首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cysteine is commonly employed as the medium reductant for ruminal bacteria, but many ruminal bacteria can use cysteine as a source of nitrogen as well as sulfur. The objective of the present study was to test a combination of dithiothreitol and sulfide as possible reductant substitutes for cysteine in anaerobic media containing ammonia as the nitrogen source. The type of reductant (cysteine versus dithiothreitol-sulfide) and ammonia concentration did not alter growth rates of Prevotella ruminicola strain B,4 (P>0.15). However, growth rates in dithiothreitol-sulfide reduced media varied tremendously between individual organisms ranging from 0.10 h−1 for Ruminococcus flavefaciens to 1.6 h−1 for Streptococcus bovis grown in 1 mM NH3-N. At both 1 and 11 mM NH4Cl, Str. bovis strain JB1 exhibited the greatest growth rate followed by Str. bovis strain C277. Megasphaera elsdenii strain T81 and Ruminococcus flavefaciens strain FD1 had the lowest growth rates at both NH4Cl concentrations. Increasing NH4Cl concentration from 1 to 11 mM resulted in increased growth rates for Ruminobacter amylophilus strains H18 and 70 and Str. bovis strain C277 (P<0.05), and decreased growth rates for S. ruminantium subsp. lactilytica strain HD4 and Str. bovis strain JB1 (P<0.01). These results indicate that dithiothreitol and sulfide can be combined as reductants in nitrogen-free basal media for most ruminal bacterial species.  相似文献   

2.
Butyrivibrio fibrisolvens strain E14 has an absolute requirement for methionine. Metabolism of L-[ β-14C]-serine to methionine occurred in the methionine-independent B. fibrisolvens strain H17c but not in strain E14. The absolute requirement for methionine in strain E14 could be met by addition of S-adenosylmethionine to the medium, but incorporation was not due to the presence of free methionine in the S-adenosylmethionine preparation. The results show that B. fibrisolvens strain E14 is unable to synthesize methionine de novo , probably due to a lack of methionine synthase. Butyrivibrio fibrisolvens may also possess an alternative pathway of methionine biosynthesis from S-adenosylmethionine.  相似文献   

3.
The effect of nitrogen on excretion and metabolism of glycolate in Anabaena cylindrica (CCAP 1403/2a) was studied. Glycidate, an inhibitor of glutamate:glyoxylate aminotransferase (EC 2.6.1.4), reduced the L-methionine-DL-sulfoximine-induced NH4+ release by ca 40%, while net CO2 fixation and C2H2 reduction were not lowered. This indicates that at least a part of the glyoxylate synthesized in A. cylindrica is metabolized via glycine to serine. Addition of NH4Cl or glutamate to the medium reduced the excretion of glycolate. At pH 9, under air, NH4Cl reduced the excretion by 10–30% and under high pO2 (0.03 kPa CO2 in O2) by about 80–90%. At pH 7.5, under high pO2, NH4Cl and glulamate reduced the excretion by about 40 and 80%, respectively. Also, the presence of NH4Cl stimulated the animation of glyoxylate under such conditions as shown by an increased glycine pool and a decreased glutamate pool. We suggest that nitrogen regulates the capacity of A. cylindrica to retain and recycle glycolate intracellularly and that glutamate serves as an amino donor in the conversion of glyoxylate to glycine.  相似文献   

4.
Carbon and nitrogen partitioning was examined in a wild-type and a nitrate reductase-deficient mutant (A317) of Pisum sativum L. (ev. Juneau), effectively inoculated with two strains of Rhizobium leguminosarum (128C23 and 128C54) and grown hydroponically in medium without nitrogen for 21 days, followed by a further 7 days in medium without and with 5 mM NH4NO3. In wild-type symbioses the application of NH4NO3 significantly reduced nodule growth, nitrogenase (EC 1.7.99.2) activity, nodule carbohydrates (soluble sugars and starch) and allocation of [14C]-labelled (NO3, NH4+, amino acids) in roots. In nodules, there was a decline in amino acids together with an increase in inorganic nitrogen concentration. In contrast, symbioses involving A317 exhibited no change in nitrogenase activity or nodule carbohydrates, and the concentrations of all nitrogenous solutes measured (including asparagine) in roots and nodules were enhanced. Photosynthate allocation to the nodule was reduced in the 128C23 symbiosis. Nitrite accumulation was not detected in any case. These data cannot be wholly explained by either the carbohydrate deprivation hypothesis or the nitrite hypothesis for the inhibition of symbiotic nitrogen fixation by combined nitrogen. Our result with A317 also provided evidence against the hypothesis that NO3 and NH4+ or its assimilation products exert a direct effect on nitrogenase activity. It is concluded that more than one legume host and Rhizobium strain must be studied before generalizations about Rhizobium /legume interactions are made.  相似文献   

5.
Abstract The effect of certain nitrogen compounds on nitrogenase activity was studied in cells of Azospirillum brasilense strain Sp6, grown under microaerophilic conditions with nitrogenase fully derepressed. 0.5 mM NH4Cl, 0.5 mM glutamine, 1.0 mM KNO3 and 0.1 mM KNO2 completely blocked nitrogenase activity. 1.0 mM asparagine, 1.0 mM aspartate, 1.0 mM histidine and 1.0 mM adenine did not caused no inhibition of nitrogenase; indeed asparagine, aspartate and histidine showed a slight stimulatory effect on N2 fixation. The addition of 10 mM dl -methionine- dl -sulphoximine prevented the inhibitory effect of NH4Cl and glutamine but did not counteract the effect of KNO2. Rifampicin and chloramphenicol did not prevent the inhibition of nitrogenase by NH4Cl.  相似文献   

6.
Abstract Erythromycin formation decreased in Streptomyces erythreus as a function of the ammonium concentration present in the medium. Total inhibition of synthesis was obtained with 100 mM NH4Cl but medium pH and culture growth were not significantly affected. A similar effect was obtained with NH4NO3 or (NH4)2SO4 indicating that ammonium ion probably repressed formation of antibiotic.  相似文献   

7.
Abstract A gradostat (multistage chemostat) was used as a model of the rhizosphere. Investigations of the influence of NH4Cl and O2 gradients on a diazotrophic rhizosphere bacterium in pure culture and in mixed culture with non-diazotrophic strains were carried out. The diazotrophic isolate was able to grow on N2 and NH4Cl simultaneously. The diazotrophic isolate could successfully compete with the non-diazotrophic isolates in the presence and absence of NH4Cl in most experiments. Only minor amounts of nitrogen were transferred to the non-fixing organisms. A concept of transfer of nitrogen to non-fixing organisms is proposed.  相似文献   

8.
Response of nitrogen metabolism to boron toxicity in tomato plants   总被引:1,自引:0,他引:1  
Boron (B) toxicity has become important in areas close to the Mediterranean Sea where intensive agriculture has been developed. The objective of this research was to study the effects of B toxicity (0.5 m m and 2.0 m m B) on nitrogen (N) assimilation of two tomato cultivars that are often used in these areas. Leaf biomass, relative leaf growth rate (RGRL), concentration of B, nitrate (NO3), ammonium (NH4+), organic N, amino acids and soluble proteins, as well as nitrate reductase (NR), nitrite reductase (NiR), glutamine synthase (GS), glutamate synthetase (GOGAT) and glutamate dehydrogenase (GDH) activities were analysed in leaves. Boron toxicity significantly decreased leaf biomass, RGRL, organic N, soluble proteins, and NR and NiR activities. The lowest NO3 and NH4+ concentration in leaves was recorded when plants were supplied with 2.0 m m B in the root medium. Total B, amino acids, activities of GS, GOGAT and GDH increased under B toxicity. Data from the present study prove that B toxicity causes inhibition of NO3 reduction and increases NH4+ assimilation in tomato plants.  相似文献   

9.
The photorespiratory nitrogen cycle was initially thought to be a closed cyclic process. If this were true the loss of glutamate, glutamine, serine or glycine to other processes, such as protein synthesis or export from the leaves, would not be possible in a stoichiometric sense. However, recent studies with [15N]-labeled amino acids show that there are alternative sources of nitrogen for photorespiration, indicating that the nitrogen cycle is not a closed cyclic system. In addition recent work with 15NH4Cl and [15N]-glycine and a metabolically competent mitochondria system has shown that glutamate is synthesized in the mitochondria. Hence the glutamate dehydrogenase (GDH, EC 1.4.1.2) in mitochondria could also be active in the reassimilation of NH4. We would like to propose that one function of mitochondrial GDH is to synthesize glutamate from some of the NH4 released by photorespiration and that this glutamate represents a reserve for use in biosynthetic reactions.  相似文献   

10.
Roots and leaves of Zea mays L. cv. Ganga Safed-2 seedlings grown with nutrient solution containing either 10 m M KNO3 or NH4Cl or 5 m M NH4NO3 had considerably higher glutamate synthase (NADH, EC 1.4.1.14) activity than the corresponding organs from seedlings grown without any nitrogen. The supply of inorganic nitrogen for a short time, i.e. 3 h, to roots and leaves excised from seedlings grown without nitrogen also increased the enzyme activity in these organs. This increase was more pronounced with nitrate than with ammonium nitrogen. When excised roots and leaves from NH4NO3-grown seedlings were incubated in a minus nitrogen medium for 24 h, the enzyme activity declined considerably. This decline was inhibited to some extent by nitrogen, especially by nitrate. Inorganic nitrogen prevented similarly the decline in in vitro enzyme activity during 24 h storage at 25°C, more regularly for the root than for the leaf enzyme. The experiments demonstrate the role of inorganic nitrogen in the regulation of glutamate synthase activity.  相似文献   

11.
Abstract— The effect of pathophysiological levels (2-5 m m ) of ammonium chloride on the efflux of endogenous and exogenous [14C]glutamate from hippocampal slices was studied. The evoked release of glutamate which occurs dring tissue depolarization with 56 m m -KCl was greatly reduced when the tissue had been exposed to NH4Cl for 40–80 min. This effect was seen whether or not glutamine (0.5 m m ) was present in the incubation medium. The effect was completely reversible. The spontaneous efflux and the evoked release of [14C]glutamate was, on the contrary, completely unaltered after exposure of the slice to ammonium ions. Nigher (20–36 m m ) amounts of NH4Cl evoked a release of [14C]glutamate from the crude mitochondrial fraction, as did high concentrations of KCl. The results are discussed in relation to the compartmentation of glutamate metabolism and the pathogenesis of hepatic coma.  相似文献   

12.
ABSTRACT. The proteolytic processing and secretion of a lysosomal enzyme, acid α-glucosidase, was studied by pulse-chase labeling with [35S]methionine in Tetrahymena thermophila CU-399 cells treated with ammonium chloride. This cell secreted a large amount of acid α-glucosidase into the cultured medium during starvation. the secretion was found to be repressed by addition of ammonium chloride (NH4Cl). Acid α-glucosidase was produced as a precursor form (108 kDa) and then processed to a mature polypeptide (105 kDa) within 60 min. This mature enzyme was secreted into the media within 2-3 h after chase, whereas the precursor form was not secreted by either control cells or NH4Cl-treated cells. NH4Cl did not affect the processing of the precursor acid α-glucosidase. Processing profile of this enzyme was apparently indistinguishable from that of the mutant MS-1 defective in lysosomal enzyme secretion. Furthermore, the purified extracellular (CU-399) and intracellular (MS-1) acid a-glucosidases were the same in molecular mass (105 kDa) and enzymatic properties. They contained no mannose 6-phosphate residues in N-linked oligosaccharides. These results suggested that unlike mammalian cells, Tetrahymena acid α-glucosidase may be transferred to lysosomes by a mannose 6-phosphate receptor-independent mechanism, and also that low pH was not essential for the proteolytic processing of precursor polypeptide.  相似文献   

13.
Trichoderma species A-001 was grown on various carbon and nitrogen sources supplemented with surfactants on shake cultures. Although the degree of growth was variable, the organism grew on all carbon substrates. Large amounts of the cellulase enzyme components were released into the growth medium during growth on filter paper. In the filter paper containing medium, the organism produced 167 U/ml of carboxymethylcellulase (CMCase), 18 U/ml of filter paper activity (FPase) and 49 U/ml of beta-glucosidase activity (BGDase). Wheat straw and grass were better carbon sources than cotton or barley husks. Nitrogen in the form of KNO3 was better than NH4Cl or urea in facilitating the production of cellulase. Of the surfactants used, Tween-80 at 0.2% concentration in the medium increased the production of cellulase several-fold. All the cellulase components were optimally active in the assay at pH 5.5 and 60°C. CMCase and FPase lost 20–33% of their activities when kept at 60°C for 4 h before assaying. On the other hand, BGDase was moderately stable; it lost only 37% of its activity when maintained at 70°C for 4 h.  相似文献   

14.
Abstract The uptake and incorporation of 75[Se]selenite by Butyrivibrio fibrisolvens and Bacteroides ruminicola were by constitutive systems. Rates of uptake were higher in chemostat culture than in batch culture and there may be some inducible component. Uptake of [75Se]selenite was distinct from sulphate or selenate transport, since sulphate and selenate did not inhibit selenite uptake, nor could sulphate or selenate uptake be demonstrated in these organisms. Selenite uptake in B. fibrisolvens had and apparent K m of 1.74 mM and a V max of 109 ng Se · min−1· (mg protein)−1. An apparent K m of 1.76 mM and V max of 1.5 μg Se · min−1· (mg protein)−1 was obtained for B. ruminicola . [75Se]Selenite uptake by both organisms was partially sensitive to inhibition by 2,4-DNP. Uptake by B. fibrisolvens was also partially inhibited by azide and arsenate and in B. ruminicola it was partially inhibited by fluoride. CCCP, CPZ, DCCD or quinine did not inhibit uptake in either B. fibrisolvens or B. ruminicola . Selenite transport by both organisms was sensitive to IAA and NEM and was strongly inhibited by sulphite and nitrite. [75Se]Selenite was converted to selenocystine, selenohomocystine and selenomethionine by B. fibrisolvens. B. ruminicola did not incorporate [75Se]selenite into organic compounds, but did reduce it to red elemental selenium.  相似文献   

15.
The general amino acid permease, Gap1, of Saccharomyces cerevisiae is very active in cells grown on proline as the sole nitrogen source. Adding NH4+ to the medium triggers inactivation and degradation of the permease via a regulatory process involving Npi1p/Rsp5p, a ubiquitin–protein ligase. In this study, we describe several mutations affecting the C-terminal region of Gap1p that render the permease resistant to NH4+-induced inactivation. An in vivo isolated mutation ( gap1 pgr  ) causes a single Glu→Lys substitution in an amino acid context similar to the DXKSS sequence involved in ubiquitination and endocytosis of the yeast α-factor receptor, Ste2p. Another replacement, substitution of two alanines for a di-leucine motif, likewise protects the Gap1 permease against NH4+-induced inactivation. In mammalian cells, such a motif is involved in the internalization of several cell-surface proteins. These data provide the first indication that a di-leucine motif influences the function of a plasma membrane protein in yeast. Mutagenesis of a putative phosphorylation site upstream from the di-leucine motif altered neither the activity nor the regulation of the permease. In contrast, deletion of the last eleven amino acids of Gap1p, a region conserved in other amino acid permeases, conferred resistance to NH4+ inactivation. Although the C-terminal region of Gap1p plays an important role in nitrogen control of activity, it was not sufficient to confer this regulation to two NH4+-insensitive permeases, namely the arginine (Can1p) and uracil (Fur4p) permeases.  相似文献   

16.
Seedlings of Scots pine ( Pinus sylvestris L.) were grown on perlite for 21 days under controlled conditions. Apart from the water control, KNO3 (15 m M ), (NH4)2SO4 (7.5 m M ), and NH4NO3 (15 m M ) were offered to study the effects of a high nitrogen supply on nitrogen assimilation. In some experiments 1.3 m M potassium was added to the basic ammonium solutions. In labelling studies nitrate and ammonium were 2.3 atom%15N-enriched. It was found that over the 21-day period approximately three times more ammonium-N was taken up than nitrate-N. However, nitrate and ammonium, applied simultaneously, were taken up to the same extent as if they were applied separately (additivity). The presence of K+ in the medium did not affect N-uptake. Among the soluble N-containing compounds nitrate, ammonium and 8 amino acids were quantified. It was found that assimilation of nitrate can cope with the uptake of NO3 under all circumstances. Neither free nitrate nor ammonium or amino acids accumulated to an extent exceeding the values of water-grown seedlings. On the other hand, in case of high ammonium supply considerably more nitrogen was taken up than could be incorporated into nonsoluble N-containing substance ('protein'). The remaining nitrogen was found to accumulate in intermediary storage pools (free NH4+, glutamine, asparagine, arginine). Part of this accumulated N could be incorporated into protein when potassium was offered in the nutrient solution. It is concluded that potassium is a requirement for a high rate of protein synthesis not only in crop plants but also in conifers.  相似文献   

17.
Net production of isobutyric acid, isovaleric acid, and 2-methylbutyric acid by cultures of Bacteroides ruminicola and Megasphaera elsdenii on media that contained Trypticase or casein hydrolysate continued (up to 5 days) after growth had ceased. Only trace quantities of these acids were produced in a medium that contained a mixture of amino acids that did not include the branched-chain amino acids. M. elsdenii produced increased quantities of the branched-chain fatty acids in a medium that contained Trypticase when glucose was reduced or eliminated from the culture medium. However, B. ruminicola produced increased quantities of branched-chain fatty acids and of phenylacetic acid from Trypticase when glucose was supplied at 3 mg/ml rather than at 1 mg/ml. Single strains of Streptococcus bovis, Selenomonas ruminantium, Bacteroides amylophilus, and Butyrivibrio fibrisolvens did not produce branched-chain fatty acids.  相似文献   

18.
Four-year-old seedlings of Scots pine ( Pinus sylvestris L.) were exposed to filtered air (FA), and to FA supplemented with NH3 (60 and 240 μg m−3) in controlled-environment chambers for 14 weeks. Exposure to the higher NH3 concentration resulted in an increased activity of glutamine synthetase (GS, EC 6.3.1.2), and an increase in the concentrations of soluble proteins, total nitrogen, free amino acids and leaf pigments in the needles. The GS activity (μmol g−1 fresh weight h−1) in the needle extract increased to levels 69% higher than in FA and the soluble protein concentration to levels 22% higher. Total nitrogen concentration in the needles was 42% higher than in FA, while the free amino acid concentration was 300% higher, which was caused by an increase in arginine, glutamate, aspartate and glutamine. Chlorophyll a , chlorophyll b and carotenoid concentrations were 29, 38 and 11% higher, respectively. Neither the glutamate dehydrogenase (GDH, EC 1.4.1.2) activity nor the concentrations of free NH4+ and glucose in the needles were affected by exposure to NH3. After NH3 fumigation at 240 μg m−3 the starch concentration decreased by 39% relative to the FA. The results indicate that the metabolism of Scots pine acclimates to concentrations of NH3 which are 3 to 10 times higher than the average concentration in areas with intensive stock farming. The possible mechanisms underlying acclimation to NH3 are discussed.  相似文献   

19.
SYNOPSIS. Euglena gracilis (bacillaris variety, strain SM-L1, streptomycin-bleached) used the following amino adds (10−3 M) as sole nitrogen source for growth on a defined medium: glycine, alanine, valine, leucine, isoleucine, serine, threonine, and glutamic acid. Aspartic acid was used at 10−2 M. Glutamine and asparagine were used at 10−3 M and were better N sources than their parent dicarboxylic amino acids. Not used as sole N source for growth were phenylalanine, tyrosine, tryptophan, cysteine, cystine, methionine, proline, hydroxyproline, histidine, arginine, lysine, and taurine. Astasia longa (Jahn strain) was more restricted than Euglena and used only asparagine and glutamine as N sources for growth.  相似文献   

20.
Root and mycelial exudation contributes significantly to soil carbon (C) fluxes, and is likely to be altered by an elevated atmospheric carbon dioxide (CO2) concentration and nitrogen (N) deposition. We quantified soluble, low-molecular-weight (LMW) organic compounds exuded by ectomycorrhizal plants grown under ambient (360 p.p.m.) or elevated (710 p.p.m.) CO2 concentrations and with different N sources. Scots pine seedlings, colonized by one of five different ectomycorrhizal or nonmycorrhizal fungi, received 70 μM N, either as NH4Cl or as alanine, in a liquid growth medium. Exudation of LMW organic acids (LMWOAs), dissolved monosaccharides and total dissolved organic carbon were determined. Both N and CO2 had a significant impact on exudation, especially of LMWOAs. Exudation of LMWOAs was negatively affected by inorganic N and decreased by 30–85% compared with the organic N treatment, irrespective of the CO2 treatment. Elevated CO2 had a clear impact on the production of individual LMWOAs, although with very contrasting effects depending on which N source was supplied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号