首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phagocytic immune cells (particularly macrophages and neutrophils) take up and digest particles that have invaded our bodies. In doing so, they represent a very early line of defence against a microbial attack. During uptake, the particles are wrapped by a portion of the phagocyte's plasma membrane, and a new endocytic compartment, the phagosome, is formed. The typical fate of a phagosome is its fusion with lysosomes to yield a phagolysosome in which the particle is digested. Recent data show that some ‘intracellular microorganisms’ that can cause severe illnesses (tuberculosis, leprosy, legionaire's disease and others) manage to reprogramme the host phagocytes not to deliver them to the lysosomal compartment. This probably results in increased survival of the pathogens. The analysis of the composition of such ‘novel’ compartments and research on the molecular mechanisms underlying the microbial interference with host cell functions are likely to yield important insights into: (1) which endocytic/phagocytic compartments phagocytes employ to handle ingested material in general; (2) how some pathogenic microorganisms can reprogramme the phagocytic pathway; and possibly (3) how infections caused by these microorganisms can be treated more effectively. Here, some studies are presented analysing which compartments intracellular pathogens inhabit and how microbes might be able to reprogramme their host cells.  相似文献   

2.
Mammals have evolved surface pattern recognition receptors, such as the Toll-like receptors, to initiate defenses against pathogens, including mycobacterium. In turn, microbes have developed strategies to circumvent defenses of their host and establish persistent infections. Mycobacterium tuberculosis, one of the most successful pathogens worldwide, has the ability to parasitize and manipulate phagocytic cells of its human host. A set of recent reports has shed light on exploitation of phagocyte surface lectins by the tubercle bacillus. These findings could lead the way to innovative therapeutic approaches.  相似文献   

3.
A new mechanistic model based on the formation of a phagocytic synapse explains how immune cells detect and respond to direct contact with fungal pathogens.  相似文献   

4.
The contribution of interspecies horizontal gene transfer (HGT) to the evolution and virulence of Mycobacterium tuberculosis, the agent of tuberculosis in humans, has been barely investigated. Here we have studied the evolutionary history of the M. tuberculosis Rv0986-8 virulence operon recently identified, through functional genomics approaches, as playing an important role in parasitism of host phagocytic cells. We showed that among actinobacteria, this operon is specific to the M. tuberculosis complex and to ancestral Mycobacterium prototuberculosis species. These data, together with phylogenetic reconstruction and other in silico analyses, provided strong evidence that this operon has been acquired horizontally by the ancestor of M. tuberculosis, before the recent evolutionary bottleneck that preceded the clonal-like evolution of the M. tuberculosis complex. Genomic signature profiling further suggested that the transfer was plasmid mediated and that the operon originated from a gamma-proteobacterium donor species. Our study points out for the first time the contribution of HGT to the emergence of M. tuberculosis and close relatives as major pathogens. In addition, our data underline the importance of deciphering gene transfer networks in M. tuberculosis in order to better understand the evolutionary mechanisms involved in mycobacterial virulence.  相似文献   

5.
Mycobacteria are a genus of bacteria that range from the non‐pathogenic Mycobacterium smegmatis to Mycobacterium tuberculosis, the causative agent of tuberculosis in humans. Mycobacteria primarily infect host tissues through inhalation or ingestion. They are phagocytosed by host macrophages and dendritic cells. Here, conserved pathogen‐associated molecular patterns (PAMPs) on the surface of mycobacteria are recognized by phagocytic pattern recognition receptors (PRRs). Several families of PRRs have been shown to non‐opsonically recognize mycobacterial PAMPs, including membrane‐bound C‐type lectin receptors, membrane‐bound and cytosolic Toll‐like receptors and cytosolic NOD‐like receptors. Recently, a possible role for intracellular cytosolic PRRs in the recognition of mycobacterial pathogens has been proposed. Here, we discuss currentideas on receptor‐mediated recognition of mycobacterial pathogens by macrophages and dendritic cells.  相似文献   

6.
IL-12 is a key cytokine in directing the development of type 1 Th cells, which are critical to eradicate intracellular pathogens such as Mycobacterium tuberculosis. Here, we report that mannose-capped lipoarabinomannans (ManLAMs) from Mycobacterium bovis bacillus Calmette-Guérin and Mycobacterium tuberculosis inhibited, in a dose-dependent manner, the LPS-induced IL-12 production by human dendritic cells. The inhibitory activity was abolished by the loss of the mannose caps or the GPI acyl residues. Mannan, which is a ligand for the mannose receptor (MR) as well as an mAb specific for the MR, also inhibited the LPS-induced IL-12 production by dendritic cells. Our results indicate that ManLAMs may act as virulence factors that contribute to the persistence of M. bovis bacillus Calmette-Guérin and M. tuberculosis within phagocytic cells by suppressing IL-12 responses. Our data also suggest that engagement of the MR by ManLAMs delivers a negative signal that interferes with the LPS-induced positive signals delivered by the Toll-like receptors.  相似文献   

7.
Goldberg DE  Siliciano RF  Jacobs WR 《Cell》2012,148(6):1271-1283
Although caused by vastly different pathogens, the world's three most serious infectious diseases, tuberculosis, malaria, and HIV-1 infection, share the common problem of drug resistance. The pace of drug development has been very slow for tuberculosis and malaria and rapid for HIV-1. But for each disease, resistance to most drugs has appeared quickly after the introduction of the drug. Learning how to manage and prevent resistance is a major medical challenge that requires an understanding of the evolutionary dynamics of each pathogen. This Review summarizes the similarities and differences in the evolution of drug resistance for these three pathogens.  相似文献   

8.
Bacterial avoidance of phagocytosis   总被引:8,自引:0,他引:8  
Phagocytosis constitutes the primary line of host innate and adaptive defence against incoming microbial pathogens, providing an efficient means for their removal and destruction. However, several virulent bacteria that do not function as intracellular pathogens have evolved mechanisms to avoid and prevent phagocytosis that constitute an essential part of their pathogenic capacity. Some of these mechanisms include preventing recognition by phagocytic receptors or blocking uptake by professional phagocytes. Recently, the molecular mechanisms of such antiphagocytic properties have been elucidated for some pathogens. Such mechanisms illustrate the diversity of mechanisms bacterial pathogens use to avoid phagocytic uptake.  相似文献   

9.
Recent studies have uncovered new mechanisms by which the human immune system attempts to control infection and how pathogens elude these mechanisms. Mycobacterial infections are prime examples of chronic battle fields between host and pathogens. The study of tuberculosis and related mycobacterial infectious diseases such as leprosy have greatly aided in deciphering mechanisms of immune mediated protection and pathology in humans. Here we review recent insights into the role of newly discovered T cell subsets including Th17, Tregs and nonclassically restricted T cells in adaptive immunity to mycobacteria. The role of newly discovered innate immune mechanisms in tuberculosis and leprosy along with recent results from 'unbiased' genome-wide and functional genetic approaches, are deciphering critical host pathways in human infectious disease.  相似文献   

10.
目的探讨干酪乳杆菌LC2W细胞壁组分体外对小鼠巨噬细胞功能的影响。方法以培养液单纯培养小鼠巨噬细胞系RAW264.7细胞作为对照,研究干酪乳杆菌LC2W细胞壁主要组分磷壁酸和肽聚糖对RAW264.7细胞乳酸脱氢酶(LDH)活性、吞噬中性红和致病菌能力的影响。结果不同浓度磷壁酸和肽聚糖对小鼠巨噬细胞RAW264.7细胞LDH活性、吞噬中性红能力有明显增强作用,并呈一定的剂量效应。在相同质量浓度时,2种细胞壁组分刺激RAW264.7细胞吞噬中性红能力差异无显著性,但磷壁酸对巨噬细胞RAW264.7细胞内LDH活性的增强作用高于肽聚糖。在受到浓度为50μg/ml的磷壁酸和肽聚糖刺激后,磷壁酸和肽聚糖均能显著增强RAW264.7对致病性大肠埃希菌和肠炎沙门菌的吞噬作用(P〈0.01)。经过刺激的巨噬细胞与致病菌共孵育1h后,其吞噬能力达到最大值。结论干酪乳杆菌LC2W细胞壁主要组分磷壁酸和肽聚糖可以增强小鼠巨噬细胞RAW264.7细胞内LDH活性及吞噬能力,并具有剂量效应。  相似文献   

11.
Tuberculosis continues to kill millions of people around the world. New tools to prevent and treat this disease are urgently needed. Similar to most microorganisms, Mycobacterium tuberculosis--the causative agent of tuberculosis--requires iron for essential metabolic pathways. Because iron is not freely available in the host, pathogens must actively compete for this metal to establish an infection but they must also carefully control iron acquisition as excess free iron can be extremely toxic. Recent studies have demonstrated that failure to assemble the iron acquisition machinery or to repress iron uptake has deleterious effects for M. tuberculosis. Here, we review how M. tuberculosis obtains iron in a regulated manner and discuss how these processes could potentially be disrupted to interfere with the survival and replication of this bacterium in the host.  相似文献   

12.
The intrinsic resistance of Mycobacterium tuberculosis and related pathogens to most common antibiotics limits chemotherapeutic options to treat tuberculosis and other mycobacterial diseases. Resistance has traditionally been attributed to the unusual multi-layer cell envelope that functions as an effective barrier to the penetration of antibiotics. Recent insights into mechanisms that neutralize the toxicity of antibiotics in the cytoplasm have revealed systems that function in synergy with the permeability barrier to provide intrinsic resistance. Here, we highlight the growing pool of information about internal, antibiotic-responsive regulatory proteins and corresponding resistance genes, and present new concepts that rationalize how they might have evolved. Pharmaceutical inhibition of these intrinsic systems could make many previously available antibiotics active against M. tuberculosis.  相似文献   

13.
A significant amount of evidence has been accumulated to show that Toll-like receptors (TLRs) function as sensors for microbial invasion. However, little is known about how signalling triggered by TLRs leads to the phagocytosis of pathogens. This study was designed to determine whether stimulation of TLR2 mainly with the lipopeptide FSL-1 plays a role in the phagocytosis of pathogens by macrophages. FSL-1 enhanced the phagocytosis of Escherichia coli to a markedly greater extent than it did that of Staphylococcus aureus, but did not enhance the phagocytosis of latex beads. FSL-1 stimulation resulted in enhanced phagocytosis of bacteria by macrophages from TLR2(+/+) mice but not by those from TLR2(-/-) mice. Chinese hamster ovary cells stably expressing TLR2 failed to phagocytose these bacteria, but the cells expressing CD14 did. FSL-1 induced upregulation of the expression of phagocytic receptors, including MSR1, CD36, DC-SIGN and Dectin-1 in THP-1 cells. Human embryonic kidney 293 cells transfected with DC-SIGN and MSR1 phagocytosed these bacteria. These results suggest that the FSL-1-induced enhancement of phagocytosis of bacteria by macrophages may be explained partly by the upregulation of scavenger receptors and the C-type lectins through TLR2-mediated signalling pathways, and that TLR2 by itself does not function as a phagocytic receptor.  相似文献   

14.
15.
Signalling C‐type lectin receptors (CLRs) are crucial in shaping the immune response to fungal pathogens, but comparably little is known about the role of these receptors in bacterial, viral and parasitic infections. CLRs have many diverse functions depending on the signalling motifs in their cytoplasmic domains, and can induce endocytic, phagocytic, antimicrobial, pro‐inflammatory or anti‐inflammatory responses which are either protective or not during an infection. Understanding the role of CLRs in shaping anti‐microbial immunity offers great potential for the future development of therapeutics for disease intervention. In this review we will focus on the recognition of bacterial, viral and parasitic pathogens by CLRs, and how these receptors influence the outcome of infection. We will also provide a brief update on the role of CLRs in antifungal immunity.  相似文献   

16.
Complement receptor type 3 (CR3) present on macrophages is used by Mycobacterium tuberculosis as one of its major phagocytic receptors. In this study, we examined the in vivo significance of CR3-mediated phagocytosis on the pathogenesis of disease caused by M. tuberculosis. The outcome of tuberculous infection in mice deficient in the CD11b subunit of CR3 (CR3-/-) on a mixed 129SV and C57BL background and control wild-type counterparts was comparable with respect to survival, bacterial burden, granulomatous lesion development, and cytokine expression in the spleen and lungs. M. tuberculosis infection was also examined in CR3-/- mice on C57BL/6 and BALB/c backgrounds and was found to be similar. In conclusion, our results suggest that in the absence of CR3, M. tuberculosis is able to gain entry into host cells via alternative phagocytic receptors and establish infection. The data also indicate that absence of CR3 does not alter disease course in either the relatively resistant C57BL/6 or the relatively susceptible BALB/c strains of mice.  相似文献   

17.
Cattle are infected by a community of endemic pathogens with different epidemiological properties that invoke different managerial and governmental responses. We present characteristics of pathogens that influence their ability to persist in the UK, and describe a qualitative framework of factors that influence the political response to a livestock disease. We develop simple transmission models for three pathogens (bovine viral diarrhoea virus, bovine herpesvirus and Mycobacterium avium spp. paratuberculosis) using observed cattle movements, and compare the outcomes to an extensive dataset. The results demonstrate that the epidemiology of the three pathogens is determined by different aspects of within- and between-farm processes, which has economic, legal and political implications for control. We consider how these pathogens, and Mycobacterium bovis (the agent of bovine tuberculosis), may be classified by the process by which they persist and by their political profile. We further consider the dynamic interaction of these classifications with pathogen prevalence and with the action taken by the government.  相似文献   

18.
Ancient protozoan phagocytes and modern professional phagocytes of metazoans, such as macrophages, employ evolutionarily conserved mechanisms to kill microbes. These mechanisms rely on microbial ingestion, followed by maturation of the phagocytic vacuole, or so-called phagosome. Phagosome maturation includes a series of fusion and fission events with the host cell endosomes and lysosomes, leading to a rapid increase of the degradative properties of the vacuole and to the destruction of the ingested microbe within a very hostile intracellular compartment, the phagolysosome. Historically, the mechanisms and weapons used by phagocytes to kill microbes have been separated into different classes. Phagosomal acidification, together with the production of reactive oxygen and nitrogen species, the selective manipulation of various ions in the phagosomal lumen, and finally the engagement of a battery of acidic hydrolases, are well-recognized players in this process. However, it is relatively recently that interconnections among these mechanisms have become apparent. In this review, we will focus on some emerging concepts about these interconnected aspects of the warfare at the host-pathogen interface, using mostly Mycobacterium tuberculosis as an example of intracellular pathogen. In particular, recent discoveries on the role of phagosomal ions and other chemicals in the control of pathogens, as well as mechanisms evolved by intracellular pathogens to circumvent or even exploit the weapons of the host cell will be discussed.  相似文献   

19.
Alveolar macrophages (AM) are the first professional phagocytes encountered by aerosols containing infections in the lungs, and their phagocytic capacity may be affected by these infections or environmental particles. The aim of this study was to evaluate the innate endocytic and phagocytic properties of human AM obtained from patients with pulmonary tuberculosis and to characterize the vacuoles in which Mycobacterium tuberculosis bacilli reside in vivo. AM were obtained by bronchoalveolar lavage from patients with suspected tuberculosis and from asymptomatic volunteers (controls). Clinical case definitions were based on mycobacterial culture of respiratory specimens and HIV serology. To assess phagocytosis, endocytosis, and acidification of the endosomal system, AM were cultured with IgG-coated polystyrene beads, dextran, and a pH-sensitive reporter (3-(2,4-dinitroanilino)-3-amino-N-methyldipropylamine) and were evaluated by light and immunoelectron microscopy. Cells from 89 patients and 10 controls were studied. We found no significant difference between the two groups in the ability of AM either to ingest beads and dextran or to deliver them to acidified lysosomes. In AM from patients with tuberculosis, the bacilli were located in vacuoles that failed to accumulate endocytosed material and were not acidified. We concluded that AM from patients with tuberculosis and HIV infections were competent to endocytose and phagocytose material and to deliver the material to functional, acidified lysosomes. M. tuberculosis residing in these AM arrests the progression of their phagosomes, which fail to fuse with acidified lysosomes. This confirms, for the first time in humans with tuberculosis and HIV, the conclusions from previous animal and in vitro studies.  相似文献   

20.
Mycobacterium tuberculosis persistence in human populations relies on its ability to inhibit phagosomal maturation. M. tuberculosis resides in a pathogen-friendly phagosome escaping lysosomal bactericidal mechanisms and efficient antigen presentation in the host phagocytic cell. M. tuberculosis phagosome maturation arrest includes the action of mycobacterial lipid products, which mimic mammalian phosphatidylinositols, targeting host cell membrane trafficking processes. These products interfere with membrane trafficking and organelle biogenesis processes initiated by Ca(2+) fluxes, and ending with host cell Rab GTP-binding proteins and their effectors. The block includes phosphatidylinositol 3-kinase and membrane tethering molecules that prepare phagosomes for fusion with other organelles. Understanding these processes could provide new targets for pharmacological intervention in tuberculosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号