首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J M Benevides  G J Thomas 《Biochemistry》1988,27(10):3868-3873
Equilibrium Raman spectra show that A- and B-form phosphodiester backbone geometries are both present in the solution structure of the RNA.DNA hybrid poly(rA).poly(dT) and that these arise from C3'-endo-rA and C2'-endo-dT nucleosides, respectively. Raman dynamic measurement of deuterium exchange of adenine 8CH groups reveals (i) a single kinetic class of rA conformers and (ii) extraordinary retardation of 8CH exchange in this class--more than 100-fold slower than in canonical DNA structures. The equilibrium and kinetic results, in conjunction with model building, indicate an unusual intrastrand hydrogen bond involving adenosine donor (8C-H) and acceptor (5'O) groups and a double-helical conformation in solution similar to that proposed for fibers at high relative humidity [Zimmerman, S. B., & Pheiffer, B. H. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 78-82]. In fibers of poly(rA).poly(dT) at low relative humidity, the Raman spectra indicate a conventional A-helix structure.  相似文献   

2.
Proton nmr spectroscopy is used to measure the deuterium exchange rates of C8 protons in individual purines of the dodecamer 5′-d(CGCGAATTCGCG)-3′ and their temperature dependence. In perfect agreement with results from tritium labeling and laser Raman spectroscopy, we find that the DNA secondary structure retards the rates of purine C8H exchange. The largest effects are observed for the C8 protons of adenines whose rates of exchange at 40°C are 3-to 4-fold lower than that in 5′-adenosine monophosphate. Moreover, the retardation of exchange at the central adenine is greater than that at its 5′-neighbor. For the guanines, the exchange rates are up to 2-fold lower than that in 5′-guanosine monophosphate, and the largest retardation is observed for the bases at positions 10 and 12. A dependence on base sequence is also observed for the activation energy for exchange. The activation energy is largest for the adenines and its value is 4 kcal/mol higher than that in 5′-adenosine monophosphate. The lowest activation energy is observed for the guanine in position 4 and the value is the same as in 5′-guanosine monophosphate. These results demonstrate the sensitivity of the purine C8H exchange kinetics to sequence-dependent conformational features of B-DNA in solution state. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
The rate of deuterium exchange of the 8-CH group in a purine deoxyribonucleotide, is the same as the 8-CH exchange rate in the corresponding purine ribonucleotide, with the exception of 5′-nucleotides of guanine. The observed 20% slower rate of 8-CH exchange in 5′-dGMP versus 5′-rGMP, over the temperature range 50–80°C, are attributable to differences in molecular conformation, including differences in ring puckering of the furanose substituents. Minor differences in 8-CH exhange rates are observed between 5′-and cyclic (3′:5′)-deoxyribonucleotides of a given purine, which are similar to those observed previously between corresponding 5′- and cyclic ribonucleotides that have been attributed to the charge difference of their respective phosphate groups [Ferreira, S. A. & Thomas, G. J., Jr. (1981) J. Raman Spectrosc. 11 , 508–514]. The coupling of guanine and furanose ring structures in the 5′-nucleotides is also evident from the vibrational frequencies of the guanine ring, which are strongly dependent on the pucker of the attached furanose moiety. Raman difference spectroscopy clearly reveals the dependence of purine nucleotide spectra on sugar-ring pucker. In the case of GMP, the guanine characteristic ring breathing mode near 600–700 cm?1 depends for its exact position and intensity on the proportion of C3′-endo (668 cm?1) and C2′-endo (682 cm?1) conformers in equilibrium with one another. The Raman intensity ratio I(668)/I(682) is proposed as a measure of the conformer ratio C3′-endo/C2′-endo in 5′-dGMP with possible application also to nucleic acids. Among cyclic nucleotides, differences in spectra of deoxyribo- and ribo- forms also appear to be related to differences of molecular conformation.  相似文献   

4.
O P Lamba  R Becka  G J Thomas 《Biopolymers》1990,29(10-11):1465-1477
Deuterium exchange of 8C protons of adenine and guanine in nucleic acids is conveniently monitored by laser Raman spectrophotometry, and the average exchange rate so determined [kA + kG] can be exploited as a dynamic probe of the secondary structure of DNA or RNA [J. M. Benevides and G. J. Thomas, Jr. (1985) Biopolymers 24, 667-682]. The present work describes a rapid Raman procedure, based upon optical multichannel analysis, which permits discrimination of the different 8CH exchange rates, kA of adenine and kG of guanine, in a single experimental protocol. For this procedure, simultaneous measurements are made of the intensity decay or frequency shift in separately resolved Raman bands of adenine and guanine, each of which is sensitive only to 8C deuteration of its respective purine. Resolution of the rates kA and kG is demonstrated for the mononucleotide mixtures, 5'-rAMP + 5'-rGMP and 5'-dAMP + 5'-dGMP, for the polynucleotides poly(dA-dT).poly(dA-dT) and poly(dG-dC).poly(dG-dC), for calf thymus DNA, and for the 17 base-pair operator OR3. We show that the different exchange rates of adenine and guanine, in nucleotide mixtures and in DNA, may also be calculated independently from intensity decay of the composite 1481-cm-1 band, comprising overlapped adenine and guanine components, over a time domain that encompasses two distinct regimes: (1) a relatively more rapid exchange of guanine, and (2) a concurrent slower exchange of adenine. Both methods developed here yield consistent results. We find, first, that exchange of guanine is approximately twofold more rapid than that of adenine when both purines are present in the same structure and solvent environment, presumably a consequence of the greater basicity of the 7N site of guanine. Second, we find that adenine suffers greater retardation of exchange than guanine when both purines are incorporated into a "classical" B-DNA secondary structure, such as that of calf thymus DNA. This finding suggests different microenvironments at the 7N-8C loci of adenine and guanine in aqueous B-DNA. We also confirm that adenine residues of B-form poly(dA-dT).poly(dA-dT) exchange much more slowly than those of other B-DNA sequences, implying a secondary structure for the alternating-AT sequence with unusual stereochemistry in the major groove. The greater resistance of adenine than guanine to 8CH exchange in the B-DNA secondary structure is more evident in high molecular weight calf thymus DNA and in the alternating AT and GC copolymer duplexes than in the smaller 17 base-pair operator OR3.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
K E Reilly  R Becka  G J Thomas 《Biochemistry》1992,31(12):3118-3125
The rate of deuterium exchange of a purine 8CH group in DNA is highly sensitive to both macromolecular secondary structure and intermolecular interactions which restrict solvent access to the major groove [Lamba, O.P., Becka, R., & Thomas, G.J., Jr. (1990) Biopolymers 29, 1465-1477]. We have exploited the sensitivity of the 8CH----8CD reaction to probe DNA recognition by the helix-turn-helix (HTH) motif of phage lambda cI repressor. We find that purine exchanges in the 19-base-pair OL1 operator are strongly and specifically restricted by binding of the HTH N-terminal domain of the repressor fragment (RF) comprising residues 1-102. The kinetics indicate large-scale obstruction of solvent access to operator 7N-8C purine sites. Interpretation of the exchange kinetics using a simple model suggests that only 7 purine residues (5 of 10 adenines and 2 of 9 guanines) remain unrestricted with respect to 8CH exchange in complexes of OL1 with the wild-type repressor. On the other hand, the 8CH exchange profile for the complex of OL1 with the Tyr88----Cys mutant repressor indicates that 9 purines (7 adenines and 2 guanines) are exchangeable. These results suggest important differences in major groove recognition in the two complexes. The proposed 8CH labeling profiles are consistent with molecular models of related complexes determined by X-ray crystallography [Jordan, S.R., & Pabo, C.O. (1988) Science 242, 893-899] and indicate that the structures observed in the crystal are largely maintained in solution.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The Raman spectrum of the isometric bacteriophage phi X174 contains a number of well-resolved bands which have been assigned unambiguously to proteins of the capsid or to the single-stranded DNA (ssDNA) genome. Additional Raman bands of protein and DNA, which are partially overlapped in the spectrum of virus, have been resolution enhanced by Fourier deconvolution to permit improved semiquantitative measurement of spectral intensities and frequencies for structural conclusions. Raman conformation markers indicate that the ssDNA molecule within the capsid contains nucleosides of C2'-endo sugar pucker and anti-glycoside bond orientation, but the nucleic acid backbone lacks the geometry characteristic of B-form DNA. The Raman profile of encapsidated phi X DNA indicates a backbone more similar to heat-denatured DNA than to DNA containing hairpinlike secondary structure. This finding suggests limited interbase interactions in the packaged genome, which is presumably the result of constraints imposed by the viral capsid. Thus, the extensive pairing and stacking of bases indicated by Raman profiles from ssRNA viruses are not evident for the phi X174 chromosome. Overall, the proteins of the virion contain extensive beta-sheet and irregular secondary structures. Fourier deconvolution of the Raman amide I band provides an estimate of the percentage of total beta-sheet structure (approximately 60%) in all proteins of the virion. The amide III region of the spectrum confirms that beta-sheet and irregular domains are the predominant protein secondary structures. Samples of phi X174 concentrated for Raman spectroscopy by either ultracentrifugation or ultrafiltration exhibit nearly identical Raman spectra, indicating that either method can be employed to prepare intact virus without significant loss of DNA or protein components.  相似文献   

7.
The problem of systematic and objective identification of canonical and non-canonical base pairs in RNA three-dimensional (3D) structures was studied. A probabilistic approach was applied, and an algorithm and its implementation in a computer program that detects and analyzes all the base pairs contained in RNA 3D structures were developed. The algorithm objectively distinguishes among canonical and non-canonical base pairing types formed by three, two and one hydrogen bonds (H-bonds), as well as those containing bifurcated and C-H...X H-bonds. The nodes of a bipartite graph are used to encode the donor and acceptor atoms of a 3D structure. The capacities of the edges correspond to probabilities computed from the geometry of the donor and acceptor groups to form H-bonds. The maximum flow from donors to acceptors irectly identifies base pairs and their types. A complete repertoire of base pairing types was built from the detected H-bonds of all X-ray crystal structures of a resolution of 3.0 Å or better, including the large and small ribosomal subunits. The base pairing types are labeled using an extension of the nomenclature recently introduced by Leontis and Westhof. The probabilistic method was implemented in MC-Annotate, an RNA structure analysis computer program used to determine the base pairing parameters of the 3D modeling system MC-Sym.  相似文献   

8.
The filamentous phage fd has been investigated using the techniques of Raman spectroscopy and deuterium exchange. Despite the rather uniform secondary structure of the fd phage coat protein, which is predominantly alpha-helix, the deuterium exchange is complex. A substantial fraction of the helical peptides exchange deuterium by 8 h at room temperature, yet another substantial fraction does not exchange following an additional 5 months at 4 degrees C. Heating the phage to 70 degrees C for several hours leads to additional deuterium exchange compared to samples soaked for 5 months in heavy water. We suggest that the wide variation in peptide exchange rates may be related to the phage protein quaternary structure, which has been shown to be a double layer of tightly packed helices. The accomplishment of enhanced exchange by reaction at high temperature combined with digital difference spectroscopic methods has enabled us to define the structure of the amide III and III' bands. The complexity of these bands is unexpected for a simple helical protein, but we suggest that the complexity arises at least in part from end-effects that become important in short alpha-helices.  相似文献   

9.
A constrained, iterative Fourier deconvolution method is employed to enhance the resolution of Raman spectra of biological molecules for quantitative assessment of macromolecular secondary structures and hydrogen isotope exchange kinetics. In an application to the Pf1 filamentous bacterial virus, it is shown that the Raman amide I band contains no component other than that due to alpha-helix, indicating the virtual 100% helicity of coat proteins in the native virion. Comparative analysis of the amide I band of six filamentous phages (fd, If1, IKe, Pf1, Xf, and Pf3), all at the same experimental conditions, indicates that the subunit helix-percentage ranges from a high of 100% in Pf1 to a low of 71% in Xf. Deconvolution of amide I of Pf3 at elevated temperatures, for which an alpha-to-beta transition was previously reported (Thomas, G. J., Jr., and L. A. Day, 1981, Proc. Natl. Acad. Sci. USA., 78:2962-2966), allows quantitative evaluation of the contributions of both alpha-helix and beta-strand conformations to the structure of the thermally perturbed viral coat protein. Weak Raman lines of viral DNA bases and coat protein side chains, which are poorly resolved instrumentally, are also distinguished for all viruses by the deconvolution procedure. Application to the carbon-8 hydrogen isotope exchange reaction of a purine constituent of transfer RNA permits accurate determination of the exchange rate constant, which is in agreement with calculations based upon curve-fitting methods.  相似文献   

10.
Raman tensors for localized vibrations of base (A, U, G, and C), ribose and phosphate groups of double-stranded RNA have been determined from polarized Raman measurements on oriented fibers of the genomic RNA of bacteriophage phi6. Polarized Raman intensities for which electric vectors of both the incident and scattered light are polarized either perpendicular (I[bb]) or parallel (I[cc]) to the RNA fiber axis have been obtained by Raman microspectroscopy using 514.5-nm excitation. Similarly, the polarized Raman components, I(bc) and I(cb), for which incident and scattered vectors are mutually perpendicular, have been obtained. Spectra collected from fibers maintained at constant relative humidity in both H2O and D2O environments indicate the effects of hydrogen-isotopic shifts on the Raman polarizations and tensors. Novel findings are the following: 1) the intense Raman band at 813 cm(-1), which is assigned to phosphodiester (OPO) symmetrical stretching and represents the key marker of the A conformation of double-stranded RNA, is characterized by a moderately anisotropic Raman tensor; 2) the prominent RNA band at 1101 cm(-1), which is assigned to phosphodioxy (PO2-) symmetrical stretching, also exhibits a moderately anisotropic Raman tensor. Comparison with results obtained previously on A, B, and Z DNA suggests that tensors for localized vibrations of backbone phosphodiester and phosphodioxy groups are sensitive to helix secondary structure and local phosphate group environment; and 3) highly anisotropic Raman tensors have been found for prominent and well-resolved Raman markers of all four bases of the RNA duplex. These enable the use of polarized Raman spectroscopy for the determination of purine and pyrimidine base residue orientations in ribonucleoprotein assemblies. The present determination of Raman tensors for dsRNA is comprehensive and accurate. Unambiguous tensors have been deduced for virtually all local vibrational modes of the 300-1800 cm(-1) spectral interval. The results provide a reliable basis for future evaluations of the effects of base pairing, base stacking, and sequence context on the polarized Raman spectra of nucleic acids.  相似文献   

11.
We report a four-step synthesis of 2′-deoxy-2-deuteroadenosine from 2′-deoxyadenosine in 38% overall yield. The more accessible 2′-deoxy-8-deuteroadenosine was also prepared and incorporated into DNA by automated solid phase synthesis (80% deuterium) using N 6-benzoyl-2′-deoxy-8-deuteroadenosine-3′-O-(2-cyanoethyl-N,N-diisopropylphosphoramidite) in combination with acetyl-protected deoxycytidine and phenoxyacetyl-protected purine phosphoramidites.  相似文献   

12.
The interaction of purine with DNA, tRNA, poly A, poly C, and poly A. poly U complex was investigated. In the presence of purine, the nucleic acids in coil form (such as denatured DNA, poly A and poly C in neutral solutions, or tRNA) have lower optical rotations. In addition, hydrodynamic studies indicate that in purine solutions the denatured DNA has a higher viscosity and a decreased sedimentation coefficient. These findings indicate that through interaction with purine, the bases along the poly-nucleotide chain are unstacked and are separated farther from each other, resulting in increased assymmetry (and possibly volume) of the whole polymer. Thus, the de-naturation effect of purine reported previously can be explained by this preferential interaction of purine with the bases of nucleic acids in coil form through a hydrophobic-costacking mechanism. Results from studies on optical rotation and helix-coil transition show that the interaction of purine is greater with poly A than with poly C. The influence of temperature, Mg++ concentration, ionic strength, and purine concentration on the effect of purine on nucleic acid conformation has also been investigated. In all these situations the unraveling of nucleic acid conformation occurs at much lower temperatures (20–40°C lower) in the presence of purine (0.2–0.6M).  相似文献   

13.
Cobalt hexammine [Co(NH3)6(3+)] is an efficient DNA complexing agent which significantly perturbs nucleic acid secondary structure. We have employed red excitation (647.1 nm) from a krypton laser to obtain Raman spectra of the highly colored complexes formed between cobalt hexammine and crystals of the DNA oligomers, d(5BrCGAT5BrCG) and d(CGCGATCGCG), both of which incorporate out-of-alternation pyrimidine/purine sequences. The Co(NH3)6(3+) complex of d(5BrCGAT5BrCG) exhibits a typical Z-form Raman signature, similar to that reported previously for the alternating d(CGCGCG) sequence. Comparison of the Raman bands of d(5BrCGAT5BrCG) with those of other oligonucleotide and polynucleotide structures suggests that C3'-endo/syn and C3'-endo/anti thymidines may exhibit distinctive nucleoside conformation markers, and tentative assignments are proposed. The Raman markers for C2'-endo/anti adenosine in this Z-DNA are consistent with those reported previously for B-DNA crystals containing C2'-endo/anti dA. Raman bands of the cobalt hexammine complex of d(CGCGATCGCG) are those of B-DNA, but with significant differences from the previously characterized B-DNA dodecamer, d(CGCAAATTTGCG). The observed differences suggest an unusual deoxyguanosine conformer, possibly related to a previously characterized structural intermediate in the B-->Z transition. The present results show that crystallization of d(CGCGATCGCG) in the presence of cobalt hexammine is not alone sufficient to induce the left-handed Z-DNA conformation. This investigation represents the first application of off-resonance Raman spectroscopy for characterization of highly chromophoric DNA and illustrates the feasibility of the Raman method for investigating other structurally perturbed states of DNA-cobalt hexammine complexes.  相似文献   

14.
The self-complementary oligonucleotides [r(CGC)d(CGC)]2 and [d(CCCCGGGG)]2 in single-crystal and solution forms have been investigated by Raman spectroscopy. Comparison of the Raman spectra with results of single-crystal X-ray diffraction and with data from polynucleotides permits the identification of a number of Raman frequencies diagnostic of the A-helix structure for GC sequences. The guanine ring frequency characteristic of C3'-endo pucker and anti base orientation is assigned at 668 +/- 2 cm-1 for both dG and rG residues of the DNA/RNA hybrid [r(GCG)d(CGC)]2. The A-helix backbone of crystalline [r(GCG)d(CGC)]2 is altered slightly in the aqueous structure, consistent with the conversion of at least two residues to the C2'-endo/anti conformation. For crystalline [d(CCCCGGGG)]2, the Raman and X-ray data indicate nucleosides of alternating 2'-endo-3'-endo pucker sandwiched between terminal and penultimate pairs of C3'-endo pucker. The A-A-B-A-B-A-A-A backbone of the crystalline octamer is converted completely to a B-DNA fragment in aqueous solution with Raman markers characteristic of C2'-endo/anti-G (682 +/- 2) and the B backbone (826 +/- 2 cm-1). In the case of poly(dG).poly(dC), considerable structural variability is detected. A 4% solution of the duplex is largely A DNA, but a 2% solution is predominantly B DNA. On the other hand, an oriented fiber drawn at 75% relative humidity reveals Raman markers characteristic of both A DNA and a modified B DNA, not unlike the [d-(CCCCGGGG)]2 crystal. A comparison of Raman and CD spectra of the aqueous [d(CCCCGGGG)]2 and poly(dG).poly(dC) structures suggests the need for caution in the interpretation of CD data from G clusters in DNA.  相似文献   

15.
16.
17.
Raman spectra of polyribocytidylic acid show the formation of an ordered single-stranded structure [poly(rC)] at neutral pH and an ordered double-stranded structure containing hemiprotonated bases [poly(rC)·poly(rC+)] in the range 5.5 > pH > 3.7. Below 40°C, poly(rC) contains stacked bases and a backbone geometry of the A-type, both of which are gradually eliminated by increasing the temperature to 90°C. Below 80°C, poly(rC)·poly(rC+) contains bases which are hydrogen bonded and stacked and a backbone geometry also of the A-type. In this structure the bases of each strand are shown to be structurally identical, i.e., hemiprotonated, and therefore distinct from both neutral and protonated cytosines. Infrared and Raman spectra indicate the existence of a center of symmetry with respect to the paired cytosine residues, which suggests that the additional proton per base pair is shared equally by the two hydrogen-bonded bases. Denaturation of poly(rC)·poly(rC+) occurs cooperatively (tm ≈ 80°C) with elimination of base stacking, base pairing, and the A-helix geometry. Each of the separated strands of the denatured complex is shown to contain comparable amounts of both neutral and protonated cytosines, most likely in alternating sequence [poly(rC, rC+)]. In both poly(rC, rC+) and poly(rC), at 90°C, the backbones do not exhibit the phosphodiester Raman frequencies characteristic of other disordered polyribonucleotide chains. This is interpreted to mean that the single strands, though devoid of base stacking and A-type structure, contain uniformly ordered backbones of a specific type. Fully protonated poly(rC+), on the other hand, forms no ordered structure and may be characterized as a disordered (random chain) polynucleotide at all temperatures. Several Raman lines of poly(rC) are absent from the spectrum of poly(rC)·poly(rC+) and vice versa. These frequencies, assigned mainly to vibrations of the ribose groups, suggest that the furanose ring conformations are different in the single-stranded and double-stranded structures of polyribocytidylic acid. Several other Raman group frequencies have been identified and correlated with the polymer secondary structures.  相似文献   

18.
Hydrogen bond networks stabilize RNA secondary and tertiary structure and are thus essentially important for protein recognition. During structure refinements using either NMR or X-ray techniques, hydrogen bonds were usually inferred indirectly from the proximity of donor and acceptor functional groups. Recently, quantitative heteronuclear J(N,N)-HNN COSY NMR experiments were introduced that allowed the direct identification of donor and acceptor nitrogen atoms involved in hydrogen bonds. However, protons involved in base pairing interactions in nucleic acids are often not observable due to exchange processes. The application of a modified quantitative J(N,N)-HNN COSY pulse scheme permits observation of 2hJ(N,N) couplings via non-exchangeable protons. This approach allowed the unambiguous identification of the A27·U23 reverse Hoogsteen base pair involved in a U-A·U base triple in the HIV-2 transactivation response element–argininamide complex. Despite a wealth of NOE information, direct evidence for this interaction was lacking due to the rapid exchange of the U23 imino proton. The ability to directly observe hydrogen bonds, even in D2O and in the presence of rapid exchange, should facilitate structural studies of RNA.  相似文献   

19.
Structural biology experiments and structure prediction tools have provided many high-resolution three-dimensional structures of nucleic acids. Also, molecular dynamics force field parameters have been adapted to simulating charged and flexible nucleic acid structures on microsecond time scales. Therefore, we can generate the dynamics of DNA or RNA molecules, but we still lack adequate tools for the analysis of the resulting huge amounts of data. We present MINT (Motif Identifier for Nucleic acids Trajectory) — an automatic tool for analyzing three-dimensional structures of RNA and DNA, and their full-atom molecular dynamics trajectories or other conformation sets (e.g. X-ray or nuclear magnetic resonance-derived structures). For each RNA or DNA conformation MINT determines the hydrogen bonding network resolving the base pairing patterns, identifies secondary structure motifs (helices, junctions, loops, etc.) and pseudoknots. MINT also estimates the energy of stacking and phosphate anion-base interactions. For many conformations, as in a molecular dynamics trajectory, MINT provides averages of the above structural and energetic features and their evolution. We show MINT functionality based on all-atom explicit solvent molecular dynamics trajectory of the 30S ribosomal subunit.  相似文献   

20.
Proton-NMR has been used to determine the activation energies and pre-exponential factors for the deuterium exchange of AH8 in poly(dA-dT).poly(dA-dT), and for GH8 in poly(dG-dC).poly(dG-dC). No simple relationship between the kinetic parameters and molecular conformation was found. By addition of 4.5 M NaCl a transition from the B to the Z conformation was induced for poly(dG-dC).poly(dG-dC), and an increased exchange rate was observed. The exchange rate for poly(dA-dT).poly(dA-dT) also increased below 64 degrees C, and a significant decrease in activation energy on addition of 4.5 M NaCl was observed. The exchange rates at T = 55.8 degrees C were also measured for the AH8 and GH8 in random sequence calf thymus DNA. From the difference in exchange rates, a method of preferential labeling of either the AH8 or the GH8 in high molecular weight DNA is evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号