首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six ClC-type chloride channel genes have been identified in Caenorhabditis elegans, termed clh-1 through clh-6. cDNA sequences from these genes suggest that clh-2, clh-3, and clh-4 may code for multiple channel variants, bringing the total to at least nine channel types in this nematode. Promoter-driven green fluorescent protein (GFP) expression in transgenic animals indicates that the protein CLH-5 is expressed ubiquitously, CLH-6 is expressed mainly in nonneuronal cells, and the remaining isoforms vary from those restricted to a single cell to those expressed in over a dozen cells of the nematode. In an Sf9 cell expression system, recombinant CLH-2b, CLH-4b, and CLH-5 did not form functional plasma membrane channels. In contrast, both CLH-1 and CLH-3b produced strong, inward-rectifying chloride currents similar to those arising from mammalian ClC2, but which operate over different voltage ranges. Our demonstration of multiple CLH protein variants and comparison of expression patterns among the clh gene family provides a framework, in combination with the electrical properties of the recombinant channels, to further examine the physiology and cell-specific role each isoform plays in this simple model system.  相似文献   

2.
CLH-3a and CLH-3b are swelling-activated, alternatively spliced Caenorhabditis elegans ClC anion channels that have identical membrane domains but exhibit marked differences in their cytoplasmic NH2 and COOH termini. The major differences include a 71-amino acid CLH-3a NH2-terminal extension and a 270-amino acid extension of the CLH-3b COOH terminus. Splice variation gives rise to channels with striking differences in voltage, pH, and Cl sensitivity. On the basis of structural and functional insights gained from crystal structures of bacterial ClCs, we suggested previously that these functional differences are due to alternative splicing of the COOH terminus that may change the accessibility and/or function of pore-associated ion-binding sites. We recently identified a mutant worm strain harboring a COOH-terminal deletion mutation in the clh-3 gene. This mutation removes 101 COOH-terminal amino acids unique to CLH-3b and an additional 64 upstream amino acids shared by both channels. CLH-3b is expressed in the worm oocyte, which allowed us to characterize the mutant channel, CLH-3bC, in its native cellular environment. CLH-3bC exhibits altered voltage-dependent gating as well as pH and Cl sensitivity that resemble those of CLH-3a. This mutation also alters channel inhibition by Zn2+, prevents ATP depletion-induced activation, and dramatically reduces volume sensitivity. These results suggest that the deleted COOH-terminal region of CLH-3bC functions to modulate channel sensitivity to voltage and extracellular ions. This region also likely plays a role in channel regulation and cell volume sensitivity. Our findings contribute to a growing body of evidence indicating that cytoplasmic domains play key roles in the gating and regulation of eukaryotic ClCs. chloride; cell volume; voltage-gated anion channel  相似文献   

3.
CLH-3b is a Caenorhabditis elegans ClC anion channel that is expressed in the worm oocyte. The channel is activated during oocyte meiotic maturation and in response to cell swelling by serine/threonine dephosphorylation events mediated by the type 1 phosphatases GLC-7alpha and GLC-7beta. We have now identified a new member of the Ste20 kinase superfamily, GCK-3, that interacts with the CLH-3b COOH terminus via a specific binding motif. GCK-3 inhibits CLH-3b in a phosphorylation-dependent manner when the two proteins are coexpressed in HEK293 cells. clh-3 and gck-3 are expressed predominantly in the C. elegans oocyte and the fluid-secreting excretory cell. Knockdown of gck-3 expression constitutively activates CLH-3b in nonmaturing worm oocytes. We conclude that GCK-3 functions in cell cycle- and cell volume-regulated signaling pathways that control CLH-3b activity. GCK-3 inactivates CLH-3b by phosphorylating the channel and/or associated regulatory proteins. Our studies provide new insight into physiologically relevant signaling pathways that control ClC channel activity and suggest novel mechanisms for coupling cell volume changes to cell cycle events and for coordinately regulating ion channels and transporters that control cellular Cl- content, cell volume, and epithelial fluid secretion.  相似文献   

4.
BACKGROUND: ClC anion channels are ubiquitous and have been identified in organisms as diverse as bacteria and humans. Despite their widespread expression and likely physiological importance, the function and regulation of most ClCs are obscure. The nematode Caenorhabditis elegans offers significant experimental advantages for defining ClC biology. These advantages include a fully sequenced genome, cellular and molecular manipulability, and genetic tractability. RESULTS: We show by patch clamp electrophysiology that C. elegans oocytes express a hyperpolarization- and swelling-activated Cl(-) current with biophysical characteristics strongly resembling those of mammalian ClC-2. Double-stranded RNA-mediated gene interference (RNAi) and single-oocyte RT-PCR demonstrated that the channel is encoded by clh-3, one of six C. elegans ClC genes. CLH-3 is inactive in immature oocytes but can be triggered by cell swelling. However, CLH-3 plays no apparent role in oocyte volume homeostasis. The physiological signal for channel activation is the induction of oocyte meiotic maturation. During meiotic maturation, the contractile activity of gonadal sheath cells, which surround oocytes and are coupled to them via gap junctions, increases dramatically. These ovulatory sheath cell contractions are initiated prematurely in animals in which CLH-3 expression is disrupted by RNAi. CONCLUSIONS: The inwardly rectifying Cl(-) current in C. elegans oocytes is due to the activity of a ClC channel encoded by clh-3. Functional and structural similarities suggest that CLH-3 and mammalian ClC-2 are orthologs. CLH-3 is activated during oocyte meiotic maturation and functions in part to modulate ovulatory contractions of gap junction-coupled gonadal sheath cells.  相似文献   

5.
An inwardly rectifying swelling- and meiotic cell cycle-regulated anion current carried by the ClC channel splice variant CLH-3b dominates the whole cell conductance of the Caenorhabditis elegans oocyte. Oocytes also express a novel outwardly rectifying anion current termed ICl,OR. We recently identified a worm strain carrying a null allele of the clh-3 gene and utilized oocytes from these animals to characterize ICl,OR biophysical properties. The ICl,OR channel is strongly voltage dependent. Outward rectification is due to voltage-dependent current activation at depolarized voltages and rapid inactivation at voltages more hyperpolarized than approximately +20 mV. Apparent channel open probability is zero at voltages less than +20 mV. The channel has a 4:1 selectivity for Cl over Na+ and an anion selectivity sequence of SCN > I > Br > Cl > F. ICl,OR is relatively insensitive to most conventional anion channel inhibitors including DIDS, 4,4'-dinitrostilbene-2,2'-disulfonic acid, 9-anthracenecarboxylic acid, and 5-nitro-2-(3-phenylpropylamino)benzoic acid. However, the current is rapidly inhibited by niflumic acid, metal cations including Gd3+, Cd2+, and Zn2+, and bath acidification. The combined biophysical properties of ICl,OR are distinct from those of other anion currents that have been described. During oocyte meiotic maturation, ICl,OR activity is rapidly downregulated, suggesting that the channel may play a role in oocyte Cl homeostasis, development, cell cycle control, and/or ovulation. chloride channel; ovulation; cell cycle; meiotic maturation  相似文献   

6.
Drosophila slitis a secreted protein involved in midline patterning. Three vertebrateorthologs of the fly slit gene, Slit1, 2, and3, have been isolated. Each displays overlapping, butdistinct, patterns of expression in the developing vertebrate centralnervous system, implying conservation of function. However,vertebrate Slit genes are also expressed in nonneuronaltissues where their cellular locations and functions areunknown. In this study, we characterized the cellular distribution andprocessing of mammalian Slit3 gene product, theleast evolutionarily conserved of the vertebrate Slit genes,in kidney epithelial cells, using both cellular fractionation andimmunolabeling. Slit3, but not Slit2, was predominantly localizedwithin the mitochondria. This localization was confirmed usingimmunoelectron microscopy in cell lines and in mouse kidney proximaltubule cells. In confluent epithelial monolayers, Slit3 was alsotransported to the cell surface. However, we found no evidence of Slit3proteolytic processing similar to that seen for Slit2. We demonstratedthat Slit3 contains an NH2-terminal mitochondriallocalization signal that can direct a reporter green fluorescentprotein to the mitochondria. The equivalent region from Slit1 cannotelicit mitochondrial targeting. We conclude that Slit3 protein istargeted to and localized at two distinct sites within epithelialcells: the mitochondria, and then, in more confluent cells, the cellsurface. Targeting to both locations is driven by specificNH2-terminal sequences. This is the first examination ofSlit protein localization in nonneuronal cells, and this study impliesthat Slit3 has potentially unique functions not shared by other Slit proteins.

  相似文献   

7.
To correlate a prokaryotic endosymbiont in the pea aphid, Acyrthosiphonkondoi, with the endosymbionts in related aphid species as wellas with free-living bacteria and subcellular organelles, andto study the mode of its gene expression within aphid cells,we have cloned and characterized the genes encoding ribosomalproteins S3, L16, L29, S17, L14, L24, L5, S14, S8, L6, L18,S5, L30, L15 and secretion protein Y (Sec Y) from the S10 andspc ribosomal protein gene operons of this endosymbiont. Theorganization of these genes is identical to that in Escherichiacoli, and their nucleotide sequences are highly similar (87%identity) to the corresponding E. coli genes. They are muchless similar to the corresponding chloroplast and mitochondrialgenes. The guanine plus cytosine G+C content of the genes ofthe A. kondoi endosymbiont is much higher than those of theendosymbionts in related aphid species reported so far. It appearseither that the A. kondoi endosymbiont is derived from an ancestralbacterium different from those in other aphids or that its G+Ccontent increased in a relatively short time after the evolutionarydivergence of its host.  相似文献   

8.
We have developed an efficient expression system for foreign genes in Acremonium chrysogenum. After inserting the foreign gene between the phosphoglycerate kinase (PGK) promoter and a terminator derived from A. chrysogenum, multiple copies of this expression unit are tandemly ligated into cosmids and the resultant cosmids are introduced into A. chrysogenum.

We expressed Pseudomonas cephalosporin C acylase and a human thrombomodulin mutant protein containing the fourth, fifth, and sixth epidermal growth factor (EGF)-like structures (E456). The acylase activity in the transformants obtained using our system was several times higher than that in the transformants without the use of the system. The acylase proteins expressed had enzymatic and immunochemical properties identical to those of authentic acylase. The transformants with the expression plasmid for E456 secreted biologically active E456 protein into the culture medium. The amino terminal sequence of the purified E456 was identical to that of recombinant E456 obtained using mammalian cells.  相似文献   

9.
10.
The number of ion channels expressed on the cell surface shapes the complex electrical response of excitable cells. An imbalance in the ratio of inward and outward conducting channels is unfavorable and often detrimental. For example, over- or underexpression of voltage-gated K+ (Kv) channels can be cytotoxic and in some cases lead to disease. In this study, we demonstrated a novel role for S-acylation in Kv1.5 cell surface expression. In transfected fibroblasts, biochemical evidence showed that Kv1.5 is posttranslationally modified on both the NH2 and COOH termini via hydroxylamine-sensitive thioester bonds. Pharmacological inhibition of S-acylation, but not myristoylation, significantly decreased Kv1.5 expression and resulted in accumulation of channel protein in intracellular compartments and targeting for degradation. Channel protein degradation was rescued by treatment with proteasome inhibitors. Time course experiments revealed that S-acylation occurred in the biosynthetic pathway of nascent channel protein and showed that newly synthesized Kv1.5 protein, but not protein expressed on the cell surface, is sensitive to inhibitors of thioacylation. Sensitivity to inhibitors of S-acylation was governed by COOH-terminal, but not NH2-terminal, cysteines. Surprisingly, although intracellular cysteines were required for S-acylation, mutation of these residues resulted in an increase in Kv1.5 cell surface channel expression, suggesting that screening of free cysteines by fatty acylation is an important regulatory step in the quality control pathway. Together, these results show that S-acylation can regulate steady-state expression of Kv1.5. quality control; potassium; channels; palmitoylation; posttranslational  相似文献   

11.
Impermeability of the GIRK2 weaver channel to divalent cations   总被引:2,自引:0,他引:2  
Asingle amino acid mutation (G156S) in the putative pore-forming regionof the G protein-sensitive, inwardly rectifying K+ channelsubunit, GIRK2, renders the conductance constitutively active andnonselective for monovalent cations. The mutant channel subunit(GIRK2wv) causes the pleiotropic weaver disease inmice, which is characterized by the selective vulnerability ofcerebellar granule cells and Purkinje cells, as well as dopaminergicneurons in the mesencephalon, to cell death. It has beenproposed that divalent cation permeability through constitutivelyactive GIRK2wv channels contributes to a rise in internalcalcium in the GIRK2wv-expressing neurons, eventually leadingto cell death. We carried out comparative studies of recombinantGIRK2wv channels expressed in Xenopus oocytes and COS-7cells to determine the magnitude and relative permeability of theGIRK2wv conductance to Ca2+. Data from thesestudies demonstrate that the properties of the expressed current differin the two systems and that when recombinant GIRK2wv isexpressed in mammalian cells it is impermeable to Ca2+.

  相似文献   

12.
Mammalian Ste20-like proline/alanine-rich kinase (SPAK) and oxidative stress-responsive 1 (OSR1) kinases phosphorylate and regulate cation-coupled Cl(-) cotransporter activity in response to cell volume changes. SPAK and OSR1 are activated via phosphorylation by upstream with-no-lysine (WNK) kinases. In Caenorhabditis elegans, the SPAK/OSR1 ortholog germinal center kinase (GCK)-3 binds to and regulates the activity of the cell volume- and meiotic cell cycle-dependent ClC anion channel CLH-3b. We tested the hypothesis that WNK kinases function in the GCK-3/CLH-3b signaling cascade. CLH-3b heterologously expressed in human embryonic kidney (HEK) cells was unaffected by coexpression with the single C. elegans WNK kinase, WNK-1, or kinase-dead WNK-1 dominant-negative mutants. RNA interference (RNAi) knockdown of the single Drosophila WNK kinase had no effect on the activity of CLH-3b expressed in Drosophila S2 cells. Similarly, RNAi silencing of C. elegans WNK-1 had no effect on basal or cell volume-sensitive activity of CLH-3b expressed endogenously in worm oocytes. Previous yeast 2-hybrid studies suggested that ERK kinases may function upstream of GCK-3. Pharmacological inhibition of ERK signaling disrupted CLH-3b activity in HEK cells in a GCK-3-dependent manner. RNAi silencing of the C. elegans ERK kinase MPK-1 or the ERK phosphorylating/activating kinase MEK-2 constitutively activated native CLH-3b. MEK-2 and MPK-1 play important roles in regulating the meiotic cell cycle in C. elegans oocytes. Cell cycle-dependent changes in MPK-1 correlate with the pattern of CLH-3b activation observed during oocyte meiotic maturation. We postulate that MEK-2/MPK-1 functions upstream from GCK-3 to regulate its activity during cell volume and meiotic cell cycle changes.  相似文献   

13.
Ethylene biosynthesis in higher plants is regulated developmentallyand environmentally. To investigate the regulation of ACC synthasegene expression, the promoters of Arabidopsis ACS genes, AtACS4,AtACS5, and AtACS7, were fused to a GUS reporter gene, and therecombinant transgenes were introduced into Arabidopsis to producethree groups of AtACS::GUS transgenic plants. Histochemic andfluorometric study of these transgenic plants revealed thatpromoters of AtACS4, AtACS, and AtACS7 are all active in dark-germinatedseedlings. AtACS5 has the highest promoter activity in leavesof 2-week-old light-grown seedlings among the three AtACS genesstudied. In the mature leaves, AtACS4 and AtACS7 genes are expressedin both veins and areoles, whereas AtACS5 is expressed at ahigher level in the areoles and epidermal cells surroundingtrichomes. The promoter activities of all these AtACS genesare found in the reproductive organs. AtACS5 and AtACS7 arehighly expressed in petals, sepals, carpels, stamens, caulineleaves, inflorescence stems, and siliques, while AtACS4 expressionis undetectable in the petals of open flowers. All three AtACSgenes are expressed in root tissue. In the 2-week-old light-grownArabidopsis, the AtACS4 promoter is responsive to the planthormones IAA, ethylene, and ABA, and to darkness and wounding;the AtACS5 promoter to IAA, ABA, salt, high temperature, andwounding; and the AtACS7 promoter to GA3, ethylene, and ABA,and to darkness and salt. Low-temperature treatment abolishesthe darkness-induced AtACS7 gene expression, but not that ofAtACS4. Each AtACS gene has a unique expression profile duringgrowth and development. It appears that at any developmentalstage or any growth period of Arabidopsis, there is always amember of AtACS multigene family that is actively expressed. Key words: ACC synthase, Arabidopsis, ethylene, gene expression, GUS histochemical staining, reporter, stress treatments  相似文献   

14.
15.
利用Bac to Bac系统将意大利蜜蜂蜂毒磷脂酶A2(AmPLA2)基因cDNA克隆至转移载体pFastBacHTa中,得到pBacHT-AmPLA2,再将其转化入含穿梭载体Bacmid的受体大肠杆菌DH10Bac中,通过转座作用,得到含AmPLA2基因的重组病毒rBacmid-AmPLA2的DNA。提取其基因组DNA,用脂质体介导转染粉纹夜蛾细胞Tn-5B1-4,得到重组病毒rACV-Bac-AmPLA2。用此重组病毒感染Tn-5B1-4细胞, 在细胞中表达AmPLA2。SDS-PAGE电泳结果显示,与6×His Tag融合表达的产物蛋白分子量约为18 kD左右,表达量约占细胞总蛋白的5.35%。Western blot印迹显示,融合表达产物能与意大利蜜蜂蜂毒AmPLA2抗血清发生免疫反应。生物活性测定显示,含表达产物的细胞蛋白粗提物对底物蛋黄的酶活力约为6.13 μmol·min-1·mg-1。  相似文献   

16.
Changes in phosphorylation regulate the activity of various ClC anion transport proteins. However, the physiological context under which such regulation occurs and the signaling cascades that mediate phosphorylation are poorly understood. We have exploited the genetic model organism Caenorhabditis elegans to characterize ClC regulatory mechanisms and signaling networks. CLH-3b is a ClC anion channel that is expressed in the worm oocyte and excretory cell. Channel activation occurs in response to oocyte meiotic maturation and swelling via serine/threonine dephosphorylation mediated by the type I phosphatases GLC-7α and GLC-7β. A Ste20 kinase, germinal center kinase (GCK)-3, binds to the cytoplasmic C terminus of CLH-3b and inhibits channel activity in a phosphorylation-dependent manner. Analysis of hyperpolarization-induced activation kinetics suggests that phosphorylation may inhibit the ClC fast gating mechanism. GCK-3 is an ortholog of mammalian SPAK and OSR1, kinases that bind to, phosphorylate, and regulate the cell volume–dependent activity of mammalian cation-Cl cotransporters. Using mass spectrometry and patch clamp electrophysiology, we demonstrate here that CLH-3b is a target of regulatory phosphorylation. Concomitant phosphorylation of S742 and S747, which are located 70 and 75 amino acids downstream from the GCK-3 binding site, are required for kinase-mediated channel inhibition. In contrast, swelling-induced channel activation occurs with dephosphorylation of S747 alone. Replacement of both S742 and S747 with glutamate gives rise to kinase- and swelling-insensitive channels that exhibit activity and biophysical properties similar to those of wild-type CLH-3b inhibited by GCK-3. Our studies provide novel insights into ClC regulation and mechanisms of cell volume signaling, and provide the foundation for studies aimed at defining how conformational changes in the cytoplasmic C terminus alter ClC gating and function in response to intracellular signaling events.  相似文献   

17.
The expression and promoter activity of genes for isozymes ofhorseradish peroxidase, namely, prxCla, prxClb, prxC2 and prxC3,were studied. Organ-specific expression of these genes in horseradishplants was examined by Northern blot analysis. The group ofprxCl genes was expressed mostly in stems, while prxC2 and prxC3were expressed to a greater extent in roots. Hardly any expressionof any of the genes was detected in leaves. In transient-expressionassays with tobacco protoplasts, about 500 bp of the 5'-noncodingregions of each of the genes, ligated to the gene for ß-glucuronidase(GUS), exhibited significant promoter activity. In particular,the fragments extending from the initiation codon of the prxC2gene to –529 bp and –1 kbp supported high levelsof GUS activity, which were 4.4 and 11.4 times respectively,the activity observed under control of the 35S promoter fromcauliflower mosaic virus (CaMV). Conserved enhancer sequencesof human genes were found in the 5'-flanking region of prxC2,and deletion of the regions that contained the enhancer sequencesreduced the GUS activity. High levels of GUS activity were observedin transgenic tobacco plants that contained 1 kbp of the 5'flanking region of prxC2 fused to the GUS gene. GUS activitywas diminished when deletion from the 5' end extended as faras the CAAT box. No significant organ-specific expression ofGUS was observed with any such deletion. (Received April 15, 1992; Accepted September 11, 1992)  相似文献   

18.
19.
【目的】利用昆虫细胞Bac-to-Bac杆状病毒表达系统表达血小板源性生长因子受体β (PDGFRβ)链膜外区与人IgG Fc片段的可溶性受体融合蛋白sPDGFRβ/Fc,并检测重组蛋白的特异性和生物活性。【方法】采用Bac-to-Bac系统,构建重组转移质粒pFastbac-sPDGFRβ/Fc,转化到含穿梭载体Bacmid的感受态细胞DH10Bac中,使目的基因与杆状病毒基因组DNA发生位点特异性重组,获得重组病毒DNA,将其通过脂质体转染昆虫细胞Sf9获得重组病毒。将该重组病毒感染Sf9无血清细胞系,在Sf9细胞中表达sPDGFRβ/Fc,对表达产物进行Western blotting检测和Protein A亲合层析纯化,并进一步通过MTT法检测获得的重组蛋白生物学活性。【结果】重组病毒感染Sf9细胞后,经Western blotting分析,能检测到一条分子量约为97 kDa的特异性条带,与目的蛋白大小相符。通过Protein A亲和层析,获得了纯度达75%以上,表达量为1 μg/mL细胞培养上清的重组融合蛋白,MTT结果显示该重组融合蛋白sPDGFRβ/Fc具有抑制PDGF刺激的Balb/c 3T3细胞增殖的能力。【结论】具有生物活性的重组可溶性受体融合蛋白sPDGFRβ/Fc可在昆虫细胞中成功地得到表达。  相似文献   

20.
He L  Denton J  Nehrke K  Strange K 《Biophysical journal》2006,90(10):3570-3581
CLH-3a and CLH-3b are Caenorhabditis elegans ClC channel splice variants that exhibit striking differences in voltage, Cl(-), and H(+) sensitivity. The major primary structure differences between the channels include a 71 amino acid CLH-3a N-terminal extension and a 270 amino acid extension of the CLH-3b C-terminus. Deletion of the CLH-3a N-terminus or generation of a CLH-3a/b chimera has no effect on channel gating. In contrast, deletion of a 169 amino acid C-terminal CLH-3b splice insert or deletion of the last 11 amino acids of cystathionine-beta-synthase domain 1 gives rise to functional properties identical to those of CLH-3a. Voltage-, Cl(-)-, and H(+)-dependent gating of both channels are lost when their glutamate gates are mutated to alanine. Glutamate gate cysteine mutants exhibit similar degrees of inhibition by MTSET, but the inhibition time constant of CLH-3b is sevenfold greater than that of CLH-3a. Differences in MTSET inhibition are reversed by deletion of the same cytoplasmic C-terminal regions that alter CLH-3b gating. Our results indicate that splice variation of the CLH-3b cytoplasmic C-terminus alters extracellular structure and suggest that differences in the conformation of the outer pore vestibule and associated glutamate gate may account for differences in CLH-3a and CLH-3b gating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号