB, like plexA, is robustly expressed in the developing CNS and is required for motor and CNS axon pathfinding. PlexB and PlexA serve both distinct and shared neuronal guidance functions. We observe a physical association between these two plexin receptors in vivo and find that they can utilize common downstream signaling mechanisms. PlexB does not directly bind to the cytosolic semaphorin signaling component MICAL (molecule that interacts with CasL), but requires MICAL for certain axonal guidance functions. Ligand binding and genetic analyses demonstrate that PlexB is a receptor for the secreted semaphorin Sema-2a, suggesting that secreted and transmembrane semaphorins in Drosophila use PlexB and PlexA, respectively, for axon pathfinding during neural development. These results establish roles for PlexB in central and peripheral axon pathfinding, define a functional ligand for PlexB, and implicate common signaling events in plexin-mediated axonal guidance.  相似文献   

14.
Semaphorins as Mediators of Neuronal Apoptosis   总被引:6,自引:0,他引:6  
Shrinkage and collapse of the neuritic network are often observed during the process of neuronal apoptosis. However, the molecular and biochemical basis for the axonal damage associated with neuronal cell death is still unclear. We present evidence for the involvement of axon guidance molecules with repulsive cues in neuronal cell death. Using the differential display approach, an up-regulation of collapsin response mediator protein was detected in sympathetic neurons undergoing dopamine-induced apoptosis. A synchronized induction of mRNA of the secreted collapsin-1 and the intracellular collapsin response mediator protein that preceded commitment of neurons to apoptosis was detected. Antibodies directed against a conserved collapsin-derived peptide provided marked and prolonged protection of several neuronal cell types from dopamine-induced apoptosis. Moreover, neuronal apoptosis was inhibited by antibodies against neuropilin-1, a putative component of the semaphorin III/collapsin-1 receptor. Induction of neuronal apoptosis was also caused by exposure of neurons to semaphorin III-alkaline phosphatase secreted from 293EBNA cells. Anti-collapsin-1 antibodies were effective in blocking the semaphorin III-induced death process. We therefore suggest that, before their death, apoptosis-destined neurons may produce and secrete destructive axon guidance molecules that can affect their neighboring cells and thus transfer a "death signal" across specific and susceptible neuronal populations.  相似文献   

15.
Class 3 semaphorin acts as a guidance clue for both cell migration and nerve fiber projection. The signal of class 3 semaphorin travels via a receptor complex consisting of neuropilins and Plexin-A subfamily. Although it has been reported that class 3 semaphorin acts as a repellent for oligodendrocyte precursor cells (OPCs), which migrate actively during brain development, the expression of Plexin-A subfamily has not been reported in OPCs yet. Therefore, it is currently unclear how semaphorin signals can travel in OPCs. In the present study, the expression of Plexin-A4 (PlexA4) was first demonstrated in a newly established OPC line and OPCs in developing brain. In the OPC line, repulsion for process extension was caused by both Sema3A and Sema6A, and the effect of the semaphorins was diminished in cells expressing PlexA4 lacking the cytoplasmic domain. These results strongly suggest that PlexA4 expressed in OPCs acts as a mediator of semaphorin signals.  相似文献   

16.
Semaphorins are a large family of secreted and membrane-bound molecules initially implicated in the development of the nervous system and in axon guidance. More recently, they have been found to regulate cell adhesion and cell motility, angiogenesis, immune function and tumor progression. Notably, Semaphorins have been implicated with opposite functions in cancer: either as putative tumor suppressors and anti-angiogenic factors, or as mediating tumor angiogenesis, invasion and metastasis. Interestingly, Semaphorins may display divergent activities in different cell types. These multifaceted functions may be explained by the involvement of different kinds of semaphorin receptor complexes, and by the consequent activation of multiple signaling pathways, in different cells or different functional stages. Semaphorin signaling is largely mediated by the Plexins. However, semaphorin receptor complexes may also include Neuropilins and tyrosine kinases implicated in cancer. In this review, we will focus on major open questions concerning the potential role of Semaphorin signals in cancer.Key words: semaphorin, plexin, neuropilin, migration, tumor, metastasis, signalingOver twenty different Semaphorin genes are known in vertebrates. They were initially discovered as repelling cues for axons, in the wiring of the neural system. However, they are currently considered versatile signals regulating cell migration, angiogenesis, tissue morphogenesis, immune function and cancer.12 Semaphorins have been implicated with opposite functions in tumor progression (summarized in Fig. 1). For example, Semaphorins 3B and 3F are putative tumor suppressors, while the expression of Semaphorin 3C, 3E and 5C has been associated with tumor invasion and metastasis. Interestingly, certain Semaphorins display divergent activities in different cell types. These varied functions of Semaphorins are likely to be explained by the involvement of different receptor complexes and multiple signaling pathways.Open in a separate windowFigure 1Semaphorin signals on the road to cancer invasion and metastasis. Semaphorins play a regulatory role on the main elements driving cancer progression. They can be seen as “stop” or “go” signals for tumor cells, as well as for stromal cells in the tumor microenvironment. The scheme features some examples of the semaphorin signals implicated so far. More information on the implicated receptors and functional activities of the different semaphorins are summarized in 相似文献   

17.
Novel targets for action of the class IV semaphorin Seam4D have been identified in the immune system. The low-affinity CD72 receptor for Seam4D was detected not only on B lymphocytes, but also in a proportion of T cells, whereas the high-affinity semaphorin receptor, plexin B1, originally considered to belong to non-immune cells, proved to be in a great proportion of intact T and B cells. Seam4D is constitutively expressed in B cells, which, along with T cells, can serve as a source of both membrane and soluble semaphorin. The results obtained make significant adjustments in understanding of Seam4D effects in lymphoid cells.  相似文献   

18.
Cell-cell communication is pivotal to guide embryo development, as well as to maintain adult tissues homeostasis and control immune response. Among extracellular factors responsible for this function, are the Semaphorins, a broad family of around 20 different molecular cues conserved in evolution and widely expressed in all tissues. The signaling cascades initiated by semaphorins depend on a family of conserved receptors, called Plexins, and on several additional molecules found in the receptor complexes. Moreover, multiple intracellular pathways have been described to act downstream of semaphorins, highlighting significant diversity in the signaling cascades controlled by this family. Notably, semaphorin expression is altered in many human diseases, such as immunopathologies, neurodegenerative diseases and cancer. This underscores the importance of semaphorins as regulatory factors in the tissue microenvironment and has prompted growing interest for assessing their potential relevance in medicine. This review article surveys the main contexts in which semaphorins have been found to regulate developing and healthy adult tissues, and the signaling cascades implicated in these functions. Vis a vis, we will highlight the main pathological processes in which semaphorins are thought to have a role thereof.  相似文献   

19.
Apart from major molecules involved in angiogenesis, such as growth factors, cytokines and chemokines, much attention is now being paid to guidance molecules that determine growth trajectories of the de novo formation of blood vessels (ephrins and their receptors, semaphorin receptors neuropilins and plexins, Slit receptor Robo, netrin receptor UNC5B, urokinase and its receptor uPAR, T-cadherin). Guidance receptors play an important role in the regulation of vascular growth trajectory during embryogenesis and vascular regeneration in adults. Besides, matrix metalloproteinases (MMPs) and serine proteases (plasmin and urokinase) are also essential for angiogenesis and vascular wall remodeling. Aberrant gene expression profiles or signaling pathways related to the above proteins can lead to various pathologies.  相似文献   

20.

Background and Aim

A neuronal pathway participates in the development of portal hypertension: blockade of afferent sensory nerves in portal vein ligated (PVL) rats simultaneously prevents brain cardiovascular regularory nuclei activation, neuromodulator overexpression in superior mesenteric ganglia, sympathetic atrophy of mesenteric innervation and hemodynamic alterations. Here we investigated in PVL rats alterations in neuromodulators and signaling pathways leading to axonal regression or apoptosis in the superior mesenteric ganglia and tested the effects of the stimulation of neuronal proliferation/survival by using a tyrosine kinase receptor A agonist, gambogic amide.

Results

The neuronal pathway was confirmed by an increased neuronal afferent activity at the vagal nodose ganglia and the presence of semaphorin3A in sympathetic pre-ganglionic neurons at the intermediolateral nucleus of the spinal cord of PVL rats. Expression of the active form of tyrosine kinase receptor A (phosphorylated), leading to proliferation and survival signaling, showed a significant reduction in PVL comparing to sham rats. In contrast, the apoptotic and axonal retraction pathways were stimulated in PVL, demonstrated by a significant overexpression of semaphorin 3A and its receptor neuropilin1, together with increases of cleaved caspase7, inactive poly(ADP-ribose) polymerase and Rho kinase expression. Finally, the administration of gambogic amide in PVL rats showed an amelioration of hemodynamic alterations and sympathetic atrophy, through the activation of survival pathways together with the inhibition of apoptotic cascades and Rho kinase mediated axonal regression.

Conclusion

The adrenergic alteration and sympathetic atrophy in mesenteric vessels during portal hypertension is caused by alterations on neuromodulation leading to post-ganglionic sympathetic regression and apoptosis and contributing to splanchnic vasodilation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号