首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used Brillouin scattering to measure the linewidths and frequencies of GHz acoustic phonons in Na- and Li-DNA films as a function of temperature between 300 and 140 K for samples that were dry, lightly, and heavily hydrated. The linewidths decrease with falling temperature and water contents, indicating that coupling to a water relaxation is the main source of phonon damping. The strength of the relaxation was determined using measurements of the phonon linewidth as a function of frequency, and confirmed by comparison of measured and calculated spectral profiles. The relaxation strength is anisotropic, being greater for phonons propagating perpendicular to the helix axis. The hydrated DNA exhibits both a rapid relaxation (≤ 10?11 s per radian) giving rise to a classical f2 damping, and a slower motion with a relaxation time that varies from ~ 4 × 10?11 s per radian (primary hydration shell) to ~ 2 × 10?12 s per radian (secondary hydration shell) at room temperature. In the frequency interval that bounds these relaxation times (~ 4 to 80 GHz) we expect degrees of freedom associated with the primary hydration shell to be important. The sample with primary hydration follows a simple Arrhenius behavior with ΔH ~ 5 kcal mole?1. The effective activation energy for the sample with secondary hydration is somewhat higher (indicating a more cooperative water relaxation) and varies strongly with temperature. The elastic moduli change much more than can be accounted for by relaxation, indicating the importance of water motion in softening interatomic potentials. The extent of the softening caused by the “unfreezing” of water motion is similar to the degree of softening caused by hydrating the sample.  相似文献   

2.
B H Dorfman  L L Van Zandt 《Biopolymers》1983,22(12):2639-2665
The problem of viscous damping of vibrating DNA polymer in solution is solved in the low-amplitude limit for all acoustic branches of the spectrum. The acoustic spectrum covers the microwave region of frequencies. Analytic solutions are obtained for a model describing the DNA polymer as a smooth circular cylinder. Numerical solutions are presented for a model describing the DNA polymer as a twisted cylinder of elliptical cross section. The amount of mass loading is determined for both models and the damped spectrum for the mass-loaded oscillator is calculated. The viscous damping is found to be a strong function of frequency, singular at very low frequencies for all modes except the torsional mode of the circular cylinder. All acoustic modes are overdamped, implying that the observation of well-defined resonances in DNA requires either highly structured water on the molecular level or very dry material.  相似文献   

3.
M E Davis  L L Van Zandt 《Biopolymers》1989,28(8):1429-1433
We have calculated the expected absorption of microwave radiation in the gigaHertz frequency range by fixed-length DNA polymer molecules dissolved in saline solution. While the effects of counterions and solvent dynamics have been accounted for in detail, the features of the absorption are completely dominated by the interaction between the charged polymer and the so-called first hydration layer, that is, the nearest layer of solvent water molecules not actually bonded to the polymer. The relevant parameters of the interaction are the strength of the water-to-polymer coupling and the average persistence time of the individual water-to-polymer bonds. These are presumably hydrogen bonds to the oxygen atoms of the backbone phosphate structure. Using a given parameterization we can obtain the structured absorption corresponding to compressional wave phonon excitations on the polymer, "organ pipe" modes, such as have been claimed to be seen by Edwards, Davis, Swicord, and Saffer. While further studies have not confirmed these resonances, at some frequency and hydration these modes must become visible because of the high relaxation time measured by Lindsay, the existence of the resonances in relatively dry fibers and films of DNA, and the existence of underdamped modes in the ir spectrum of DNA in solution. We have examined the effects of varying salt concentration and the system temperature.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Microwave-field-driven acoustic modes in DNA.   总被引:1,自引:1,他引:0       下载免费PDF全文
The direct coupling of a microwave field to selected DNA molecules is demonstrated using standard dielectrometry. The absorption is resonant with a typical lifetime of 300 ps. Such a long lifetime is unexpected for DNA in aqueous solution at room temperature. Resonant absorption at fundamental and harmonic frequencies for both supercoiled circular and linear DNA agrees with an acoustic mode model. Our associated acoustic velocities for linear DNA are very close to the acoustic velocity of the longitudinal acoustic mode independently observed on DNA fibers using Brillouin spectroscopy. The difference in acoustic velocities for supercoiled circular and linear DNA is discussed in terms of solvent shielding of the nonbonded potentials in DNA.  相似文献   

5.
N J Tao  S M Lindsay  A Rupprecht 《Biopolymers》1988,27(10):1655-1671
We have measured the dispersion of phonon line widths between frequencies of about 2 and 10 GHz in DNA films at relative humidities between 0 and 95%. The results show that the relaxation mode of the primary hydration shell retains its basic characteristics even in samples with very high water content. A modified mode coupling model is used to include both the collective nature of the sound wave and to describe the change in hydration explicitly. It enables us to describe the coupling between the phonons and the water relaxation mode at various water contents, and allows us to extract values for the primary shell relaxation time and coupling constants over the range of hydration studied. The primary shell relaxation time (~ 40 ps) and coupling parameters remain nearly constant over the entire range of hydration. We have reanalyzed our earlier Brillouin data (taken as a function of temperature) in terms of two relaxation processes (primary plus a secondary shell contribution of about 2 ps at room temperature). This new analysis indicates that both processes follow a simple Arrhenius behavior with activation energies of 5 kcal mole?1 for the primary relaxation and 7 kcal mole?1 for the secondary relaxation. We also observe a rather broad central mode that can be fitted by a Lorentzian, and that may arise from direct (as opposed to coupled-mode) scattering from the primary relaxation mode.  相似文献   

6.
We observed low-frequency Raman spectra of tetragonal lysozyme crystals and DNA films, with varying water content of the samples. The spectra are fitted well by sums of relaxation modes and damped harmonic oscillators in the region from approximately 1 cm(-1) to 250 cm(-1). The relaxation modes are due to crystal water, and the distribution of relaxation times is determined. In wet samples, the relaxation time of a small part of the water molecules is a little longer than that of bulk water. The relaxation time of a considerable part of the crystal water, which belongs mainly to the secondary hydration shell, is an order of magnitude longer than that of bulk water. Furthermore, the relaxation time of some water molecules in the primary hydration shell of semidry samples is shorter than we expected. Thus we have shown that low-frequency Raman measurements combined with properly oriented samples can give specific information on the dynamics of hydration water in the ps range. On the other hand, we concluded, based on polarized Raman spectra of lysozyme crystals, that the damped oscillators correspond to essentially intramolecular vibrational modes.  相似文献   

7.
C H Hsieh  W G Wu 《Biophysical journal》1996,71(6):3278-3287
Deuterium NMR relaxation and intensity measurements of the 2H-labeled H2O/dimyristoyl phosphatidylcholine bilayer were performed to understand the molecular origin of the freezing event of phospholipid headgroup and the structure and dynamics of unfrozen water molecules in the interbilayer space at subzero temperatures. The results suggest that about one to two water molecules associated with the phosphate group freeze during the freezing event of phospholipid headgroups, whereas about five to six waters near the trimethylammonium group behave as a water cluster and remain unfrozen at temperatures as low as -70 degrees C. In addition, temperature-dependent T1 and T2 relaxation times suggest that dynamic coupling occurs not only between the phosphate group and its bound water, but also between the methyl group and the adjacent water molecules. Based on these observations, the primary hydration shell of phosphatidylcholine headgroup at subzero temperatures is suggested to consist of two distinct regions: a clathrate-like water cluster, most likely a water pentamer, near the hydrophobic methyl group, and hydration water molecules associated with the phosphate group.  相似文献   

8.
《Biophysical journal》2021,120(22):4966-4979
DNA functions only in aqueous environments and adopts different conformations depending on the hydration level. The dynamics of hydration water and hydrated DNA leads to rotating and oscillating dipoles that, in turn, give rise to a strong megahertz to terahertz absorption. Investigating the impact of hydration on DNA dynamics and the spectral features of water molecules influenced by DNA, however, is extremely challenging because of the strong absorption of water in the megahertz to terahertz frequency range. In response, we have employed a high-precision megahertz to terahertz dielectric spectrometer, assisted by molecular dynamics simulations, to investigate the dynamics of water molecules within the hydration shells of DNA as well as the collective vibrational motions of hydrated DNA, which are vital to DNA conformation and functionality. Our results reveal that the dynamics of water molecules in a DNA solution is heterogeneous, exhibiting a hierarchy of four distinct relaxation times ranging from ∼8 ps to 1 ns, and the hydration structure of a DNA chain can extend to as far as ∼18 Å from its surface. The low-frequency collective vibrational modes of hydrated DNA have been identified and found to be sensitive to environmental conditions including temperature and hydration level. The results reveal critical information on hydrated DNA dynamics and DNA-water interfaces, which impact the biochemical functions and reactivity of DNA.  相似文献   

9.
A 15 degrees of freedom lumped parameter vibratory model of human body is developed, for vertical mode vibrations, using anthropometric data of the 50th percentile US male. The mass and stiffness of various segments are determined from the elastic modulii of bones and tissues and from the anthropometric data available, assuming the shape of all the segments is ellipsoidal. The damping ratio of each segment is estimated on the basis of the physical structure of the body in a particular posture. Damping constants of various segments are calculated from these damping ratios. The human body is modeled as a linear spring-mass-damper system. The optimal values of the damping ratios of the body segments are estimated, for the 15 degrees of freedom model of the 50th percentile US male, by comparing the response of the model with the experimental response. Formulating a similar vibratory model of the 50th percentile Indian male and comparing the frequency response of the model with the experimental response of the same group of subjects validate the modeling procedure. A range of damping ratios has been considered to develop a vibratory model, which can predict the vertical harmonic response of the human body.  相似文献   

10.
We have obtained low frequency (less than 200 cm-1) Raman spectra of calf-thymus DNA and poly(rI).poly(rC) as a function of water content and counterion species and of d(GGTATACC)2 and d(CGCGAATTCGCG)2 crystals. We have found that the Raman scattering from water in the first and second hydration shells does not contribute directly to the Raman spectra of DNA. We have determined the number of strong Raman active modes by comparing spectra for different sample orientations and polarizations and by obtaining fits to the spectra. We have found at least five Raman active modes in the spectra of A- and B-DNA. The frequencies of the modes above 40 cm-1 do not vary with counterion species, and there are only relatively small changes upon hydration. These modes are, therefore, almost completely internal. The mode near 34 cm-1 in A-DNA is mostly internal, whereas the mode near 25 cm-1 is dominated by interhelical interactions. The observed intensity changes upon dehydration were found to be due to the decrease in interhelical distance. Polymer length appears to play a role in the lowest frequency modes.  相似文献   

11.
Using terahertz time-domain spectroscopy (THz-TDS), the frequency-dependent dielectric constant of deoxyribonucleic acid (DNA) in solution was measured. The response of the buffer solution is dominated by two Debye modes in this frequency range, and, from an analysis of the concentration dependence, the presence of the DNA increases the main relaxation time and dielectric constant. This reflects the fact that the water in the hydration layer is more tightly bound under the influence of the DNA molecule in comparison to bulk water. This dynamical slowing down with increasing DNA concentration is similar to what is observed with purine nucleotides, but opposite to the behavior of pyrimidine nucleotides. In addition, a suspension model was used with the concentration-dependent data to isolate the dielectric response of the hydrated DNA molecule. The data for the hydrated DNA molecule is still dominated by a Debye response. It is also possible to determine the thickness of the hydration layer, and the DNA molecule influences the surrounding water out to 16 or 17 Å, which corresponds to about six effective hydration layers.  相似文献   

12.
Dynamics of uncrystallized water and protein was studied in hydrated pellets of the fibrous protein elastin in a wide hydration range (0 to 23 wt.%), by differential scanning calorimetry (DSC), thermally stimulated depolarization current technique (TSDC) and dielectric relaxation spectroscopy (DRS). Additionally, water equilibrium sorption–desorption measurements (ESI) were performed at room temperature. The glass transition of the system was studied by DSC and its complex dependence on hydration water was verified. A critical water fraction of about 18 wt.% was found, associated with a reorganization of water in the material. Three dielectric relaxations, associated to dynamics related to distinct uncrystallized water populations, were recorded by TSDC and DRS. The low temperature secondary relaxation of hydrophilic polar groups on the protein surface triggered by hydration water for almost dry samples contains contributions from water molecules themselves at higher water fractions (ν relaxation). This particular relaxation is attributed to water molecules in the primary and secondary hydration shells of the protein fibers. At higher temperatures and for water fraction values equal to or higher than 10 wt.%, a local relaxation of water molecules condensed within small openings in the interior of the protein fibers was recorded. The evolution of this relaxation (w relaxation) with hydration level results in enhanced cooperativity at high water fraction values, implying the existence of “internal” water confined within the protein structure. At higher temperatures a relaxation associated with water dynamics within clusters between fibers (p relaxation) was also recorded, in the same hydration range.  相似文献   

13.
Observations of acoustic velocities in DNA fibers have been used to refine nonbonded force constants for the DNA double helix. Long-range forces are found to be needed for A conformation and are likely to dominate in B conformation as well. The acoustic dispersion curves are described and calculated. A correction due to the effects of water is calculated. The effect of nonbonded interaction on other vibrational modes is calculated.  相似文献   

14.
Purified and hydrated elastin is studied by both thermal and dielectric techniques to have insight into the chain dynamics of this protein. By differential scanning calorimetry, the glassy behavior of elastin is highlighted; the glass transition temperature (T(g)) of elastin is found to be widely dependent on hydration, falling from 200 degrees C in the dehydrated state to 30 degrees C for 30% hydration. A limit of T(g) at around 0 degrees C is found when crystallizable water is present in the system, that is, when the formation of ice prevents motions of some 10 nm along the polypeptidic chains. The technique of thermally stimulated currents, carried out in the -180 to 0 degrees C temperature range, is useful to detect localized motions. In this case, too, the localized motions vary considerably according to hydration: a first relaxation mode is observed at -145 degrees C and it is associated with the reorientation of crystallizable water in ice I; a second relaxation mode, more complex and cooperative, occurs at around -80 degrees C and could be attributed to the complex constituted by the dipolar groups of the polypeptidic chain and noncrystallizable water, behaving as a glassy system.  相似文献   

15.
Aqueous solutions of oligopolymer DNA have been observed by G.S. Edwards, C.C. Davis, M.L. Swicord and J.D. Saffer, Phys. Rev. Lett. 53, 1284 (1984) to show structured absorption of microwave energy in the region of several gigahertz, characteristic of an ordered series of compressional normal mode vibrations propagating on the polymer chain. Although hydrodynamic coupling of such vibrations to the surrounding solvent would preclude the existence of sharp resonances, the molecular nature of the solvent in the near neighborhood of the polymer and- paradoxically- the strong water/polymer interactions provide a means for effectively decoupling the polymer motion from the dissipation of the liquid. Recent measurements of DNA/water relaxation times allow estimating numerical values in a parameterization of the decoupling effect. The resulting predicted frequency dependence explains many of the smaller features of Edwards' experiment as well as the overall anomaly. A simple model gives a surprisingly complete account of the features of the data using only values determined from other experiments.  相似文献   

16.
A Brillouin scattering study of the hydration of Li- and Na-DNA films   总被引:2,自引:0,他引:2  
We have used Brillouin spectroscopy to study the velocities and attenuation of acoustic phonons in wet-spun films of Na-DNA and Li-DNA as a function of the degree of hydration at room temperature. Our data for the longitudinal acoustic (LA) phonon velocity vs water content display several interesting features and reveal effects that we can model at the atomic level as interhelical bond softening and relaxation of the hydration shell. The model for interhelical softening makes use of other physical parameters of these films, which we have determined by gravimetric, x-ray, and optical microscopy studies. We extract intrinsic elastic constants for hydrated Na-DNA molecules of c11 ? 8.0 × 1010 dynes/cm2 and c33 ? 5.7 × 1010 dynes/cm2, which corresponds to a Young's modulus, E ? 1.1 × 1010 dynes/cm2 (with Poisson's ratio, σ = 0.44). The negative velocity anisotropy of the LA phonons indicates that neighboring DNA molecules are held together by strong interhelical bonds in the solid state. The LA phonon attenuation data can be understood by the relaxational model in which the acoustic phonon is coupled to a relaxation mode of the water molecules. Na-DNA undergoes the A to B phase transition at a relative humidity (rh) of 92% while Li-DNA (which remains in the B form in this range) decrystallizes at an rh of 84%. We find that our Brillouin results for Na- and Li-DNA are remarkably similar, indicating that the A to B phase transition does not play an important role in determining the acoustic properties of these two types of DNA.  相似文献   

17.
Sonic absorption spectra of solutions of human serum albumin (SA) in water and in aqueous phosphate buffer systems have been measured between 0.2 and 2000 MHz at different temperatures (15-35 degrees C), pH values (1.8-12.3), and protein concentrations (1-40 g/L). Several spectra, indicating relaxation processes in the whole frequency range, have been found. The spectra at neutral pH could be fitted well with an analytical function consisting of the asymptotic high frequency absorption and two relaxation contributions, a Debye-type relaxation term with discrete relaxation time and a term with asymmetric continuous distribution of relaxation times. Both relaxation contributions were observed in water and in buffer solutions and increased with protein concentration. The contribution represented by a Debye-type term is practically independent of temperature and was attributed to cooperative conformational changes of the polypeptide chain featuring a relaxation time of about 400 ns. The distribution of the relaxation times corresponding to the second relaxation contribution was characterized by a short time cutoff, between about 0.02 and 0.4 ns depending on temperature, and a long time tail extending to microseconds. Such relaxation behavior was interpreted in terms of solute-solvent interactions reflecting various hydration layers of HSA molecules. At acid and alkaline pH, an additional Debye-type contribution with relaxation time in the range of 30-100 ns exists. It seems to be due to proton transfer reactions of protein side-chain groups. The kinetic and thermodynamic parameters of these processes have been estimated from these first measurements to indicate the potential of acoustic spectra for the investigation of the elementary kinetics of albumin processes.  相似文献   

18.
Raman spectroscopy is used to probe the nature of the hydrogen bonds which hold the water of hydration to DNA. The ~ 3450?cm?1 molecular O–H stretching mode shows that the first six water molecules per base pair of the primary hydration shell are very strongly bound to the DNA. The observed shift in the peak position of this mode permits a determination of the length of the hydrogen bonds for these water molecules. These hydrogen bonds appear to be about 0.3?Å shorter than the hydrogen bonds in bulk water. The linewidth of this mode shows no significant changes above water contents of about 15 water molecules per base pair. This technique of using a vibrational spectroscopy to obtain structural information about the hydration shells of DNA could be used to study the hydration shells of other biomolecules.  相似文献   

19.
Experimental frequency, concentration, and temperature dependences of the deuteron relaxation times T1 and T2 of D2O solutions of bovine serum albumin are reported and theoretically described in a closed form without formal parameters. Crucial processes of the theoretical concept are material exchange, translational diffusion of water molecules on the rugged surfaces of proteins, and tumbling of the macromolecules. It is also concluded that, apart from averaging of the relaxation rates in the diverse deuteron phases, material exchange contributes to transverse relaxation by exchange modulation of the Larmor frequency. The rate limiting factor of macromolecular tumbling is determined by the free water content. In a certain analogy to the classical free-volume theory, a “free-water-volume theory” is presented. There are two characteristic water mass fractions indicating the saturation of the hydration shells (Cs ≈ 0.3) and the onset of protein tumbling (C0 ≈ 0.6). The existence of the translational degrees of freedom of water molecules in the hydration shells has been verified by direct measurement of the diffusion coefficient using an NMR field-gradient technique. The concentration and temperature dependences show phenomena indicating a percolation transition of clusters of free water. The threshold water content was found to be Ccw ≈ 0.43.  相似文献   

20.
Bu L  Straub JE 《Biophysical journal》2003,85(3):1429-1439
The vibrational energy relaxation of a selected vibrational mode in cytochrome c--a C-D stretch in the terminal methyl group of Met80--has been studied using equilibrium molecular dynamics simulation and normal mode analysis methods. As demonstrated in the pioneering work of Romesberg and co-workers, isotopic labeling of the C-H (to C-D) stretch in alkyl side chains shifts the stretching frequency to the transparent region of the protein's density of states, making it an effective and versatile probe of protein structure and dynamics. Molecular dynamics trajectories of solvated cytochrome c were run at 300 K, and vibrational population relaxation times were estimated using the classical Landau-Teller-Zwanzig model and a number of semiclassical theories of resonant and two-phonon vibrational relaxation processes. The C-D stretch vibrational population relaxation time is estimated to be T(1) = 14-40 ps; the relatively close agreement between various semiclassical estimates of T(1) lends support to the applicability of those expressions. Normal mode calculations were used to identify the dominant coupling between the protein and C-D oscillator. All bath modes strongly coupled to the C-D stretch are in close proximity. Angle bending modes in the terminal methyl group of Met80 appear to be the most likely acceptor modes defining the mechanism of population relaxation of the C-D vibration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号