首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interstitial telomeric sequences (ITSs), telomere-like repeats at intrachromosomal sites, are common in mammals and consist of tandem repeats of the canonical telomeric repeat, TTAGGG, or a repeat similar to this. We report that the ITS in human chromosome region 22q11.2 is, in the sequenced genome database, 101 tandem repeats of the sequence TTAGGGAGG. Using the primed in situ labeling (PRINS) technique and primers against the canonical telomeric repeat (TTAGGG), we illuminated telomeric sites for all chromosomes and an ITS locus at 22q11.2. Using the TTAGGGAGG sequence, we designed PRINS primers that efficiently and specifically illuminate the 22q11.2 ITS locus without illuminating telomeric and other ITS loci. The 22q11.2 locus has more repeat units than other ITSs loci enabling an unprecedented high detection frequency for this interstitial telomere locus. The 22q11.2 is associated with hot spots for disease-related chromosome breaks for multiple disorders, such as DiGeorge syndrome and chronic myeloid leukemia. We describe our findings that the ITS at 22q11.2 is in the same area of, and proximal to the common rearrangement region of multiple disorders. We suggest that the ITS might be involved in DNA repair processes in this area to protect the chromosome from more serious damage.  相似文献   

2.
Telomeres are chromosomal elements composed of variable numbers of a TTAGGG repeated DNA sequence required for genomic stability. Telomeric length is correlated with the number of copies of this repeated DNA sequence and is an important property relevant to telomeric function. Recently, it has been demonstrated that the length of the shortest telomere, not average telomeric length, is important for cell viability and chromosomal stability. Consequently, assays permitting assessment of telomeric length are important for the analysis of genomic instability disorders. The length of individual telomeres can be analyzed using the primed in situ (PRINS) labeling reaction, which produces a labeled copy of the telomeric DNA repeats in situ. In this study, we tested different variables to optimize the PRINS reaction to enable it to be applied to the detection of mouse telomeric DNA and the study of telomeric length. The specificity, efficiency and uniformity of staining were evaluated using digital fluorescence microscopy. Labeling efficiency is dependent upon the conditions used to denature the telomeric DNA and reaction duration. Staining uniformity is increased at higher annealing and elongation temperatures as well as when a fluorescently labeled nucleotide is incorporated during the elongation step. Our results also indicate that chromosomal background staining is observed when a fluorochrome-labeled nucleotide is used as opposed to a hapten-labeled nucleotide. From this study, we conclude that an optimized PRINS technique can be reliably employed to analyze mouse telomeres and, compared with the FISH (fluorescence in situ hybridization) technique, presents advantages including greater cost efficiency and reduced processing time. These advantages may encourage wider use of the PRINS technique for quantitative evaluation of the length of individual telomeres in situ.  相似文献   

3.
Direct in situ labeling of human spermatozoa was performed using the PRINS method. This technique is based on annealing of specific oligonucleotide primers, and subsequent primer extension by a Taq DNA polymerase. The reaction was carried out on a programmable temperature cycler, and labeling was obtained in a 1-hr reaction. The method was successfully tested with specific primers for chromosomes 13, 16, and 21. This suggests that PRINS may be a fast and reliable technique for detecting aneuploidies. © 1995 Wiley-Liss Inc.  相似文献   

4.
The primed in situ labelling (PRINS) technique is an alternative to in situ hybridization for chromosomal screening. We have developed a semi-automatic PRINS protocol, using a programmable thermocycler. The method has been successfully tested with specific primers for chromosomes, 13, 16, 18, 21, X and Y. Specific chromosome detection has been obtained on both metaphases and interphase nuclei. This suggests that PRINS may be a reliable technique for detecting aneuploidies and some chromosomal aberrations.  相似文献   

5.
The fluorescence in situ hybridization (FISH) technique is widely used in animal cytogenetics. Contrary to FISH procedure, primed in situ DNA synthesis (PRINS) does not require the DNA probe preparation (design, synthesis, gel purification of PCR products and labeling). The PRINS method with primers used as 'DNA probes' is both PCR-sensitive and allows for chromosomal localization of DNA sequences. Here, we show the application of PRINS reaction with one unlabeled oligonucleotide pair to identify 18S rDNA loci in three different animal species: domestic pig (Sus scrofa), red fox (Vulpes vulpes) and Chinese raccoon dog (Nyctereutes procyonoides procyonoides). We present the data of indirect labeling with the digoxigenin-PRINS using two different pairs of primers complementary to centromeric region of horse (Equus caballus) chromosomes. Our new PRINS application may be considered as a useful tool for chromosome investigation in the field of domestic and wild animal genetics and evolution.  相似文献   

6.
An improved primed in situ labeling (PRINS) procedure that provides fast, highly sensitive, and nonradioactive cytogenetic localization of chromosome-specific tandem repeat sequences is presented. The PRINS technique is based on the sequence-specific annealing in situ of unlabeled DNA. This DNA then serves as primer for chain elongation in situ catalyzed by a DNA polymerase. If biotin-labeled nucleotides are used as substrate for the chain elongation, the hybridization site becomes labeled with biotin. The biotin is subsequently made visible through the binding of FITC-labeled avidin. Tandem repeat sequences may be detected in a few hours with synthetic oligonucleotides as primers, but specific labeling of single chromosomes is not easily obtained. This may be achieved, however, if denatured double-stranded DNA fragments from polymerase-chain-reaction products or cloned probes are used as primers. In the latter case, single chromosome pairs are stained with a speed and ease (1 h reaction and no probe labeling) that are superior to traditional in situ hybridization. Subsequent high-quality Q banding of the chromosomes is also possible. The developments described here extends the range of applications of the PRINS technique, so that it now can operate with any type of probe that is available for traditional in situ hybridization.  相似文献   

7.
Recently, molecular techniques have become an indispensable tools for cytogenetic research. Especially, development of in situ techniques made possible detection at the chromosomal level, genes as well as repetitive sequences like telomeres or the DNA component of telomeres. One of these methods is primed in situ DNA synthesis (PRINS) using an oligonucleotide primer complementary to the specific DNA sequence. In this report we described application of PRINS technique with telomere human commercial kit to telomere sequences identification. This commercial kit may be use to visualization of interstitial telomeric signal in pig genome. PRINS is attractive complement to FISH for detection of DNA repetitive sequences and displays lower level of non-specific hybridization than conventional FISH.  相似文献   

8.
A mouse subtelomeric sequence, ST1, was generated from genomic DNA of the mouse HR9 (129/Sv origin) cell line by the polymerase chain reaction (PCR) using a single telomeric primer. ST1 was cloned and characterized: it is composed of 670 bp of novel DNA sequence flanked on each end by inverted telomeric hexanucleotide repeats (TTAGGG)n. PCR amplification from BALB/c mouse DNA using this single primer gave the same major product. Southern analysis and PCR using internal ST1 primers confirmed that the ST1 sequence is present in mouse genomic DNA. In situ hybridization to metaphase chromosomes of SJL origin mapped ST1 to many, if not every, mouse telomere. PCR experiments using different combinations of the telomeric, minor satellite, and ST1 primers indicated that some ST1 copies are adjacent to minor satellite sequences, that telomeric and ST1 sequences are not generally interspersed with minor satellite sequences,and that ST1 and the minor satellite have a consistent and specific orientation relative to each other and to the telomere.by H.F. Willard  相似文献   

9.
In order to analyze male sterility caused by deletion of SRY and DAZ, we examined the accuracy and cost-effectiveness of a modified primed in situ labeling (PRINS) technique for detection of single-copy genes. Peripheral blood samples were collected from 50 healthy men; medium-term cultured lymphocytes from these samples were suspended in fixative solution and then spread on clean slides. We used four primers homologous to unique regions of the SRY and DAZ regions of the human Y-chromosome and incorporated reagents to increase polymerase specificity and to enhance the hybridization signal. PRINS of SRY and DAZ gave bands at Yp11.3 and Yq11.2, respectively, in all 50 metaphase spreads. The PRINS SRY signals were as distinct as those obtained using traditional fluorescence in situ hybridization (FISH). This new method is ideal for rapid localization of single-copy genes or small DNA segments, making PRINS a cost-effective alternative to FISH. Further enhancement of PRINS to increase its speed of implementation may lead to its wide use in the field of medical genetics.  相似文献   

10.
Two zebrafish AluI repeats were localized in metaphase chromosomes by means of the primed in situ (PRINS) labeling technique, using oligonucleotide primers based on published sequences. An AT-rich, tandemly repeated, long AluI restriction fragment (RFAL1) labeled the (peri)centromeric regions of all chromosomes. The GC-rich short fragment (RFAS) was found to be localized in the paracentromeric regions of 17 chromosome pairs, which were mostly subtelocentric. The RFAS labeling pattern generally fits the previously described chromomycin A3 (CMA3) staining pattern. The differential composition of heterochromatin in zebrafish chromosomes is discussed.  相似文献   

11.
朱一剑  刘涤石  丁显平 《遗传》2008,30(8):983-990
染色体数目异常是人类染色体疾病的重要类型, 经常导致胚胎丢失、胎儿流产、婴儿死亡、先天畸形和神经发育异常等出生缺陷。文章应用引物原位标记(Primed in situ labeling, PRINS)技术快速检测人类染色体非整倍性, 率先采用更新的非ddNTP阻断的多色PRINS技术, 对人类外周血淋巴细胞和精子等多种样本进行标记; 然后对不同靶标序列的标记效率及不同荧光色素的发光特点通过实验进行评估, 获得关于PRINS技术的多项反应原理参数, 并筛选标记顺序以获得均一稳定的标记效果, 最后进行临床FISH探针与PRINS的标记比较实验。通过实验比较PRINS技术与传统FISH技术之间的标记特点与差别, 评估PRINS的实际应用效果。在2.5 h内标记了同一精子核内的多条染色体, 单色以上标记达到99%。同时在人类外周血淋巴细胞中也得到较好的标记效果。与FISH技术相比, PRINS的这些优点使得它成为诊断染色体非整倍性变异的首选技术。  相似文献   

12.
Reddy KS  Murphy T 《Human genetics》2000,107(3):268-275
A newborn was found to have an isochromosome for the short arm of chromosome 9, i(9p) and a jumping translocation of the whole long arm. In 94.4% metaphases, 9q was fused to the telomere of chromosome 19p and, in 5.6% of metaphases, 9q was fused to the telomere of chromosome 8p. The net result was trisomy for the short arm of chromosome 9. With the pan telomere probe, fluorescent in situ hybridization (FISH) investigations found an interstitial telomere on the der(19) and der(8). The 9 beta and classical satellite probes gave a signal only on the long arm of chromosome 9 involved in the jumping translocation. The 9 alpha satellite probe hybridized to i(9p) and not to the other derivative chromosomes. A combination of chromosome 9 (red) and chromosome 19 (green) paint probes used to rapidly screen metaphases for the jumping translocation found 88 metaphases had a der(19)t(9;19) and 4metaphases had a der(8)t(8;9). For the first time, the junction of a jumping translocation has been shown to involve the telomere sequence (TTAGGG)n and beta-satellite sequences by FISH. In this paper, we also review the simultaneous occurrence of an isochromosome for the short arm and translocation of the whole long arm and constitutional jumping translocations.  相似文献   

13.
We have studied the distribution and methylation of CpG islands on human chromosomes, using the novel technique of self-primed in situ labeling (SPRINS). The SPRINS technique is a hybrid of the two techniques primed in situ labeling (PRINS) and nick translation in situ. SPRINS detects chromosomal DNA breaks, as in nick translation in situ, and not annealed primers, as is the case in PRINS. We analyzed in situ-generated DNA breaks induced by the restriction enzymes HpaII and MspI. These restriction enzymes enable the detection of chromosomal CpG islands. Both HpaII- and MspI-SPRINS produce a banding pattern resembling R-banding, indicating a higher level of CpG islands in R-positive bands than in R-negative bands. Our SPRINS banding observations also indicate differences in sequence copy number in the satellites of homologous acrocentric chromosomes. Furthermore, a comparison of homologous HpaII-SPRINS-banded X chromosomes of females from lymphocyte cultures grown without methotrexate or bromodeoxyuridine revealed methylation difference between them. The same comparison of homologous X chromosomes from the cell line GM01202D, which has four X chromosomes, one active and three inactive, revealed the active X chromosome to be hypermethylated. Received: 5 February 1998; in revised form: 8 May 1998 / Accepted: 11 May 1998  相似文献   

14.
Telomeres are specialized nucleoproteic complexes localized at the physical ends of linear eukaryotic chromosomes that maintain their stability and integrity. The DNA component of telomeres is characterized by being a G-rich double stranded DNA composed by short fragments tandemly repeated with different sequences depending on the species considered. At the chromosome level, telomeres or, more properly, telomeric repeats--the DNA component of telomeres--can be detected either by using the fluorescence in situ hybridization (FISH) technique with a DNA or a peptide nucleic acid (PNA) (pan)telomeric probe, i.e., which identifies simultaneously all of the telomeres in a metaphase cell, or by the primed in situ labeling (PRINS) reaction using an oligonucleotide primer complementary to the telomeric DNA repeated sequence. Using these techniques, incomplete chromosome elements, acentric fragments, amplification and translocation of telomeric repeat sequences, telomeric associations and telomeric fusions can be identified. In addition, chromosome orientation (CO)-FISH allows to discriminate between the different types of telomeric fusions, namely telomere-telomere and telomere-DNA double strand break fusions and to detect recombination events at the telomere, i.e., telomeric sister-chromatid exchanges (T-SCE). In this review, we summarize our current knowledge of chromosomal aberrations involving telomeres and interstitial telomeric repeat sequences and their induction by physical and chemical mutagens. Since all of the studies on the induction of these types of aberrations were conducted in mammalian cells, the review will be focused on the chromosomal aberrations involving the TTAGGG sequence, i.e., the telomeric repeat sequence that "caps" the chromosomes of all vertebrate species.  相似文献   

15.
In yeast, rRNA genes can be detected with the FISH technique using rRNA gene probes. This technique yields reliable, reproducible and precise results, but is time-consuming. Here, the primed in situ DNA synthesis (PRINS) procedure has been optimized for rapid detection of yeast rRNA genes. PRINS, which is as sensitive as PCR and allows cytological localization of analyzed sequences, can be adapted for various screening tests requiring fast labeling of rRNA genes.  相似文献   

16.
应用原位引物标记技术(PRINS)检测了21号染色体着丝粒,在外周血和绒毛细胞的标记效率分别为91%和93%,实验过程可以在2h之内完成,证明这一检测方法是一种快速、灵敏、特异性良好的染色体数目检测方法,有可能用于21号染色体数目异常的快速诊断。  相似文献   

17.
A comparison of sequence resolution on plant chromosomes: PRINS versus FISH   总被引:2,自引:0,他引:2  
 The resolution of the chromosomal positions of six high- and one low-copy sequences by oligonucleotide-primed in situ (PRINS) labelling was compared with corresponding data obtained after fluorescent in situ hybridization (FISH) on field-bean and barley chromosomes. While PRINS proved to be suitable for the rapid detection of high-copy tandem repeats at the same loci as those revealed by FISH, no clear PRINS signal was obtained for the low-copy family of vicilin genes at their locus on field-bean chromosome II. This indicates that localization of short target sequences by primer extension via Taq polymerase in situ does not yet provide a resolution equal, or superior, to FISH on plant chromosomes. Therefore, the use of a cocktail of chromosome-specific single-copy sequences as primers for PRINS is no alternative for the not as yet feasible chromosome painting in plants. Received: 21 April 1998 / Accepted: 12 May 1998  相似文献   

18.
PRimedIn Situ labeling (PRINS) is a fast and sensitive alternative to fluorescencein situ hybridization (FISH) for identification of chromosome aberrations. In this article, we present the detailed protocols for detection of repeat sequences using oligonucleotides or fragments of cloned probes as primers for PRINS. We describe a multicolor PRINS procedure for simultaneous visualization of more probes in different colors on a metaphase preparation, and a PRINS-painting procedure, which combines PRINS and chromosome painting. Finally, a protocol for detection of single-copy genes is presented.  相似文献   

19.
Covalent ligation studies on the human telomere quadruplex   总被引:5,自引:4,他引:1  
Qi J  Shafer RH 《Nucleic acids research》2005,33(10):3185-3192
Recent X-ray crystallographic studies on the human telomere sequence d[AGGG(TTAGGG)3] revealed a unimolecular, parallel quadruplex structure in the presence of potassium ions, while earlier NMR results in the presence of sodium ions indicated a unimolecular, antiparallel quadruplex. In an effort to identify and isolate the parallel form in solution, we have successfully ligated into circular products the single-stranded human telomere and several modified human telomere sequences in potassium-containing solutions. Using these sequences with one or two terminal phosphates, we have made chemically ligated products via creation of an additional loop. Circular products have been identified by polyacrylamide gel electrophoresis, enzymatic digestion with exonuclease VII and electrospray mass spectrometry in negative ion mode. Optimum pH for the ligation reaction of the human telomere sequence ranges from 4.5 to 6.0. Several buffers were also examined, with MES yielding the greatest ligation efficiency. Human telomere sequences with two phosphate groups, one each at the 3′ and 5′ ends, were more efficient at ligation, via pyrophosphate bond formation, than the corresponding sequences with only one phosphate group, at the 5′ end. Circular dichroism spectra showed that the ligation product was derived from an antiparallel, single-stranded guanine quadruplex rather than a parallel single-stranded guanine quadruplex structure.  相似文献   

20.
Double telomeric signals on single chromatids revealed by FISH and PRINS   总被引:2,自引:0,他引:2  
FISH probes for all human telomeres and specific telomeric probes that hybridize to unique sequences on individual chromosomes have been used to characterize the telomeric hybridization pattern of human peripheral blood lymphocytes and bone-marrow cells in interphase and metaphase chromosomes. We have identified the existence of double hybridization signals on chromatids both with the (TTAGGG)n telomere repeat arrays and on non chromosome-specific subtelomeric regions as well as on chromosome-specific sequences located several kilobases from the end of chromosomes. Preliminary results using cosmid or YAC probes that hybridize to regions rich in GC sequences also revealed double fluorescent spots on a single chromatid. Double spots were detected by PRINS on terminal and interstitial telomeric sequences in avian cells. The significance of this phenomenon is discussed based on some models of chromatid and DNA organization such as uninemy, looped chromatid organization and quartet DNA structures. The occurrence of double spots should be taken into consideration for the clinical cytogenetic diagnosis of duplications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号