首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKPase) dephosphorylates and regulates multifunctional Ca(2+)/calmodulin-dependent protein kinases (CaMKs). One of the prominent features of CaMKPase is stimulation of phosphatase activity by polycations such as poly-L-lysine (poly(Lys)). Using various polycations, basicity and molecular weight of the polymer proved to be important for the stimulation. Surface plasmon resonance (SPR) analysis showed that CaMKIV(T196D), which mimics CaMKPase substrate, and CaMKPase could form tight complexes with poly(Lys). Pull-down binding experiments suggested that the formation of a tightly associated ternary complex consisting of CaMKPase, poly(Lys), and phosphorylated CaMKIV is essential for stimulation. Dilution experiments also supported this contention. Poly(Lys) failed to stimulate a CaMKPase mutant in which a Glu cluster corresponding to residues 101-109 in the N-terminal domain was deleted, and the mutant could not interact with poly(Lys) in the presence of Mn(2+). Thus, the Glu cluster appeared to be the binding site for polycations and to play a pivotal role in the polycation stimulation of CaMKPase activity.  相似文献   

2.
Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKP) is a member of the serine/threonine protein phosphatases and shares 29% sequence identity with protein phosphatase 2Calpha (PP2Calpha) in its catalytic domain. To investigate the functional domains of CaMKP, mutational analysis was carried out using various recombinant CaMKPs expressed in Escherichia coli. Analysis of N-terminal deletion mutants showed that the N-terminal region of CaMKP played important roles in the formation of the catalytically active structure of the enzyme, and a critical role in polycation stimulation. A chimera mutant, a fusion of the N-terminal domain of CaMKP and the catalytic domain of PP2Calpha, exhibited similar substrate specificity to CaMKP but not to PP2Calpha, suggesting that the N-terminal region of CaMKP is crucial for its unique substrate specificity. Point mutations at Arg-162, Asp-194, His-196, and Asp-400, highly conserved amino acid residues in the catalytic domain of PP2C family, resulted in a significant loss of phosphatase activity, indicating that these amino acid residues may play important roles in the catalytic activity of CaMKP. Although CaMKP(1-412), a C-terminal truncation mutant, retained phosphatase activity, it was found to be much less stable upon incubation at 37 degrees C than wild type CaMKP, indicating that the C-terminal region of CaMKP is important for the maintenance of the catalytically active conformation. The results suggested that the N- and C-terminal sequences of CaMKP are essential for the regulation and stability of CaMKP.  相似文献   

3.
Ca(2+)/calmodulin-dependent protein kinase kinase alpha (CaMKKalpha) plays critical roles in the modulation of neuronal cell survival as well as many other cellular activities. Here we show that 14-3-3 proteins directly regulate CaMKKalpha when the enzyme is phosphorylated by protein kinase A on either Ser74 or Ser475. Mutational analysis revealed that these two serines are both functional: the CaMKKalpha mutant with a mutation at either of these residues, but not the double mutant, was inhibited significantly by 14-3-3. The mode of regulation described herein differs the recently described mode of 14-3-3 regulation of CaMKKalpha.  相似文献   

4.
Using a standard patch-clamp technique in the perforated patch configuration, we studied the effect of a highly specific membrane-permeable inhibitor of Ca2+/calmodulin-dependent protein kinase II (CaM-KII), KN-93, on fast outward A-type potassium current in isolated smooth-muscle cells (SMCs) of an epididymal region of the rat vas deferens. This inhibitor significantly changed the dynamics of the studied current; in particular, it increased the rate of inactivation and considerably slowed down the recovery after inactivation. In the presence of 5 μM KN-93, we observed a moderate (nearly by 20%) decrease in the peak amplitude of fast A-type current. Based on the data obtained, we conclude that voltage-sensitive fast A-type potassium current in SMCs of the epididymal part of the rat vas deferens can be significantly regulated by the activity of CaM-KII. Therefore, by influencing the kinetic characteristics of the above current, this enzyme can be indirectly involved in the control of electrical activity in SMCs. Neirofiziologiya/Neurophysiology, Vol. 39, Nos. 4/5, pp. 419–422, July–October, 2007.  相似文献   

5.
Previously we detected more than 28 PSD proteins to be phosphorylated by CaM kinase II, and identified 14 protein substrates (Yoshimura, Y., Aoi, T., Yamauchi, T., Mol. Brain Res. 81, 118-128, 2000). In the present study, the remaining substrates were analyzed by protein sequencing and mass spectrometry. We found 6 proteins not previously known to be substrates of CaM kinase II, namely PSD95-associated protein, SAP97, TOAD-64, TNF receptor-associated protein, insulin-receptor tyrosine kinase 58/53 kDa substrate, and homer 1b.  相似文献   

6.
A 30-kDa fragment of Ca2+/calmodulin-dependent protein kinase II (30K-CaMKII) is a constitutively active protein Ser/Thr kinase devoid of autophosphorylation activity. We have produced a chimeric enzyme of 30K-CaMKII (designated CX40-30K-CaMKII), in which the N-terminal 40 amino acids of Xenopus Ca2+/calmodulin-dependent protein kinase I (CX40) were fused to the N-terminal end of 30K-CaMKII. Although CX40-30K-CaMKII exhibited essentially the same substrate specificity as 30K-CaMKII, it underwent significant autophosphorylation. Surprisingly, its autophosphorylation site was found to be Tyr-18 within the N-terminal CX40 region of the fusion protein, although it did not show any Tyr kinase activity toward exogenous substrates. Several lines of evidence suggested that the autophosphorylation occurred via an intramolecular mechanism. These data suggest that even typical Ser/Thr kinases such as 30K-CaMKII can phosphorylate Tyr residues under certain conditions. The possible mechanism of the Tyr residue autophosphorylation is discussed.  相似文献   

7.
The paired helical filaments (PHF) found in Alzheimer's disease (AD) brain are composed mainly of the hyperphosphorylated form of microtubule-associated protein tau (PHF-tau). It is well known that tau is a good in vitro substrate for Ca(2+)/calmodulin-dependent protein kinase II (CaM kinase II). To establish the phosphorylation sites, the longest human tau (hTau40) was bacterially expressed and phosphorylated by CaM kinase II, followed by digestion with lysyl endoprotease. The digests were subjected to liquid chromatography/mass spectrometry. We found that 5 of 22 identified peptides were phosphorylated. From the tandem mass spectrometry, two phosphorylation sites (serines 262 and 356) were identified in the tubulin binding sites. When tau was phosphorylated by CaM kinase II, the binding of tau to taxol-stabilized microtubules was remarkably impaired. As both serines 262 and 356 are reportedly phosphorylated in PHF-tau, CaM kinase II may be involved in hyperphosphorylation of tau in AD brain.  相似文献   

8.
We surveyed genome sequences from the basidiomycetous mushroom Coprinopsis cinerea and isolated a cDNA homologous to CMKA, a calmodulin-dependent protein kinase (CaMK) in Aspergillus nidulans. We designated this sequence, encoding 580 amino acids with a molecular weight of 63,987, as CoPK02. CoPK02 possessed twelve subdomains specific to protein kinases and exhibited 43, 35, 40% identity with rat CaMKI, CaMKII, CaMKIV, respectively, and 40% identity with CoPK12, one of the CaMK orthologs in C. cinerea. CoPK02 showed significant autophosphorylation activity and phosphorylated exogenous proteins in the presence of Ca2+/CaM. By the CaM-overlay assay we confirmed that the C-terminal sequence (Trp346-Arg358) was the calmodulin-binding site, and that the binding of Ca2+/CaM to CoPK02 was reduced by the autophosphorylation of CoPK02. Since CoPK02 evolved in a different clade from CoPK12, and showed different gene expression compared to that of CoPK32, which is homologous to mitogen-activated protein kinase-activated protein kinase, CoPK02 and CoPK12 might cooperatively regulate Ca2+-signaling in C. cinerea.  相似文献   

9.
A human cDNA clone encoding the calcium/calmodulin-dependent protein kinase kinase (CaMKK) was isolated by RT-PCR amplification of the fragment corresponding to the conserved kinase catalytic domain followed by rapid amplification of cDNA ends and cDNA library screening. Compilation of nucleotide sequencing data yielded a consensus cDNA sequence of 1.9 kb with an open reading frame of 1,251 nucleotides in length which translates to a polypeptide of 417 amino acids (47 kd). It showed significant homology to the rat brain CaMKK isozymes. The human CaMKK, which was expressed as a Flag-tagged protein in human non-small cell lung cancer H-1299 cells followed by immunoprecipitation with anti-Flag antibody, was shown to phosphorylate recombinant human CaMK I in a calcium/CaM-dependent fashion. Northern blot analysis revealed that human CaMKK is ubiquitously expressed, with brain showing the highest level of expression. The CaMKK gene is localized to human chromosome 12. The presence of cDNA clones with divergent 3' terminal sequences suggests a family of CaMKK variants which may arise from alternative splicing.  相似文献   

10.
We isolated cDNA clones for novel protein kinases by expression screening of a cDNA library from the basidiomycetous mushroom Coprinus cinereus. One of the isolated clones was found to encode a calmodulin (CaM)-binding protein consisting of 488 amino acid residues with a predicted molecular weight of 53,906, which we designated CoPK12. The amino acid sequence of the catalytic domain of CoPK12 showed 46% identity with those of rat Ca2+/CaM-dependent protein kinase (CaMK) I and CaMKIV. However, a striking difference between these kinases is that the critical Thr residue in the activating phosphorylation site of CaMKI/IV is replaced by a Glu residue at the identical position in CoPK12. As predicted from its primary sequence, CoPK12 was found to behave like an activated form of CaMKI phosphorylated by an upstream CaMK kinase, indicating that CoPK12 is a unique CaMK with different properties from those of the well-characterized CaMKI, II, and IV. CoPK12 was abundantly expressed in actively growing mycelia and phosphorylated various proteins, including endogenous substrates, in the presence of Ca2+/CaM. Treatment of mycelia of C. cinereus with KN-93, which was found to inhibit CoPK12, resulted in a significant reduction in growth rate of mycelia. These results suggest that CoPK12 is a new type of multifunctional CaMK expressed in C. cinereus, and that it may play an important role in the mycelial growth.  相似文献   

11.
Ca2+/calmodulin-dependent protein kinase II (CaMKII), the most abundant kinase at the postsynaptic density (PSD), is expected to be involved in activity-induced regulation of synaptic properties. CaMKII is activated when it binds calmodulin in the presence of Ca2+ and, once autophosphorylated on T-286/7, remains active in the absence of Ca2+ (autonomous form). In the present study we used a quantitative mass spectrometric strategy (iTRAQ) to identify sites on PSD components phosphorylated upon CaMKII activation. Phosphorylation in isolated PSDs was monitored under conditions where CaMKII is: (1) mostly inactive (basal state), (2) active in the presence of Ca2+, and (3) active in the absence of Ca2+. The quantification strategy was validated through confirmation of previously described autophosphorylation characteristics of CaMKII. The effectiveness of phosphorylation of major PSD components by the activated CaMKII in the presence and absence of Ca2+ varied. Most notably, autonomous activity in the absence of Ca2+ was more effective in the phosphorylation of three residues on SynGAP. Several PSD scaffold proteins were phosphorylated upon activation of CaMKII. The strategy adopted allowed the identification, for the first time, of CaMKII-regulated sites on SAPAPs and Shanks, including three conserved serine residues near the C-termini of SAPAP1, SAPAP2, and SAPAP3. Involvement of CaMKII in the phosphorylation of PSD scaffold proteins suggests a role in activity-induced structural re-organization of the PSD.  相似文献   

12.
The promoter activity of the rat Ca2+/calmodulin-dependent protein kinase II gene was analyzed using the luciferase reporter gene in neuronal and non-neuronal cell lines. Neuronal cell type-specific promoter activity was found in the 5′-flanking region of α and β isoform genes of the kinase. Silencer elements were also found further upstream of promoter regions. A brain-specific protein bound to the DNA sequence of the 5′-flanking region of the gene was found by gel mobility shift analysis in the nuclear extract of the rat brain, including the cerebellum, forebrain, and brainstem, but not in that of non-neuronal tissues, including liver, kidney and spleen. The luciferase expression system and gel shift analysis can be used as an additional and better index by which to monitor gene expression in most cell types. Published: April 12, 2002  相似文献   

13.
The involvement of tau phosphorylation in apoptosis resembling Alzheimer's disease (AD) was investigated using a cell model of P19 cells stably expressing human tau441 (tau/P19 cells). Apoptotic cell death was observed specifically in tau/P19 cells during neural differentiation with retinoic acid (RA) treatment. A CaM kinase II inhibitor, KN-93, protected tau/P19 cells from apoptosis, although it stimulated the cell death of wild-type P19 cells (wt/P19 cells). W-7 and calmidazolium, calmodulin antagonists, also specifically inhibited the apoptosis of tau/P19 cells. LiCl, an inhibitor of glycogen synthase 3, a tau kinase, was effective in protecting tau/P19 cells from apoptosis, but the protective effect was less than that of CaM kinase II inhibitor and calmodulin antagonists. Tau in the nuclei of tau/P19 cells was phosphorylated at the sites for CaM kinase II detected by an antibody recognizing a phosphorylated form of tau. These results indicated that CaM kinase II was involved in the apoptosis of tau/P19 cells induced by RA treatment.  相似文献   

14.
We show that Ca2+/calmodulin(CaM)-dependent protein kinase I (CaMKI) is directly inhibited by its S-glutathionylation at the Cys179. In vitro studies demonstrated that treatment of CaMKI with diamide and glutathione results in inactivation of the enzyme, with a concomitant S-glutathionylation of CaMKI at Cys179 detected by mass spectrometry. Mutagenesis studies confirmed that S-glutathionylation of Cys179 is both necessary and sufficient for the inhibition of CaMKI by diamide and glutathione. In transfected cells expressing CaMKI, treatment with diamide caused a reversible decrease in CaMKI activity. Cells expressing mutant CaMKI (179CV) proved resistant in this regard. Thus, our results indicate that the reversible regulation of CaMKI via its modification at Cys179 is an important mechanism in processing calcium signal transduction in cells.  相似文献   

15.
16.
17.
The relation between CaM kinase II activity and high Ca2+-mediated stress responses was studied in cultured vascular smooth muscle cells. Treatment with ionomycin (1 M) for 5 min caused a significant loss of CaM kinase II activity in whole cell homegenates and prominent vesiculation of the endoplasmic reticulum (ER). Similar losses of CaM kinase II activity were observed in the soluble lysate as assessed by activity measurements and Western blotting. Examination of the post-lysate particulate fraction showed that the loss of CaM kinase II from the soluble lysate was accompanied by a redistribution of CaM kinase II to this fraction. The ionomycin-mediated response was limited to this concentration (1 M); lower concentrations of ionomycin as well as stimulation with angiotensin II (1 M) or ATP (100 M) did not cause a shift in CaM kinase II distribution. Treatment with neither the CaM kinase II inhibitor KN-93 nor the phosphatase inhibitor okadaic acid altered the ionomycin-induced redistribution indicating that CaM kinase II activation and/or phosphorylation was not part of the mechanism. The response, however, was eliminated when the cells were treated in Ca2+-free medium. Washout of ionomycin led to only a partial restoration of the kinase activity in the soluble fraction after 10 min. Immunofluorescence microscopy of resting cells indicated colocalization of antibodies to CaM kinase II and an ER protein marker. ER vesiculation induced by ionomycin coincided with a parallel redistribution of CaM kinase II and ER marker proteins. These data link ionomycin-induced ER restructuring to a progressive redistribution of CaM kinase II protein to an insoluble particulate fraction and loss of cellular CaM kinase II activity. We propose that redistribution of CaM kinase II and loss of cellular activity are components of a common Ca2+-overload induced cellular stress response in cells.  相似文献   

18.
Diisopropyl phosphorofluoridate (DFP) produces organophosphorus ester-induced delayed neurotoxicity (OPIDN) in humans and sensitive animal species, e.g., adult chicken. The chickens were sacrificed 18 days after a single dose of DFP (1.7 mg/kg, sc.), which produced severe ataxia or paralysis in 10–14 days. We studied Ca2+/calmodulin-dependent in vitro neurofilament phosphorylation by the brain subcellular fractions of control and DFP-treated hens. There was enhanced phosphorylation of all three NF subunits by the brain supernatant of treated hens. This was accompanied by enhanced autophosphorylation of both Ca2+/CaM-dependent protein kinase II (CaM-kinase II) subunits and increased calmodulin binding using either125I-CaM or biotinylated calmodulin to only subunit without concomitant increase in the amount of this enzyme. This enhanced phosphorylation of neurofilament subunits was completely and partially inhibited by mastoparan and KN-62, respectively. There was no alteration in the distribution of CaM-kinase II activity in treated hens and the activity was not related to its concentration in different subcellular fractions. The difference in125I-CaM binding to CaM-kinase II subunit in the brain supernatants of control and DFP-treated hens was not altered by its phosphorylation or dephosphorylation. The increased CaM-kinase II activity in the soluble fraction of DFP-treated hen brain may be involved in the aberrant phosphorylation of axonal neurofilaments, and thus play a role in OPIDN.Abbreviations CaM calmodulin - CaM-kinase II Ca2+/calmodulin-dependent protein kinase II - DFP diisopropyl phosphorofluoridate - ECL enhanced chemiluminescence - EDTA ethylenediaminetetraacetic acid - EGTA ethylene glycol-bis(-aminoethyl ether)N,N,N,N-tetraacetic acid - MAP-2 microtubule-associated protein-2 - MBP myelin basic protein - OPIDN organophosphorus ester-induced delayed neurotoxicity - PIPES 1,4-piperazinediethanesulfonic acid - PMSF phenylmethylsulfonyl fluoride - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - TCA trichloroacetic acid  相似文献   

19.
DEAE-cellulose column chromatography of Neurospora crassa soluble mycelial extracts leads to the resolution of three major protein kinase activity peaks designated PKI, PKII, and PKIII.PKII activity is stimulated by Ca2+ and Neurospora or brain calmodulin. Maximal stimulation was observed at 2 µM-free Ca2+ and 1 µg/ml of the modulator. The stimulatory effect of the Ca2+-calmodulin complex was blocked by EGTA and by some calmodulin antagonists such as phenothiazine drugs or compound 48/80.PKII phosphorylates different proteins, among which histone II-A at a low concentration and CDPKS, the synthetic peptide specific for Ca2+-calmodulin dependent protein kinases, are the best substrates. Some phosphorylation can be detected in the absence of any exogenous acceptor. PKII activity assayed in the presence of histone II-A or in the absence of exogenous phosphate acceptor (autophosphorylation) co-elute in a DEAE-cellulose column at 0.28 M NaCl. As result of the autophosphorylation reaction of the purified enzyme a main phosphorylated component of 70 kDa was resolved by SDS-polyacrylamide gel electrophoresis. It is possible that this component is an active part of this enzyme.  相似文献   

20.
CaMKIIγ, the predominant CaMKII isoform in mouse eggs, controls egg activation by regulating cell cycle resumption. In this study we further characterize the involvement and specificity of CaMKIIγ in mouse egg activation. Using exogenous expression of different cRNAs in Camk2g−/− eggs, we show that the other multifunctional CaM kinases, CaMKI, and CaMKIV, are not capable of substituting CaMKIIγ to initiate cell cycle resumption in response to a rise in intracellular Ca2+. Exogenous expression of Camk2g or Camk2d results in activation of nearly 80% of Camk2g−/− MII eggs after stimulation with SrCl2, which does not differ from the incidence of activation of wild-type eggs expressing exogenous Egfp. In contrast, none of the Camk2g−/− MII eggs expressing Camk1 or Camk4 activate in response to SrCl2 treatment. Expression of a constitutively active form of Camk4 (ca-Camk4), but not Camk1, triggers egg activation. EMI2, an APC/C repressor, is a key component in regulating egg activation downstream of CaMKII in both Xenopus laevis and mouse. We show that exogenous expression of either Camk2g, Camk2d, or ca-Camk4, but not Camk1, Camk4, or a catalytically inactive mutant form of CaMKIIγ (kinase-dead) in Camk2g−/− mouse eggs leads to almost complete degradation (~90%) of exogenously expressed EMI2 followed by cell cycle resumption. Thus, degradation of EMI2 following its phosphorylation specifically by CaMKII is mechanistically linked to and promotes cell cycle resumption in MII eggs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号