首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comprehensive, geometrically accurate, nonlinear C0-C7 FE model of head and cervical spine based on the actual geometry of a human cadaver specimen was developed. The motions of each cervical vertebral level under pure moment loading of 1.0 Nm applied incrementally on the skull to simulate the movements of the head and cervical spine under flexion, tension, axial rotation and lateral bending with the inferior surface of the C7 vertebral body fully constrained were analysed. The predicted range of motion (ROM) for each motion segment were computed and compared with published experimental data. The model predicted the nonlinear moment-rotation relationship of human cervical spine. Under the same loading magnitude, the model predicted the largest rotation in extension, followed by flexion and axial rotation, and least ROM in lateral bending. The upper cervical spines are more flexible than the lower cervical levels. The motions of the two uppermost motion segments account for half (or even higher) of the whole cervical spine motion under rotational loadings. The differences in the ROMs among the lower cervical spines (C3-C7) were relatively small. The FE predicted segmental motions effectively reflect the behavior of human cervical spine and were in agreement with the experimental data. The C0-C7 FE model offers potentials for biomedical and injury studies.  相似文献   

2.
The cervical spine functions as a complex mechanism that responds to sudden loading in a unique manner, due to intricate structural features and kinematics. The spinal load-sharing under pure compression and sagittal flexion/extension at two different impact rates were compared using a bio-fidelic finite element (FE) model of the ligamentous cervical functional spinal unit (FSU) C2–C3. This model was developed using a comprehensive and realistic geometry of spinal components and material laws that include strain rate dependency, bone fracture, and ligament failure. The range of motion, contact pressure in facet joints, failure forces in ligaments were compared to experimental findings. The model demonstrated that resistance of spinal components to impact load is dependent on loading rate and direction. For the loads applied, stress increased with loading rate in all spinal components, and was concentrated in the outer intervertebral disc (IVD), regions of ligaments to bone attachment, and in the cancellous bone of the facet joints. The highest stress in ligaments was found in capsular ligament (CL) in all cases. Intradiscal pressure (IDP) in the nucleus was affected by loading rate change. It increased under compression/flexion but decreased under extension. Contact pressure in the facet joints showed less variation under compression, but increased significantly under flexion/extension particularly under extension. Cancellous bone of the facet joints region was the only component fractured and fracture occurred under extension at both rates. The cervical ligaments were the primary load-bearing component followed by the IVD, endplates and cancellous bone; however, the latter was the most vulnerable to extension as it fractured at low energy impact.  相似文献   

3.
The facet joint contributes to the normal biomechanical function of the spine by transmitting loads and limiting motions via articular contact. However, little is known about the contact pressure response for this joint. Such information can provide a quantitative measure of the facet joint's local environment. The objective of this study was to measure facet pressure during physiologic bending in the cervical spine, using a joint capsule-sparing technique. Flexion and extension bending moments were applied to six human cadaveric cervical spines. Global motions (C2-T1) were defined using infra-red cameras to track markers on each vertebra. Contact pressure in the C5-C6 facet was also measured using a tip-mounted pressure transducer inserted into the joint space through a hole in the postero-inferior region of the C5 lateral mass. Facet contact pressure increased by 67.6 ± 26.9 kPa under a 2.4 Nm extension moment and decreased by 10.3 ± 9.7 kPa under a 2.7 Nm flexion moment. The mean rotation of the overall cervical specimen motion segments was 9.6 ± 0.8° and was 1.6 ± 0.7° for the C5-C6 joint, respectively, for extension. The change in pressure during extension was linearly related to both the change in moment (51.4 ± 42.6 kPa/Nm) and the change in C5-C6 angle (18.0 ± 108.9 kPa/deg). Contact pressure in the inferior region of the cervical facet joint increases during extension as the articular surfaces come in contact, and decreases in flexion as the joint opens, similar to reports in the lumbar spine despite the difference in facet orientation in those spinal regions. Joint contact pressure is linearly related to both sagittal moment and spinal rotation. Cartilage degeneration and the presence of meniscoids may account for the variation in the pressure profiles measured during physiologic sagittal bending. This study shows that cervical facet contact pressure can be directly measured with minimal disruption to the joint and is the first to provide local pressure values for the cervical joint in a cadaveric model.  相似文献   

4.
The purpose of this study is to test the hypothesis that the upper cervical spine is weaker than the lower cervical spine in pure flexion and extension bending, which may explain the propensity for upper cervical spine injuries in airbag deployments. An additional objective is to evaluate the relative strength and flexibility of the upper and lower cervical spine in an effort to better understand injury mechanisms, and to provide quantitative data on bending responses and failure modes. Pure moment flexibility and failure testing was conducted on 52 female spinal segments in a pure-moment test frame. The average moment at failure for the O-C2 segments was 23.7+/-3.4Nm for flexion and 43.3+/-9.3Nm for extension. The ligamentous upper cervical spine was significantly stronger in extension than in flexion (p=0.001). The upper cervical spine was significantly stronger than the lower cervical spine in extension. The relatively high strength of the upper cervical spine in tension and in extension is paradoxical given the large number of upper cervical spine injuries in out-of-position airbag deployments. This discrepancy is most likely due to load sharing by the active musculature.  相似文献   

5.
An apparatus is described that enables the application of continuous pure moment loads to multi-segment spine specimens. This loading apparatus allows continuous cycling of the spine between specified flexion and extension (or right and left lateral bending) maximum load endpoints. Using a six-degree-of-freedom load cell and three-dimensional optoelectronic stereophotogrammetry, characteristic displacement versus load hysteresis curves can be generated and analyzed for different spinal constructs of interest. Unlike quasi-static loading, the use of continuous loading permits the analysis of the spine's behaviour within the neutral zone. This information is of particular clinical significance given that the instability of a spinal segment is related to its flexibility within the neutral zone. Representative curves for the porcine lumbar spine in flexion-extension and lateral bending are presented to illustrate the capabilities of this system.  相似文献   

6.
New vehicle safety standards are designed to limit the amount of neck tension and extension seen by out-of-position motor vehicle occupants during airbag deployments. The criteria used to assess airbag injury risk are currently based on volunteer data and animal studies due to a lack of bending tolerance data for the adult cervical spine. This study provides quantitative data on the flexion-extension bending properties and strength on the male cervical spine, and tests the hypothesis that the male is stronger than the female in pure bending. An additional objective is to determine if there are significant differences in stiffness and strength between the male upper and lower cervical spine. Pure-moment flexibility and failure testing was conducted on 41 male spinal segments (O-C2, C4-C5, C6-C7) in a pure-moment test frame and the results were compared with a previous study of females. Failures were conducted at approximately 90 N-m/s. In extension, the male upper cervical spine (O-C2) fails at a moment of 49.5 (s.d. 17.6)N-m and at an angle of 42.4 degrees (s.d. 8.0 degrees). In flexion, the mean moment at failure is 39.0 (s.d. 6.3 degrees) N-m and an angle of 58.7 degrees (s.d. 5.1 degrees). The difference in strength between flexion and extension is not statistically significant. The difference in the angles is statistically significant. The upper cervical spine was significantly stronger than the lower cervical spine in both flexion and extension. The male upper cervical spine was significantly stiffer than the female and significantly stronger than the female in flexion. Odontoid fractures were the most common injury produced in extension, suggesting a tensile mechanism due to tensile loads in the odontoid ligamentous complex.  相似文献   

7.
Load-displacement properties of lower cervical spine motion segments   总被引:12,自引:0,他引:12  
The load-displacement behavior of 35 fresh adult cervical spine motion segments was measured in compression, shear, flexion, extension, lateral bending and axial torsion tests. Motion segments were tested both intact and with posterior elements removed. Applied forces ranged to 73.6 N in compression and to 39 N in shear, while applied moments ranged to 2.16 Nm. For each mode of loading, principal and coupled motions were measured and stiffnesses were calculated. The effect of disc degeneration on motion segment stiffnesses and the moments required for motion segment failure were also measured. In compression, the stiffnesses of the cervical motion segments were similar to those of thoracic and lumbar motion segments. In other modes of loading, cervical stiffnesses were considerably smaller than thoracic or lumbar stiffnesses. Removal of the posterior elements decreased cervical motion segment stiffnesses by as much as 50%. Degenerated cervical discs were less stiff in compression and stiffer in shear than less degenerated discs, but in bending or axial torsion, no statistically significant differences were evident. Bending moments causing failure were an order of magnitude lower than those for lumbar segments.  相似文献   

8.
Laminectomy and facetectomy are surgical techniques used for decompression of the cervical spinal stenosis. Recent in vitro and finite element studies have shown significant cervical spinal instability after performing these surgical techniques. However, the influence of degenerated cervical disk on the biomechanical responses of the cervical spine after these surgical techniques remains unknown. Therefore, a three-dimensional nonlinear finite element model of the human cervical spine (C2-C7) was created. Two types of disk degeneration grades were simulated. For each grade of disk degeneration, the intact as well as the two surgically altered models simulating C5 laminectomy with or without C5-C6 total facetectomies were exercised under flexion and extension. Intersegmental rotational motions, internal disk annulus, cancellous and cortical bone stresses were obtained and compared to the normal intact model. Results showed that the cervical rotational motion decreases with progressive disk degeneration. Decreases in the rotational motion due to disk degeneration were accompanied by higher cancellous and cortical bone stress. The surgically altered model showed significant increases in the rotational motions after laminectomies and facetectomies when compared to the intact model. However, the percentage increases in the rotational motions after various surgical techniques were reduced with progressive disk degeneration.  相似文献   

9.
Animals are becoming more and more common as in vivo models for the human spine. Especially the sheep cervical spine is stated to be of good comparability and usefulness in the evaluation of in vivo radiological, biomechanical and histological behaviour of new bone replacement materials, implants and cages for cervical spine interbody fusion. In preceding biomechanical in vitro examinations human cervical spine specimens were tested after fusion with either a cubical stand-alone interbody fusion cage manufactured from a new porous TiO2/glass composite (Ecopore) or polymethylmethacrylate (PMMA) after discectomy. Following our first experience with the use of the new material and its influence on the primary stability after in vitro application we carried out fusions of 20 sheep cervical spines levels with either PMMA or an Ecopore-cage, and performed radiological examinations during the following 2-4 months. In this second part of the study we intended the biomechanical evaluation of the spine segments with reference to the previously determined morphological findings, like subsidence of the implants, significant increase of the kyphosis angle and degree of the bony fusion along with the interpretation of the results. 20 sheep cervical spines segments with either PMMA- or Ecopore-fusion in the levels C2/3 and C4/5 were tested, in comparison to 10 native corresponding sheep cervical spine segments. Non-destructive biomechanical testing was performed, including flexion/extension, lateral bending and axial rotation using a spine testing apparatus. Three-dimensional range of motion (ROM) was evaluated using an ultrasound measurement system. In the native spine segments C2/3 and C4/5 the ROM increased in cranio-caudal direction particulary in flexion/extension, less pronounced in lateral flexion and axial rotation (p < 0.05). The overall ROM of both tested segments was greatest in lateral flexion, reduced to 52% in flexion/extension and to 16% in axial rotation. After 2 months C2/3- and C4/5-segments with PMMA-fusion and C2/3-segments with Ecopore-interposition showed decrease of ROM in lateral flexion in comparison to the native segments, indicating increasing stiffening. However, after 4 months all operated segments, independent from level or implanted material, were stiffer than the comparable native segments. The decrease of the ROM correlated with the radiological-morphological degree of fusion. Our evaluation of the new porous TiO2/glass composite as interbody fusion cage has shown satisfactory radiological results as well as distinct biomechanical stability and fusion of the segments after 4 months in comparison to PMMA. After histological analysis of the bone-biomaterial-interface, further examinations of this biomaterial previous to an application as alternative to other customary cages in humans are necessary.  相似文献   

10.
Finite element (FE) method is a proven powerful and efficient tool to study the biomechanics of the human lumbar spine. However, due to the large inter-subject variability of geometries and material properties in human lumbar spines, concerns existed on the accuracy and predictive power of one single deterministic FE model with one set of spinal geometry and material properties. It was confirmed that the combined predictions (median or mean value) of several distinct FE models can be used as an improved prediction of behavior of human lumbar spine under identical loading and boundary conditions. In light of this improved prediction, five FE models (L1-L5 spinal levels) of the human lumbar spine were developed based on five healthy living subjects with identical modeling method. The five models were extensively validated through experimental and computational results in the literature. Mesh convergence and material sensitivity analysis were also conducted. We have shown that the results from the five FE models developed in this paper were consistent with the experimental data and simulation results from the existing literature. The validated modeling method introduced in this study can be used in modeling dysfunctional lumber spines such as disc degeneration and scoliosis in future work.  相似文献   

11.
Many investigators have performed studies on specific defect situations or determined the contribution on isolated structures. Investigating the contribution of functional structures requires obtaining the kinematic response directly on spinal segments. The purpose of this study was to quantify the function of anatomical components on lumbar segments for different loading magnitudes. Eight spinal segments (L4-5) with a median age of 52 years (ranging from 38 to 59 years) and a low degree of disc degeneration were utilized for the in vitro testing. Specimens were mounted in a custom-built spine tester and loaded with pure moments (1-10 N m) to move within three anatomical planes at a loading rate of 1.0 degrees /s. Anatomy was successively reduced by: ligaments, facet capsules, joints and nucleus. Data were evaluated for range of motion, neutral zone and lordosis angle. Transection of posterior ligaments predominantly increased specimen flexion for all bending moments applied. Supraspinous ligament also indicated to resist in extension slightly, whereas the facet capsules did not. Facet joints contributed to axial rotation, but not in lateral bending. The anterior longitudinal ligament was found to slightly resist in axial rotation, but strongly in extension. Nucleotomy caused largest increase of all movements. The unloaded posture of the specimens changed after ligament dissection, indicating ligament pretension. The region of lumbar spine is interesting for finite element (FE) simulation due to the high evidence of disc degeneration and injuries. This study may help to understand the function of specific anatomical structures and assists in FE model calibration. We suggest to start a calibration procedure for such models with the smallest functional structure (annulus) and to cumulatively add further structures.  相似文献   

12.
Although muscles are assumed to be capable of stabilizing the spinal column in vivo, they have only rarely been simulated in vitro. Their effect might be of particular importance in unstable segments. The present study therefore tests the hypothesis that mechanically simulated muscle forces stabilize intact and injured cervical spine specimens. In the first step, six human occipito-cervical spine specimens were loaded intact in a spine tester with pure moments in lateral bending (+/- 1.5 N m), flexion-extension (+/- 1.5 N m) and axial rotation (+/- 0.5 N m). In the second step, identical flexibility tests were carried out during constant traction of three mechanically simulated muscle pairs: splenius capitits (5 N), semispinalis capitis (5 N) and longus colli (15 N). Both steps were repeated after unilateral and bilateral transection of the alar ligaments. The muscle forces strongly stabilized C0-C2 in all loading and injury states. This was most obvious in axial rotation, where a reduction of range of motion (ROM) and neutral zone to <50% (without muscles=100%) was observed. With increasing injury the normalized ROM (intact condition=100%) increased with and without muscles approximately to the same extend. With bilateral injury this increase was 125-132% in lateral bending, 112%-119% in flexion-extension and 103-116% in axial rotation. Mechanically simulated cervical spine muscles strongly stabilized intact and injured cervical spine specimens. Nevertheless, it could be shown that in vitro flexibility tests without muscle force simulation do not necessarily lead to an overestimation of spinal instability if the results are normalized to the intact state.  相似文献   

13.
The current study investigated mechanical predictors for the development of adjacent disc degeneration. A 3-D finite element model of a lumbar spine was modified to simulate two grades of degeneration at the L4–L5 disc. Degeneration was modeled by changes in geometry and material properties. All models were subjected to follower preloads of 800 N and moment loads in the three principal directions of motion using a hybrid protocol. Degeneration caused changes in the loading and motion patterns of the segments above and below the degenerated disc. At the level (L3–L4) above the degenerated disc, the motion increased due to moderate degeneration by 21% under lateral bending, 26% under axial rotation and 28% under flexion/extension. At the level (L5-S1) below the degenerated disc, motion increased only during lateral bending by 20% due to moderate degeneration. Both the L3–L4 and L5-S1 segment showed a monotonic increase in both the maximum von Mises stress and shear stress in the annulus as degeneration progressed for all loading directions, expect extension at L3–L4. The most significant increase in stress was observed at the L5-S1 level during axial rotation with nearly a ten-fold increase in the maximum shear stress and 103% increase in the maximum von Mises stress. The L5-S1 segment also showed a progressive increase in facet contact force for all loading directions with degeneration. Nucleus pressure did not increase significantly for any loading direction at either the caudal or cephalic adjacent segment. Results suggest that single-level degeneration can increase the risk for injury at the adjacent levels.  相似文献   

14.
Although considerable effort has been made to understand the biomechanical behavior of the adult cervical spine, relatively little information is available on the response of the pediatric cervical spine to external forces. Since significant anatomical differences exist between the adult and pediatric cervical spines, distinct biomechanical responses are expected. The present study quantified the biomechanical responses of human pediatric spines by incorporating their unique developmental anatomical features. One-, three-, and six-year-old cervical spines were simulated using the finite element modeling technique, and their responses computed and compared with the adult spine response. The effects of pure overall structural scaling of the adult spine, local component developmental anatomy variations that occur to the actual pediatric spines, and structural scaling combined with local component anatomy variations on the responses of the pediatric spines were studied. Age- and component-related developmental anatomical features included variations in the ossification centers, cartilages, growth plates, vertebral centrum, facet joints, and annular fibers and nucleus pulposus of the intervertebral discs. The flexibility responses of the models were determined under pure compression, pure flexion, pure extension, and varying degrees of combined compression-flexion and compression-extension. The pediatric spine responses obtained with the pure overall (only geometric) scaling of the adult spine indicated that the flexibilities consistently increase in a uniform manner from six- to one-year-old spines under all loading cases. In contrast, incorporation of local anatomic changes specific to the pediatric spines of the three age groups (maintaining the same adult size) not only resulted in considerable increases in flexibilities, but the responses also varied as a function of the age of the pediatric spine and type of external loading. When the geometric scaling effects were added to these spines, the increases in flexibilities were slightly higher; however, the pattern of the responses remained the same as found in the previous approach. These results indicate that inclusion of developmental anatomical changes characteristic of the pediatric spines has more of a predominant effect on biomechanical responses than extrapolating responses of the adult spine based on pure overall geometric scaling.  相似文献   

15.
Biomechanical testing of the spine has traditionally been performed to help understand the normal function of the spine as well as to evaluate the effects of injury and surgical procedures on spinal behaviour. The overall objective of this investigation was to compare traditional stepwise loading with the recently introduced continuous loading protocol, determining the effect of loading protocol on the mechanical behaviour of the spine. For all tests, a custom spine testing machine was used to apply pure moments of flexion extension, axial rotation, and lateral bending to a maximum of 2 Nm, using six porcine cervical spine specimens (C2-C4). Motions of C2 with respect to C4 were measured with an optoelectronic camera system. Motion parameters calculated were range of motion (ROM), neutral zone (NZ), and the ratio of NZ and ROM. The continuous loading protocol had smaller values for all motion parameters in each loading direction (p<0.05). ROM for the continuous test ranged between 88% and 93% of that of stepwise for the three loading directions. The continuous protocol NZ was 56-75% of that of the stepwise test. The findings of the study demonstrate that the two loading protocols provide differing spinal behaviours.  相似文献   

16.
By considering the cervical spine as several segments with relatively different motions, an understanding of the total possible motions of the cervical spine can be more easily attained.Reversal of the cervical lordosis is a normal part of the flexion action and can result from positioning of the patient for radiographic studies.The effect of standing or sitting postures, and methods of initiating flexion of the neck should be considered in the evaluation of routine flexion and extension studies.Evaluation of individual cervical segments may be accomplished by the use of different methods of initiating flexion.  相似文献   

17.
The mechanical coupling behaviour of the thoracic spine is still not fully understood. For the validation of numerical models of the thoracic spine, however, the coupled motions within the single spinal segments are of importance to achieve high model accuracy. In the present study, eight fresh frozen human thoracic spinal specimens (C7-L1, mean age 54 ± 6 years) including the intact rib cage were loaded with pure bending moments of 5 Nm in flexion/extension (FE), lateral bending (LB), and axial rotation (AR) with and without a follower load of 400 N. During loading, the relative motions of each vertebra were monitored. Follower load decreased the overall ROM (T1-T12) significantly (p < 0.01) in all primary motion directions (extension: −46%, left LB: −72%, right LB: −72%, left AR: −26%, right AR: −26%) except flexion (−36%). Substantial coupled motion was found in lateral bending with ipsilateral axial rotation, which increased after a follower load was applied, leading to a dominant axial rotation during primary lateral bending, while all other coupled motions in the different motion directions were reduced under follower load. On the monosegmental level, the follower load especially reduced the ROM of the upper thoracic spine from T1-T2 to T4-T5 in all motion directions and the ROM of the lower thoracic spine from T9-T10 to T11-T12 in primary lateral bending. The facet joints, intervertebral disc morphologies, and the sagittal curvature presumably affect the thoracic spinal coupled motions depending on axial compressive preloading. Using these results, the validation of numerical models can be performed more accurately.  相似文献   

18.
The human cervical spine supports substantial compressive load in vivo. However, the traditional in vitro testing methods rarely include compressive loads, especially in investigations of multi-segment cervical spine constructs. Previously, a systematic comparison was performed between the standard pure moment with no compressive loading and published compressive loading techniques (follower load – FL, axial load – AL, and combined load – CL). The systematic comparison was structured a priori using a statistical design of experiments and the desirability function approach, which was chosen based on the goal of determining the optimal compressive loading parameters necessary to mimic the segmental contribution patterns exhibited in vivo. The optimized set of compressive loading parameters resulted in in vitro segmental rotations that were within one standard deviation and 10% of average percent error of the in vivo mean throughout the entire motion path. As hypothesized, the values for the optimized independent variables of FL and AL varied dynamically throughout the motion path. FL was not necessary at the extremes of the flexion–extension (FE) motion path but peaked through the neutral position, whereas, a large negative value of AL was necessary in extension and increased linearly to a large positive value in flexion. Although further validation is required, the long-term goal is to develop a “physiologic” in vitro testing method, which will be valuable for evaluating adjacent segment effect following spinal fusion surgery, disc arthroplasty instrumentation testing and design, as well as mechanobiology experiments where correct kinematics and arthrokinematics are critical.  相似文献   

19.
Cervical disc injury due to impact has been observed in clinical and biomechanical investigations; however, there is a lack of data that helps to elucidate the mechanisms of disc injury during these collisions. Therefore, it is necessary to understand the behavior of the cervical spine under different types of loading situations. A three dimensional finite element (FE) model for the multi-level cervical spine segment (C0-C7) was developed using computed tomography (CT) data and applied to study the internal stresses and strains of the intervertebral discs under quasi-static loading conditions. The intervertebral discs were treated as nonlinear, anisotropic and incompressible subjected to large deformations. The model accuracy was validated by comparing it with previously published experimental and numerical results for different movements. It was shown that the use of a fiber reinforced model to describe the behavior of the annulus of the discs would predict higher maximum shear strains than an isotropic one, being therefore important the use of complex constitutive models in order to be able to detect the appearance of injured zones, since those strains and stresses are supposed to be related with damage to soft tissues. Several movements were analyzed: flexion, extension and axial rotation, obtaining that the maximum shear stresses in the disc were higher for a flexo-extension movement.  相似文献   

20.
In-vitro biomechanical testing is widely performed for characterizing the load-displacement characteristics of intact, injured, degenerated, and surgically repaired osteoligamentous spine specimens. Traditional specimen fixture devices offer an unspecified rigidity of fixation, while varying in the associated amounts and reversibility of damage to and “coverage” of a specimen – factors that can limit surgical access to structures of interest during testing as well as preclude the possibility of testing certain segments of a specimen. Therefore, the objective of this study was to develop a specimen fixture system for spine biomechanical testing that uses components of clinically available spinal fixation hardware and determine whether the new system provides sufficient rigidity for spine biomechanical testing. Custom testing blocks were mounted into a robotic testing system and the angular deflection of the upper fixture was measured indirectly using linear variable differential transformers. The fixture system had an overall stiffness 37.0, 16.7 and 13.3 times greater than a typical human functional spine unit for the flexion/extension, axial rotation and lateral bending directions respectively – sufficient rigidity for biomechanical testing. Fixture motion when mounted to a lumbar spine specimen revealed average motion of 0.6, 0.6, and 1.5° in each direction. This specimen fixture method causes only minimal damage to a specimen, permits testing of all levels of a specimen, and provides for surgical access during testing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号