首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wheat streak mosaic virus (WSMV) is a persistent threat to wheat production, necessitating novel approaches for protection. We developed an artificial miRNA strategy against WSMV, incorporating five amiRNAs within one polycistronic amiRNA precursor. Using miRNA sequence and folding rules, we chose five amiRNAs targeting conserved regions of WSMV but avoiding off-targets in wheat. These replaced the natural miRNA in each of five arms of the polycistronic rice miR395, producing amiRNA precursor, FanGuard (FGmiR395), which was transformed into wheat behind a constitutive promoter. Splinted ligation detected all five amiRNAs being processed in transgenic leaves. Resistance was assessed over two generations. Three types of response were observed in T(1) plants of different transgenic families: completely immune; initially resistant with resistance breaking down over time; and initially susceptible followed by plant recovery. Deep sequencing of small RNAs from inoculated leaves allowed the virus sequence to be assembled from an immune transgenic, susceptible transgenic, and susceptible non-transgenic plant; the amiRNA targets were fully conserved in all three isolates, indicating virus replication on some transgenics was not a result of mutational escape by the virus. For resistant families, the resistance segregated with the transgene. Analysis in the T(2) generation confirmed the inheritance of immunity and gave further insights into the other phenotypes. Stable resistant lines developed no symptoms and no virus by ELISA; this resistance was classified as immunity when extracts failed to transmit from inoculated leaves to test plants. This study demonstrates the utility of a polycistronic amiRNA strategy in wheat against WSMV.  相似文献   

2.
Wheat yellow mosaic disease, which is caused by wheat yellow mosaic bymovirus (WYMV) and transmitted by soil-borne fungus, results in severe damage on wheat (Triticum aestivum L.) production in China. For development of resistant cultivars to reduce wheat yield losses due to wheat yellow mosaic disease, resistance test and genetic analysis indicated that a single dominant gene in wheat cultivar Yangfu 9311 contributed to the resistance. Bulk segregant analysis was used to identify microsatellite markers linked to the resistance gene in an F2 population derived from the cross Yangfu 9311 (resistant) × Yangmai 10 (susceptible). Microsatellite markers Xwmc41, Xwmc181, Xpsp3039, and Xgwm349 were co-dominantly or dominantly linked with the gene responsible for WYMV resistance at a distance of 8.1–11.6 cM. Based on the wheat microsatellite consensus map and the results from amplification of the cultivar Chinese Spring nulli-tetrasomic stocks, the resistance gene to wheat yellow mosaic disease derived from Yangfu 9311, temporarily named as YmYF, was thus mapped on the long arm of chromosome 2D (2DL).  相似文献   

3.
Occurrence of fungally transmitted wheat mosaic viruses in China   总被引:3,自引:0,他引:3  
A soil-borne mosaic disease of winter wheat in Sichuan, Shaanxi, Hubei and Henan provinces was associated with infection by a virus with filamentous particles and that in Shandong, Anhui, Jiangsu and Zhejiang provinces by co-infection with this virus and soil-borne wheat mosaic virus. The virus with filamentous particles was identified serologically, by particle sizes, cytopathology and the molecular weights of the coat protein and the two RNA species to be either wheat spindle streak mosaic virus (WSSMV) or wheat yellow mosaic virus. These viruses are probably isolates of the same virus and the name WSSMV is preferred. In baiting tests using infested soil, the dilution endpoints for detecting WSSMV were 1/625-1/15625, and for the fungus vector, Polymyxa graminis, 1/3125-1/15625.  相似文献   

4.
Wheat yellow mosaic virus (WYMV) has spread rapidly and causes serious yield losses in the major wheat‐growing areas in China. Because it is vectored by the fungus‐like organism Polymyxa graminis that survives for long periods in soil, it is difficult to eliminate by conventional crop management or fungicides. There is also only limited resistance in commercial cultivars. In this research, fourteen independent transgenic events were obtained by co‐transformation with the antisense NIb8 gene (the NIb replicase of WYMV) and a selectable gene bar. Four original transgenic lines (N12, N13, N14 and N15) and an offspring line (N12‐1) showed high and durable resistance to WYMV in the field. Four resistant lines were shown to have segregated and only contain NIb8 (without bar) by PCR and herbicide resistance testing in the later generations. Line N12‐1 showed broad‐spectrum resistance to WYMV isolates from different sites in China. After growing in the infested soil, WYMV could not be detected by tissue printing and Western blot assays of transgenic wheat. The grain yield of transgenic wheat was about 10% greater than the wild‐type susceptible control. Northern blot and small RNA deep sequencing analyses showed that there was no accumulation of small interfering RNAs targeting the NIb8 gene in transgenic wheat plants, suggesting that transgene RNA silencing, a common mechanism of virus‐derived disease resistance, is not involved in the process of WYMV resistance. This durable and broad‐spectrum resistance to WYMV in transgenic wheat will be useful for alleviating the damage caused by WYMV.  相似文献   

5.
Summary Three lines derived from wheat (6x) x Agropyron elongatum (10x) that are resistant to wheat streak mosaic virus (WSMV) were analyzed by chromosome pairing, banding, and in situ hybridization. Line CI15321 was identified as a disomic substitution line where wheat chromosome 1D is replaced by Ag. elongatum chromosome 1Ae-1. Line 87-94-1 is a wheat-Ag. elongatum ditelosomic addition 1Ae-1L. Line CI15322 contains an Ag. elongatum chromosome, 1Ae-2, that substitutes for chromosome 1D. The short arm of 1Ae-2 paired with the short arm of 1Ae-1 at metaphase I (MI) in 82% of the pollen mother cells (PMCs). However, the long arms of these two chromosomes did not pair with each other. In CI15322, the long arm of chromosome 4D has an Agropyron chromosome segment which was derived from the distal part of 1Ae-1L. This translocation chromosome is designated as T4DS·4DL-1L. T4DS·4DL-1Ae-1L has a 0.73 m distal part of the long arm of 4D replaced by a 1.31 m distal segment from 1Ae-1L. The major WSMV resistance gene(s) in these lines is located on the distal part of 1Ae-1L.Contribution No. 92-599-J from the Kansas Agricutural Experiment Station, Kansas State University, Manhattan, Kansas, USA  相似文献   

6.
The effects of vertical and horizontal clinostating with container velocity 2 rpm and platform velocity 1 rpm on Apogee wheat resistance to wheat streak mosaic virus (WSMV) were studied. For the first time the yield of grain was obtained from both, healthy and the WSMV-infected wheat plants under conditions of simulated microgravity (clinorotation) which is accounted for by the inclusion of various mechanisms in the process of plant adaptation to the factors of stresses. For the first time the stages of viral infection development were elucidated under the conditions of prolonged clinostating and the presence of the WSMV was detected in wheat plants on the 18th day after inoculation employing the method of polymerase chain reaction (PCR). In the test variant with vertical clinostating (R=1,0) the least favorable conditions for viral reproduction were identified. In the same variant the increases of the total nitrogen content in the ears were observed which may be an evidence of interferon-like protein synthesis in plant similar to the interferon system functioning in animals.  相似文献   

7.
Resistance to Yam mosaic virus (YMV) in tetraploid white yam (Dioscorea rotundatd) is inherited differentially as a dominant and recessive character. Elite D. rotundata breeding lines with durable resistance to YMV can be developed by pyramiding major dominant and recessive genes using marker‐assisted selection (MAS). The tetraploid breeding line, TDr 89/01444, is a source of dominant genetic resistance to yam mosaic disease. Bulked segregant analysis was used to search for random amplified polymorphic DNA (RAPD) markers linked to YMV resistance in F1 progeny derived from a cross between TDr 89/01444 and the susceptible female parent, TDr 87/00571. The F1 progeny segregated 1:1 (resistantsusceptible) when inoculated with a Nigerian isolate of YMV, confirming that resistance to YMV in TDr 89/01444 was dominantly inherited. A single locus that contributes to YMV resistance in TDr 89/01444 was identified and tentatively named Ymv‐1. Two RAPD markers closely linked in coupling phase with Ymv‐1 were identified, both of which were mapped on the same linkage group: OPW18850 (3.0 centiMorgans [cM]) and OPX15850 (2.0 cM). Both markers successfully identified Ymv‐1 in resistant genotypes among 12 D. rotundata varieties and in resistant F1 individuals from the cross TDr 93–1 × TDr 877 00211, indicating their potential for use in marker‐assisted selection. OPW18850 and OPX15850 are the first DNA markers for YMV resistance and represent a starting point in the use of molecular markers to assist breeding for resistance to YMV.  相似文献   

8.

Key message

The resistance of durum wheat to the Wheat spindle streak mosaic virus (WSSMV) is controlled by two main QTLs on chromosomes 7A and 7B, with a huge epistatic effect.

Abstract

Wheat spindle streak mosaic virus (WSSMV) is a major disease of durum wheat in Europe and North America. Breeding WSSMV-resistant cultivars is currently the only way to control the virus since no treatment is available. This paper reports studies of the inheritance of WSSMV resistance using two related durum wheat populations obtained by crossing two elite cultivars with a WSSMV-resistant emmer cultivar. In 2012 and 2015, 354 recombinant inbred lines (RIL) were phenotyped using visual notations, ELISA and qPCR and genotyped using locus targeted capture and sequencing. This allowed us to build a consensus genetic map of 8568 markers and identify three chromosomal regions involved in WSSMV resistance. Two major regions (located on chromosomes 7A and 7B) jointly explain, on the basis of epistatic interactions, up to 43% of the phenotypic variation. Flanking sequences of our genetic markers are provided to facilitate future marker-assisted selection of WSSMV-resistant cultivars.
  相似文献   

9.
The amino acid sequences of the non-structural protein (molecular weight 35,000; 3a protein) from three plant viruses — cucumber mosaic, brome mosaic and alfalfa mosaic have been systematically compared using the partial genomic sequences for these three viruses already available. The 3a protein of cucumber mosaic virus has an amino acid sequence homology of 33.7% with the corresponding protein of brome mosaic virus. A similar protein from alfalfa mosaic virus has a homology of 18.2% and 14.2% with the protein from brome mosaic virus and cucumber mosaic virus, respectively. These results suggest that the three plant viruses are evolutionarily related, although, the evolutionary distance between alfalfa mosaic virus and cucumber mosaic virus or brome mosaic virus is much larger than the corresponding distance between the latter two viruses.  相似文献   

10.
11.
The Russian wheat aphid (RWA), Diuraphis noxia Mordvilko, is a serious economic pest of wheat and barley in North America, South America, and South Africa. Using aphid-resistant cultivars has proven to be a viable tactic for RWA management. Several dominant resistance genes have been identified in wheat, Triticum aestivum, including Dn1 in PI 137739, Dn2 in PI 262660, and at least three resistance genes (Dn5+) in PI 294994. The identification of RWA-resistant genes and the development of resistant cultivars may be accelerated through the use of molecular markers. DNA of wheat from near-isogenic lines and segregating F2 populations was amplified with microsatellite primers via PCR. Results revealed that the locus for wheat microsatellite GWM111 (Xgwm111), located on wheat chromosome 7DS (short arm), is tightly linked to Dn1, Dn2 and Dn5, as well as Dnx in PI 220127. Segregation data indicate RWA resistance in wheat PI 220127 is also conferred by a single dominant resistance gene (Dnx). These results confirm that Dn1, Dn2 and Dn5 are tightly linked to each other, and provide new information about their location, being 7DS, near the centromere, instead of as previously reported on 7DL. Xgwm635 (near the distal end of 7DS) clearly marked the location of the previously suggested resistance gene in PI 294994, here designated as Dn8. Xgwm642 (located on 1DL) marked and identified another new gene Dn9, which is located in a defense gene-rich region of wheat chromosome 1DL. The locations of markers and the linked genes were confirmed by di-telosomic and nulli-tetrasomic analyses. Genetic linkage maps of the above RWA resistance genes and markers have been constructed for wheat chromosomes 1D and 7D. These markers will be useful in marker-assisted breeding for RWA-resistant wheat. Received: 17 May 2000 / Accepted: 13 June 2000  相似文献   

12.
GDP-L-galactose phosphorylase (VTC2) catalyses the conversion of GDP-L-galactose to L-galactose-1-P, a vital step of ascorbic acid (AsA) biosynthesis in plants. AsA is well known for its function in the amelioration of oxidative stress caused by most pathogen infection, but its function against viral infection remains unclear. Here, we have identified a VTC2 gene in wheat named as TaVTC2 and investigated its function in association with the wheat yellow mosaic virus (WYMV) infection. Our results showed that overexpression of TaVTC2 significantly increased viral accumulation, whereas knocking down TaVTC2 inhibited the viral infection in wheat, suggesting a positive regulation on viral infection by TaVTC2. Moreover, less AsA was produced in TaVTC2 knocking down plants (TaVTC2-RNAi) which due to the reduction in TaVTC2 expression and subsequently in TaVTC2 activity, resulting in a reactive oxygen species (ROS) burst in leaves. Furthermore, the enhanced WYMV resistance in TaVTC2-RNAi plants was diminished by exogenously applied AsA. We further demonstrated that WYMV NIb directly bound to TaVTC2 and inhibited TaVTC2 enzymatic activity in vitro. The effect of TaVTC2 on ROS scavenge was suppressed by NIb in a dosage-dependent manner, indicating the ROS scavenging was highly regulated by the interaction of TaVTC2 with NIb. Furthermore, TaVTC2 RNAi plants conferred broad-spectrum disease resistance. Therefore, the data indicate that TaVTC2 recruits WYMV NIb to down-regulate its own enzymatic activity, reducing AsA accumulation to elicit a burst of ROS which confers the resistance to WYMV infection. Thus, a new mechanism of the formation of plant innate immunity was proposed.  相似文献   

13.
Thinopyrum intermedium is a promising source of resistance to wheat streak mosaic virus (WSMV), a devastating disease of wheat. Three wheat germplasm lines possessing resistance to WSMV, derived from Triticum aestivum×Th. intermedium crosses, are analyzed by C-banding and genomic in situ hybridization (GISH) to determine the amount and location of alien chromatin in the transfer lines. Line CI15092 was confirmed as a disomic substitution line in which wheat chromosome 4A was replaced by Th. intermedium chromosome 4Ai?2. The other two lines, CI17766 and A29-13-3, carry an identical Robertsonian translocation chromosome in which the complete short arm of chromosome 4Ai?2 was transferred to the long arm of wheat chromosome 4A. Fluorescence in situ hybridization (FISH) using ABD genomic DNA from wheat as a probe and S genomic DNA from Pseudoroegneria stipifolia as the blocker, and vice versa, revealed that the entire short arm of the translocation was derived from the short arm of chromosome 4Ai?2 and the breakpoint was located at the centromere. Chromosomal arm ratios (L/S) of 2.12 in CI17766 and 2.15 in A29-13-3 showed that the translocated chromosome is submetacentric. This translocated chromosome is designated as T4AL?? 4Ai?2S as suggested by Friebe et al. (1991).  相似文献   

14.
 RAPD (random amplified polymorphic DNA) analysis was used to identify molecular markers linked to the Dn2 gene conferring resistance to the Russian wheat aphid (Diuraphis noxia Mordvilko). A set of near-isogenic lines (NILs) was screened with 300 RAPD primers for polymorphisms linked to the Dn2 gene. A total of 2700 RAPD loci were screened for linkage to the resistance locus. Four polymorphic RAPD fragments, two in coupling phase and two in repulsion phase, were identified as putative RAPD markers for the Dn2 gene. Segregation analysis of these markers in an F2 population segregating for the resistance gene revealed that all four markers were closely linked to the Dn2 locus. Linkage distances ranged from 3.3 cM to 4.4 cM. Southern analysis of the RAPD products using the cloned RAPD markers as probes confirmed the homology of the RAPD amplification products. The coupling-phase marker OPB10880c and the repulsion-phase marker OPN1400r were converted to sequence characterized amplified region (SCAR) markers. SCAR analysis of the F2 population and other resistant and susceptible South African wheat cultivars corroborated the observed linkage of the RAPD markers to the Dn2 resistance locus. These markers will be useful for marker-assisted selection of the Dn2 gene for resistance breeding and gene pyramiding. Received: 1 July 1997 / Accepted: 20 October 1997  相似文献   

15.
Ten species of lupins (Lupinus spp.) were tested for resistance to cucumber mosaic cucumovirus (CMV) in field experiments where inoculation was by naturally-occurring aphid vectors, and in the glasshouse by sap or graft-inoculation. L. albus and six species of ‘rough-seeded’ lupins did not become infected with CMV either under intense inoculum pressure in the field or when graft-inoculated. Two L. hispanicus, 17 L. luteus and four L. mutabilis genotypes became infected with CMV in the field, but no infection was detected in L. hispanicus P26858 or seven L. luteus genotypes. CMV was detected at seed transmission rates of 0.2–16% in seedlings of infected L. luteus, differences in levels of seed transmission between genotypes being significant and relatively stable from year to year. Graft-inoculation of CMV to plants of six genotypes of L. luteus in which no infection was found in the field induced a systemic necrotic reaction suggesting that the resistance they carry is due to hypersensitivity. In L. hispanicus accessions P26849, P26853 and P26858, CMV sub-group II isolate SN caused necrotic spots in inoculated leaves without systemic movement, while sub-group I isolate SL infected them systemically without necrosis. Another sub-group I and two other sub-group II isolates behaved like SL in P26849 and P26853 but infected only inoculated leaves of P26858. This suggests that two strain specific hypersensitive resistance specificities are operating against CMV in L. hispanicus. When plants of L. luteus genotypes that gave hypersensitive reactions on graft-inoculation were inoculated with infective sap containing two sub-group I and seven sub-group II isolates, they all responded like L. hispanicus P26858. A strain group concept is proposed for CMV in lupins based on the two hypersensitive specificities found: strain group 1 represented by isolate SN which induces hypersensitivity with both specificities, strain group 2 represented by the three isolates which induced hypersensitivity only with the specificity present in L. luteus and L. hispanicus P26858, strain group 3 by as yet hypothetical isolates that induce hypersensitivity only in presence of the specificity in L. hispanicus P26849 and P26853 that responded just to isolate SN, and strain group 4 by isolate SL which overcomes both specificities. When F2 progeny plants from crosses between hypersensitive and susceptible L. luteus parents were inoculated with isolate SN, the resistance segregated with a 3:1 ratio (hypersensitive:susceptible), suggesting that a single dominant hypersensitivity gene, Ncm-1, is responsible. As gene Ncm-1 had broad specificity and was not overcome by any of the five CMV isolates from lupins tested, it is valuable for use in breeding CMV resistant L. luteus cultivars.  相似文献   

16.
Ten species of lupins (Lupinus spp.) were tested for resistance to cucumber mosaic cucumovirus (CMV) in field experiments where inoculation was by naturally-occurring aphid vectors, and in the glasshouse by sap or graft-inoculation. L. albus and six species of ‘rough-seeded’ lupins did not become infected with CMV either under intense inoculum pressure in the field or when graft-inoculated. Two L. hispanicus, 17 L. luteus and four L. mutabilis genotypes became infected with CMV in the field, but no infection was detected in L. hispanicus P26858 or seven L. luteus genotypes. CMV was detected at seed transmission rates of 0.2–16% in seedlings of infected L. luteus, differences in levels of seed transmission between genotypes being significant and relatively stable from year to year. Graft-inoculation of CMV to plants of six genotypes of L. luteus in which no infection was found in the field induced a systemic necrotic reaction suggesting that the resistance they carry is due to hypersensitivity. In L. hispanicus accessions P26849, P26853 and P26858, CMV sub-group II isolate SN caused necrotic spots in inoculated leaves without systemic movement, while sub-group I isolate SL infected them systemically without necrosis. Another sub-group I and two other sub-group II isolates behaved like SL in P26849 and P26853 but infected only inoculated leaves of P26858. This suggests that two strain specific hypersensitive resistance specificities are operating against CMV in L. hispanicus. When plants of L. luteus genotypes that gave hypersensitive reactions on graft-inoculation were inoculated with infective sap containing two sub-group I and seven sub-group II isolates, they all responded like L. hispanicus P26858. A strain group concept is proposed for CMV in lupins based on the two hypersensitive specificities found: strain group 1 represented by isolate SN which induces hypersensitivity with both specificities, strain group 2 represented by the three isolates which induced hypersensitivity only with the specificity present in L. luteus and L. hispanicus P26858, strain group 3 by as yet hypothetical isolates that induce hypersensitivity only in presence of the specificity in L. hispanicus P26849 and P26853 that responded just to isolate SN, and strain group 4 by isolate SL which overcomes both specificities. When F2 progeny plants from crosses between hypersensitive and susceptible L. luteus parents were inoculated with isolate SN, the resistance segregated with a 3:1 ratio (hypersensitive:susceptible), suggesting that a single dominant hypersensitivity gene, Ncm-1, is responsible. As gene Ncm-1 had broad specificity and was not overcome by any of the five CMV isolates from lupins tested, it is valuable for use in breeding CMV resistant L. luteus cultivars.  相似文献   

17.
Abstract

The genetic basis of resistance to soil-borne cereal mosaic virus (SBCMV) in the Triticum turgidum L. var. durum cv. Neodur was analyzed in this study, using a linkage mapping approach. We performed phenotypic and molecular analyses of 146 recombinant inbred lines derived from the cross Cirillo (highly susceptible)×Neodur (highly resistant). A major quantitative trait locus (QTL) that explained up to 87% of the observed variability for symptom severity was identified on the short arm of chromosome 2B, within the 40-cM interval between the markers Xwmc764 and Xgwm1128, with wPt-2106 as the peak marker. Three minor QTLs were found on chromosomes 3B and 7B. Two markers coding for resistance proteins co-segregate with the major QTL on chromosome 2B and the minor QTL on chromosome 3B, representing potential candidate genes for the two resistance loci. Microsatellite markers flanking the major QTL were evaluated on a set of 25 durum wheat genotypes that were previously characterized for SBCMV resistance. The allelic composition of the genotypes at these loci, together with pedigree data, suggests that the old Italian cultivar Cappelli provided the SBCMV-resistance determinants to durum cultivars that have been independently bred in different countries over the last century.  相似文献   

18.
在抗病毒植物基因工程中,利用病毒的复制酶基因是一种很有前途的方法。本对烟草花叶病毒(TMV)的基因组结构及其编码的蛋白的功能作了简介,同时较详细地阐述了由TMV复制本科的通读部分、全长复制酶以及突变或缺失的复制酶介导的对病毒抗性的研究进展。  相似文献   

19.
Sugarcane mosaic virus (SCMV) is one of the most important virus diseases of maize in Europe. Genetic analysis on backcross five (BC5) progeny derived from the cross FAP1360A (resistant) × F7 (susceptible) confirmed that at least two dominant genes, Scm1 and Scm2, are required for resistance to SCMV in the progeny of this cross. With the aid of RFLP and SSR marker analyses, Scm1 was mapped in the region of 8.7 cM – between the nucleolus organizer region (nor) and RFLP marker bnl6.29 on the short arm of chromosome 6, while Scm2 was mapped to an interval of 26.8 cM flanked by the RFLP markers umc92 and umc102 near the centromere region of chromosome 3. Both chromosome regions were further enriched for AFLP markers by successful application of a bulked segregant analysis to this oligogenic trait. A total of 23 linked AFLP markers were identified, clustered in chromosome regions adjacent to either Scm1 or Scm2. Seven AFLP markers linked to Scm1 resided within the nor-bnl6.29 interval, and one of them, E3M8-1, showed no recombination with Scm1. Three AFLP markers linked to Scm2 are located between umc92 and umc102. Received: 13 October 1998 / Accepted: 18 January 1999  相似文献   

20.
Wheat-Haynaldia villosa (L.) Schur, hybrid lines were tested as potential sources of resistance to colonization by the wheat curl mite, the vector of wheat streak mosaic virus. Two lines, Add 6V-1 and Sub 6V-1, were found to be mite-resistant. Fluorescence in situ hybridization using total genomic DNA, from H. villosa in the presence of unlabelled wheat DNA, confirmed that Add 6V-1 is a disomic wheat-H. villosa chromosome addition line. Sub 6V-1 turned out to be a homoeologous wheat-H. villosa chromosome translocation line rather than a substitution. The translocation in Sub 6V-1 occurred between a wheat chromosome and a chromosome from H. villosa through Robertsonian fusion of misdivided centromeres. Only the short arm of the group 6 chromosome of H. villosa was involved in the genetic control of mite resistance, a conclusion based on the genomic in situ hybridization signal and specific DNA fragments obtained by polymerase chain reaction.LRC Contribution No. 3879542  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号