首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibroblast growth factor receptor substrate 2 (FRS2α) is a signaling adaptor protein that regulates downstream signaling of many receptor tyrosine kinases. During signal transduction, FRS2 can be both tyrosine and threonine phosphorylated and forms signaling complexes with other adaptor proteins and tyrosine phosphatases. We have here identified flotillin-1 and the cbl-associated protein/ponsin (CAP) as novel interaction partners of FRS2. Flotillin-1 binds to the phosphotyrosine binding domain (PTB) of FRS2 and competes for the binding with the fibroblast growth factor receptor. Flotillin-1 knockdown results in increased Tyr phosphorylation of FRS2, in line with the inhibition of ERK activity in the absence of flotillin-1. CAP directly interacts with FRS2 by means of its sorbin homology (SoHo) domain, which has previously been shown to interact with flotillin-1. In addition, the third SH3 domain in CAP binds to FRS2. Due to the overlapping binding domains, CAP and flotillin-1 appear to compete for the binding to FRS2. Thus, our results reveal a novel signaling network containing FRS2, CAP and flotillin-1, whose successive interactions are most likely required to regulate receptor tyrosine kinase signaling, especially the mitogen activated protein kinase pathway.  相似文献   

2.
Byun EH  Omura T  Yamada K  Tachibana H 《FEBS letters》2011,585(5):814-820
Here we show the molecular basis for the inhibition of peptidoglycan (PGN)-induced TLR2 signaling by a major green tea polyphenol epigallocatechin-3-gallate (EGCG). Recently, we identified the 67-kDa laminin receptor (67LR) as the cell-surface EGCG receptor. Anti-67LR antibody treatment or silencing of 67LR resulted in abrogation of the inhibitory action of EGCG on PGN-induced production of pro-inflammatory mediators and activation of mitogen-activated protein kinases. Silencing of Toll-interacting protein (Tollip), a negative regulator of TLR signaling impaired the TLR2 signaling inhibitory activity of EGCG, suggesting that TLR2 response could be inhibited by EGCG via 67LR and Tollip.  相似文献   

3.
Serine peptidase inhibitor, Kazal type 3 (SPINK3) is a trypsin inhibitor, and also a growth factor that has an identical structure to epidermal growth factor (EGF), which could combine with epidermal growth factor receptor (EGFR) to promote cell proliferation. To shed light on the role and regulation mechanism of SPINK3 in rat liver regeneration (LR), Rat Genome 230 2.0 assay was used to detect the expression profiles of LR genes after partial hepatectomy (PH). The results showed that Spink3 was significantly up-regulated at 2–24 h and 72–168 h after PH. In the present study, RT-PCR and immunoblotting were used to validate the assay results. Ingenuity Pathway Analysis 9.0 (IPA) software was used to build the SPINK3 signaling regulating LR and analyze the possible mechanism. And then the expression of cell proliferation-associated gene Ccna2 was examined by RT-PCR in normal rat liver cell line BRL-3A in which Spink3 was overexpressed. The results showed that Ccna2 was significantly up-regulated in BRL-3A in which Spink3 was over-expressed. SPINK3 combining with EGFR accelerated cell proliferation during rat liver regeneration via P38, PKC, JAK-STAT and AKT pathways. Thus, SPINK3 was likely to promote hepatocytes proliferation in LR through P38, PKC, JAK-STAT and AKT pathways.  相似文献   

4.
Fibroblast growth factor (FGF) has been considered to modulate liver regeneration (LR) after partial hepatectomy (PH) at the tissue level. Previous studies have demonstrated that FGF15 and FGF19 induce the activation of its receptor, FGF receptor 4 (FGFR4), which can promote hepatocellular carcinoma progression and regulate liver lipid metabolism. In this study, we aimed to explore the role of the ileal FGF15/19- hepatic FGFR4 axis in the LR after PH. Male C57BL/6 mice aged 8–12 weeks were partially hepatectomized and assessed for expression of ileal FGF15/19 to hepatic FGFR4 signaling. We used recombinant human FGF19 protein and a small interfering RNA (siRNA) of FGFR4 to regulate expression of the FGF15/19-FGFR4 axis in vitro and in vivo. The proliferation and cell cycle of hepatocytes, the expression levels of FGF15/19-FGFR4 downstream molecules, liver recovery, and lipid metabolism were assessed. We found that both ileal and serum FGF15 expression were upregulated and hepatic FGFR4 was activated after PH in mice. FGF15/19 promoted cell cycle progression, enhanced proliferation, and reduced hepatic lipid accumulation of hepatocytes both in vitro and in vivo. Furthermore, the proliferative effect and lipid regulatory properties of FGF15/19 were dependent on FGFR4 in hepatocytes. In addition, ileal FGF15/19-hepatic FGFR4 transduction during hepatocyte proliferation was regulated by extracellular regulated protein kinase (ERK) 1/2. In conclusion, the ileal FGF15/19 to hepatic FGFR4 axis is activated and promotes LR after PH in mice, supporting the potential of ileal FGF15/19 to hepatic FGFR4 axis-targeted therapy to enhance LR after PH.  相似文献   

5.
We have shown previously that hepatocyte proliferation in the late gestation fetal rat is mediated by growth factor-independent mechanisms that are distinct from the signaling pathways that promote proliferation of adult rat hepatocytes. In the present studies, we identified six candidate growth-regulating genes that are overexpressed in fetal rat liver (embryonic day 19, 2 days pre-term) relative to adult rat liver using suppressive subtractive hybridization. These included the following: Grb10, a growth factor receptor binding protein; eps15, a growth factor receptor substrate; nuc2+, a retinoblastoma protein binding protein; cdc25B, a cell cycle tyrosine phosphatase; the peroxisome proliferator-activated receptor PPAR alpha; and a deoxyuridine triphosphatase that functions as a PPAR alpha binding partner. In every case, the ontogeny of the expression of these genes declined postnatally in a manner consistent with the transition from a fetal to an adult hepatocyte phenotype. None were found to be cell cycle-dependent, in that they did not show expression that followed perinatal changes in hepatocyte cell cycle activity. Based on our identification of these genes and previous work characterizing their role in growth regulation, we conclude that they may contribute to the mitogenic signaling phenotype of fetal rat hepatocytes.  相似文献   

6.
There is evidence that B cells from patients with Systemic Lupus Erythematosus (SLE) could be hyperactivated due to changes in their lipid rafts (LR) composition, leading to altered BCR-dependent signals. This study aimed to characterize possible alterations in the recruitment of protein tyrosine kinases (PTK) into B cells LR from SLE patients. Fifteen patients with SLE and ten healthy controls were included. Circulating B cells were isolated by negative selection and stimulated with goat Fab´2 anti-human IgM/IgG. LR were isolated with a non-ionic detergent and ultracentrifuged on 5–45% discontinuous sucrose gradients. Proteins from each fraction were analyzed by Western Blot. Total levels of Lyn, Syk, and ZAP-70 in resting B cells were similar in SLE patients and healthy controls. Upon BCR activation, Lyn, Syk and ZAP-70 recruitment into LR increased significantly in B cells of healthy controls and patients with inactive SLE. In contrast, in active SLE patients there was a great heterogeneity in the recruitment of signaling molecules and the recruitment of ZAP-70 was mainly observed in patients with decreased Syk recruitment into LR of activated B cells. The reduction in Flotilin-1 and Lyn recruitment in SLE patients seem to be associated with disease activity. These findings suggest that in SLE patients the PTK recruitment into B cell LR is dysregulated and that B cells are under constant activation through BCR signaling. The decrease of Lyn and Syk, the expression of ZAP-70 by B cells and the increase in Calcium fluxes in response to BCR stimulation in active SLE patients, further support that B cells from SLE patients are under constant activation through BCR signaling, as has been proposed.  相似文献   

7.
Regulation of Jak kinases by intracellular leptin receptor sequences   总被引:11,自引:0,他引:11  
Leptin signals the status of body energy stores via the leptin receptor (LR), a member of the Type I cytokine receptor family. Type I cytokine receptors mediate intracellular signaling via the activation of associated Jak family tyrosine kinases. Although their COOH-terminal sequences vary, alternatively spliced LR isoforms (LRa-LRd) share common NH(2)-terminal sequences, including the first 29 intracellular amino acids. The so-called long form LR (LRb) activates Jak-dependent signaling and is required for the physiologic actions of leptin. In this study, we have analyzed Jak activation by intracellular LR sequences under the control of the extracellular erythropoeitin (Epo) (Epo receptor/LRb chimeras). We show that Jak2 is the requisite Jak kinase for signaling by the LRb intracellular domain and confirm the requirement for the Box 1 motif for Jak2 activation. A minimal LRb intracellular domain for Jak2 activation includes intracellular amino acids 31-48. Although the sequence requirements for intracellular amino acids 37-48 are flexible, intracellular amino acids 31-36 of LRb play a critical role in Jak2 activation and contain a loose homology motif found in other Jak2-activating cytokine receptors. The failure of short form sequences to function in Jak2 activation reflects the absence of this motif.  相似文献   

8.
We have previously shown that concentrations of 1alpha,25-dihydroxyvitamin D(3) (1,25D) that induce G(0)/G(1) cell cycle arrest in androgen-dependent LNCaP prostate cancer cells also decrease expression of c-Myc, a proto-oncogene that stimulates progression from G(1) to S phase of the cell cycle. Since both c-Myc expression and cell cycle progression are regulated by tyrosine kinase activation, we examined the ability of 1,25D to alter tyrosine kinase signaling in LNCaP cells and the androgen-independent LNCaP C81 (C81 LN) cell line. 1,25D selectively reduced protein tyrosine phosphorylation within both the LNCaP and C81 LN cells. This reduction in tyrosine kinase signaling appears to result from elevated levels of cellular prostatic acid phosphatase (PAcP). Western blots and biochemical assays revealed 1,25D increases the level of active PAcP in both cell lines. In addition, 1,25D decreased tyrosine phosphorylation of HER-2, an EGFR family member inactivated by PAcP, and the HER-2 downstream adaptor protein p52 Shc in C81 LN cells. Inhibition of HER-2 signaling by AG825 reduces growth of C81 LN cells and the parental LNCaP cells. These data therefore suggest that 1,25D-mediated decreases in LNCaP and C81 LN cell growth are in part due to decreases in tyrosine kinase signaling that result from up-regulation of PAcP.  相似文献   

9.
10.
Altered insulin signaling in retinal tissue in diabetic states   总被引:3,自引:0,他引:3  
Both type 1 and type 2 diabetes can lead to altered retinal microvascular function and diabetic retinopathy. Insulin signaling may also play a role in this process, and mice lacking insulin receptors in endothelial cells are protected from retinal neovascularization. To define the role of diabetes in retinal function, we compared insulin signaling in the retinal vasculature of mouse models of type 1 (streptozotocin) and type 2 diabetes (ob/ob). In streptozotocin mice, in both retina and liver, insulin receptor (IR) and insulin receptor substrate (IRS)-2 protein and tyrosine phosphorylation were increased by insulin, while IRS-1 protein and its phosphorylation were maintained. By contrast, in ob/ob mice, there was marked down-regulation of IR, IRS-1, and IRS-2 protein and phosphorylation in liver; these were maintained or increased in retina. In both mice, Phosphatidylinositol 3,4,5-trisphosphate generation by acute insulin stimulation was enhanced in retinal endothelial cells. On the other hand, protein levels and phosphorylation of PDK1 and Akt were decreased in retina of both mice. Interestingly, phosphorylation of p38 mitogen-activated protein kinase and ERK1 were responsive to insulin in retina of both mice but were unresponsive in liver. HIF-1alpha and vascular endothelial growth factor were increased and endothelial nitric-oxide synthase was decreased in retina. These observations indicate that, in both insulin-resistant and insulin-deficient diabetic states, there are alterations in insulin signaling, such as impaired PDK/Akt responses and enhanced mitogen-activated protein kinases responses that could contribute to the retinopathy. Furthermore, insulin signaling in retinal endothelial cells is differentially altered in diabetes and is also differentially regulated from insulin signaling in classical target tissues such as liver.  相似文献   

11.
Embryonal carcinoma (EC) cells are the malignant stem cells of teratocarcinoma and have the capacity to proliferate in the absence of serum growth factors. As yet no receptor protein tyrosine kinases have been identified on undifferentiated EC cells and as a consequence tyrosine kinase signaling pathways could not be studied in these cells. We have used stably transfected P19 embryonal carcinoma cells expressing a well-characterized receptor protein tyrosine kinase, the human epidermal growth factor receptor (hEGF-R) to study protein tyrosine kinase signaling mechanisms in undifferentiated EC cells. Here we report that the ectopically expressed hEGF-R contains EGF-inducible autophosphorylation activity and is rapidly internalized and degraded upon ligand binding. In addition, the exogenous hEGF-R confers EGF-responsiveness to these cells in that inositol phosphate formation and cytoplasmic-free Ca2+ concentration are enhanced in response to EGF. Furthermore, the Na+/H+ exchanger is activated in response to EGF, leading to a sustained rise in intracellular pH. Our results show that undifferentiated P19 EC cells contain the necessary components of protein tyrosine kinase signal transduction machinery.  相似文献   

12.
GH receptor (GHR) is a single membrane-spanning glycoprotein dimer that binds GH in its extracellular domain (ECD). GH activates the GHR intracellular domain (ICD)-associated tyrosine kinase, JAK2, which causes intracellular signaling. We previously found that plasma membrane (PM)-associated GHR was dramatically enriched in the lipid raft (LR) component of the membrane and that localization of GHR within PM regions may regulate GH signaling by influencing the profile of pathway activation. In this study, we examined determinants of LR localization of the GHR using a reconstitution system which lacks endogenous JAK2 and GHR. By non-detergent extraction and multistep fractionation, we found that GHR was highly enriched in the LR fraction independent of JAK2 expression. Various GHR mutants were examined in transfectants harboring JAK2. LR concentration was observed for a GHR in which the native transmembrane domain (TMD) is replaced by that of the unrelated LDL receptor and for a GHR that lacks its ICD. Thus, LR association requires neither the TMD nor the ICD. Similarly, a GHR that lacks the ECD, except for the membrane-proximal ECD stem region, was only minimally LR-concentrated. Mutants with internal stem deletions in the context of the full-length receptor were LR-concentrated similar to the wild-type. A GHR lacking ECD subdomain 1 reached the PM and was LR-concentrated, while one lacking ECD subdomain 2, also reached the PM, but was not LR-concentrated. These data suggest LR targeting resides in ECD subdomain 2, a region relatively uninvolved in GH binding.  相似文献   

13.
To examine the molecular mechanisms underlying breast cancer metastasis in liver and search for potential markers of metastatic progression in soft-tissue, we analyzed metastatic variants developed from the highly metastatic MDA-MB 435 cell line through in vivo stepwise selection in the athymic mice. Comparative proteomic analysis using two-dimensional electrophoresis (2DE-DIGE) revealed that 74 protein spots were reproducibly more than doubled in liver metastatic cells compared to parental counterpart. From 22 proteins identified by MALDI-TOF, belonging to intermediate filaments, intracellular transport and ATP synthesis, we generated a protein-protein interaction network containing 496 nodes, 12 of which interacted. GRP 75 was connected with four other proteins: prohibitin, HSP 27, elongin B and macropain delta chain. After functional classification, we found that pathways including hepatocyte growth factor receptor (p = 0.014), platelet-derived growth factor (p = 0.018), vascular endothelial growth factor (p = 0.021) and epidermal growth factor (p = 0.050) were predominant in liver metastatic cells, but not in lung metastatic cells. In conclusion, we suggest that GRP 75 is involved in cell proliferation, tumorigenesis and stress response in metastatic cells by recruiting signals in which the transmembrane receptor protein tyrosine kinase signaling pathway (p-value FDR = 1.71 x 10(-2)) and protein amino acid phosphorylation (p-value FDR = 3.28 x 10(-2)) might be the most significant biological process differentially increased in liver metastasis.  相似文献   

14.
Many animals develop left-right (LR) asymmetry in their internal organs. The mechanisms of LR asymmetric development are evolutionarily divergent, and are poorly understood in invertebrates. Therefore, we studied the genetic pathway of LR asymmetric development in Drosophila. Drosophila has several organs that show directional and stereotypic LR asymmetry, including the embryonic gut, which is the first organ to develop LR asymmetry during Drosophila development. In this study, we found that genes encoding components of the Wnt-signaling pathway are required for LR asymmetric development of the anterior part of the embryonic midgut (AMG). frizzled 2 (fz2) and Wnt4, which encode a receptor and ligand of Wnt signaling, respectively, were required for the LR asymmetric development of the AMG. arrow (arr), an ortholog of the mammalian gene encoding low-density lipoprotein receptor-related protein 5/6, which is a co-receptor of the Wnt-signaling pathway, was also essential for LR asymmetric development of the AMG. These results are the first demonstration that Wnt signaling contributes to LR asymmetric development in invertebrates, as it does in vertebrates. The AMG consists of visceral muscle and an epithelial tube. Our genetic analyses revealed that Wnt signaling in the visceral muscle but not the epithelium of the midgut is required for the AMG to develop its normal laterality. Furthermore, fz2 and Wnt4 were expressed in the visceral muscles of the midgut. Consistent with these results, we observed that the LR asymmetric rearrangement of the visceral muscle cells, the first visible asymmetry of the developing AMG, did not occur in embryos lacking Wnt4 expression. Our results also suggest that canonical Wnt/β-catenin signaling, but not non-canonical Wnt signaling, is responsible for the LR asymmetric development of the AMG. Canonical Wnt/β-catenin signaling is reported to have important roles in LR asymmetric development in zebrafish. Thus, the contribution of canonical Wnt/β-catenin signaling to LR asymmetric development may be an evolutionarily conserved feature between vertebrates and invertebrates.  相似文献   

15.
生长激素(growth hormone, GH)信号通路对机体生长发育具有重要的调控作用。GH通过与特异性膜表面受体结合,启动下游一系列信号通路反应,进而调控细胞增殖、分化和迁移,防止细胞凋亡等。GH对细胞增殖的调控机制一直以来都是研究的热点,但部分肝切除(partial hepatectomy,PH)后,生长激素相关的信号通路是否会活化,调控相关基因的表达,从而促进肝实质细胞增殖,尚未见报道。本文以percoll密度梯度离心结合磁珠分离的大鼠再生肝的肝细胞为材料,采用Rat Genome 230 20芯片与生物信息学相结合的方法,研究GH信号通路对肝再生的调控作用。结果表明,大鼠再生肝的肝细胞中22种基因与GH信号通路相关,其中,Gh1、Jak3、Stat3等14种基因表达上调,Irs3、Ghr、Mras等8种基因表达下调。谱函数(Et)分析基因表达变化预示的细胞增殖活动和信号转导活性表明,GH信号通路的信号传导活性在大鼠肝再生的2~72 h强于对照,所调节的肝细胞增殖活动在6~72 h也强于对照。综上所述,GH信号通路促进大鼠再生肝的肝细胞增殖。  相似文献   

16.
Stimulation of the T cell antigen receptor (TCR) induces formation of a phosphorylation-dependent signaling network via multiprotein complexes, whose compositions and dynamics are incompletely understood. Using stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics, we investigated the kinetics of signal propagation after TCR-induced protein tyrosine phosphorylation. We confidently assigned 77 proteins (of 758 identified) as a direct or indirect consequence of tyrosine phosphorylation that proceeds in successive "signaling waves" revealing the temporal pace at which tyrosine kinases activate cellular functions. The first wave includes thymocyte-expressed molecule involved in selection (THEMIS), a protein recently implicated in thymocyte development but whose signaling role is unclear. We found that tyrosine phosphorylation of THEMIS depends on the presence of the scaffold proteins Linker for activation of T cells (LAT) and SH2 domain-containing lymphocyte protein of 76 kDa (SLP-76). THEMIS associates with LAT, presumably via the adapter growth factor receptor-bound protein 2 (Grb2) and with phospholipase Cγ1 (PLC-γ1). RNAi-mediated THEMIS knock-down inhibited TCR-induced IL-2 gene expression due to reduced ERK and nuclear factor of activated T cells (NFAT)/activator protein 1 (AP-1) signaling, whereas JNK, p38, or nuclear factor κB (NF-κB) activation were unaffected. Our study reveals the dynamics of TCR-dependent signaling networks and suggests a specific role for THEMIS in early TCR signalosome function.  相似文献   

17.
Qu CK 《Cell research》2000,10(4):279-288
Cellular biological avtivities are tightly controlled by intracellular signaling processes initiated by extracellular signals.Protein tyrosine phosphatases,which remove phosphate groups from phosphorylated signaling molecules,play equally important tyrosine roles as protein tyrosine kinases in signal transduction.SHP-2 a cytoplasmic SH2 domain containing protein tyrosine phosphatase,is involved in the signaling pathways of a variety of growth factors and cytokines.Recent studies have clearly demonstrated that this phosphatase plays an important role in transducing signal relay from the cell surface to the nucleus,and is a critical intracellular regulator in mediating cell proliferation and differentiation.  相似文献   

18.
Liver regeneration (LR) is of great clinical significance in various liver-associated diseases. LR proceeds along a sequence of three distinct phases: priming/initiation, proliferation, and termination. Compared with the recognition of the first two phases, little is known about LR termination and structure/function reorganization. A combination of "omics" techniques, along with bioinformatics, may provide new insights into the molecular mechanism of the late-phase LR. Gene, protein, and metabolite profiles of the rat liver were determined by cDNA microarray, two-dimensional electrophoresis, and HPLC-MS analysis. Pathway enrichment analysis was performed to identify the pathways: 427 differentially expressed genes extracted from the microarray experiment revealed two expression patterns representing the early and late phase of LR. Functionally, the genes expressing at a higher level at the early phase than at the late phase were mainly involved in the response to stress, proliferation, and resistance to apoptosis, while those expressing at a lower level at the early phase than at the late phase were mainly engaged in lipid metabolism. Compared with the sham-operation control (SH) group, 5 proteins in the 70% partial hepatectomy (70%PHx) group were upregulated at the protein level, and 3 proteins were downregulated at 168 h after the 70%PHx. E-FABP, an upregulated fatty acid binding protein, was found to be involved in the peroxisome proliferator-activated receptor (PPAR) signaling pathway. The metabolomic data confirmed the enhancement of lipid metabolism by the detection of the intermediate and final metabolites. We've concluded that increased lipid metabolism and activated PPAR signaling pathways play important roles in late-phase LR.  相似文献   

19.
20.
Mice with conditional deletion of fibroblast growth factor receptor 2 (Fgfr2) in the ureteric bud using a Hoxb7cre line (Fgfr2(UB-/-)) develop severe ureteric branching defects; however, ureteric deletion of fibroblast growth factor receptor substrate 2α (Frs2α), a key docking protein that transmits fibroblast growth factor receptor intracellular signaling (Frs2α(UB-/-)) leads to mild ureteric defects. Mice with point mutations in the Frs2α binding site of Fgfr2 (Fgfr2(LR/LR)) have normal kidneys. The aim of this study was to determine the relationship between Fgfr2 and Frs2α in the ureteric lineage. Mice with ureteric deletion of both Fgfr2 and Frs2α (Fgfr2/Frs2α(UB-/)) were compared with Frs2α(UB-/-) and Fgfr2(UB-/-) mice. To avoid potential rescue of Fgfr1 forming heterodimers with Fgfr2(LR) alleles to recruit Frs2α, compound mutant mice were generated with ureteric deletion of Fgfr1 and with Fgfr2(LR/LR) point mutations (Fgfr1(UB-/-)Fgfr2(LR/LR)). At E13.5, three-dimensional reconstructions and histological assessment showed that, whereas Fgfr2(UB-/-) kidneys had more severe ureteric branching defects than Frs2α(UB-/-), Fgfr2(UB-/-) kidneys were indistinguishable from Fgfr2/Frs2α(UB-/-). At later stages, however, Fgfr2/Frs2α(UB-/-) kidneys were more severely affected than either Fgfr2(UB-/-) or Frs2α(UB-/-) kidneys. Taken together, although Fgfr2 and Frs2α have crucial roles in the ureteric lineage, they appear to act separately and additively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号