首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TIMAP, TGF-β inhibited, membrane-associated protein, is highly abundant in endothelial cells (EC). We have shown earlier the involvement of TIMAP in PKA-mediated ERM (ezrin-radixin-moesin) dephosphorylation as part of EC barrier protection by TIMAP (Csortos et al., 2008). Emerging data demonstrate the regulatory role of TIMAP on protein phosphatase 1 (PP1) activity. We provide here evidence for specific interaction (Ka = 1.80 × 106 M−1) between non-phosphorylated TIMAP and the catalytic subunit of PP1 (PP1c) by surface plasmon resonance based binding studies. Thiophosphorylation of TIMAP by PKA, or sequential thiophosphorylation by PKA and GSK3β slightly modifies the association constant for the interaction of TIMAP with PP1c and decreases the rate of dissociation. However, dephosphorylation of phospho-moesin substrate by PP1cβ is inhibited to different extent in the presence of non- (∼60% inhibition), mono- (∼50% inhibition) or double-thiophosphorylated (<10% inhibition) form of TIMAP. Our data suggest that double-thiophosphorylation of TIMAP has minor effect on its binding ability to PP1c, but considerably attenuates its inhibitory effect on the activity of PP1c. PKA activation by forskolin treatment of EC prevented thrombin evoked barrier dysfunction and ERM phosphorylation at the cell membrane (Csortos et al., 2008). With the employment of specific GSK3β inhibitor it is shown here that PKA activation is followed by GSK3β activation in bovine pulmonary EC and both of these activations are required for the rescuing effect of forskolin in thrombin treated EC. Our results suggest that the forskolin induced PKA/GSK3β activation protects the EC barrier via TIMAP-mediated decreasing of the ERM phosphorylation level.  相似文献   

2.
Inhibitor 2 (I-2) is a ubiquitous regulator of type 1 protein phosphatase (PP1). Previous in vitro studies suggested that its inhibitory activity towards PP1 is regulated by phosphorylation at Thr72 by glycogen synthase kinase-3beta (GSK-3beta), and at Ser86, Ser120, and Ser121 by casein kinase 2 (CK2). Here we report that GSK-3beta expressed in COS-7 cells phosphorylates wild-type I-2 but not an I-2 mutant carrying a T to A substitution at residue 72, showing that GSK-3beta phosphorylates I-2 at T72 in vivo as well. Co-immunoprecipitation study demonstrated that HA-GSK-3beta and I-2-FLAG co-exist in a same complex in the intact cells, but they do not bind directly. It is noteworthy that co-expression of Myc-PP1C significantly increased co-precipitation of HA-GSK-3beta with I-2-FLAG, showing a complex formation of HA-GSK-3beta/Myc-PP1C / I-2-FLAG in vivo. Further studies using a GSK-3beta kinase-dead mutant and LiCl, an inhibitor of GSK-3beta, showed that the enzyme activity of GSK-3beta is required for co-precipitation. IP-Western study using several I-2 mutants substituted at phosphorylation sites (T72, S86, S120, and S121) suggested that phosphorylation of I-2 by CK2 is also involved in enhancement of association between GSK-3beta and I-2 in vivo. This study is the first demonstration that GSK-3beta associates with PP1C/I-2 complex and phosphorylates I-2 at T72 in the intact cells.  相似文献   

3.
Glycogen synthase kinase-3 (GSK-3) is regulated by various extracellular ligands and phosphorylates many substrates, thereby regulating cellular functions. Using yeast two-hybrid screening, we found that GSK-3beta binds to AKAP220, which is known to act as an A-kinase anchoring protein. GSK-3beta formed a complex with AKAP220 in intact cells at the endogenous level. Cyclic AMP-dependent protein kinase (PKA) and type 1 protein phosphatase (PP1) were also detected in this complex, suggesting that AKAP220, GSK-3beta, PKA, and PP1 form a quaternary complex. It has been reported that PKA phosphorylates GSK-3beta, thereby decreasing its activity. When COS cells were treated with dibutyryl cyclic AMP to activate PKA, the activity of GSK-3beta bound to AKAP220 decreased more markedly than the total GSK-3beta activity. Calyculin A, a protein phosphatase inhibitor, also inhibited the activity of GSK-3beta bound to AKAP220 more strongly than the total GSK-3beta activity. These results suggest that PKA and PP1 regulate the activity of GSK-3beta efficiently by forming a complex with AKAP220.  相似文献   

4.
Merlin (moesin-ezrin-radixin like protein), the product of neurofibromatosis type 2 gene, was primarily recognized as a tumor suppressor, but it also functions as a membrane-cytoskeletal linker and regulator of multiple signaling pathways. The activity and localization of merlin is regulated by head to tail folding that is controlled by phosphorylation of the Ser518 side chain. Merlin localizes in the nucleus when the Ser518 side chain is not phosphorylated, while the phosphorylated form is present in the cytoplasm and the plasma membrane. In this work interactions and their impact on the subcellular localization and phosphorylation state of the Ser518 side chain of merlin were investigated in endothelial cells. It is shown that merlin (dephospho-Ser518 form) interacts in the nucleus of endothelial cells with the scaffolding protein EBP50, a member of the Na+/H+exchanger regulatory factor family. Upon EBP50 depletion, merlin translocated from the nucleus, suggesting that binding of merlin to EBP50 is critical in the nuclear localization of merlin. Along with the translocation, the phosphorylation level of phospho-Ser518-merlin was increased in EBP50 depleted cells. TIMAP (TGFβ-inhibited membrane-associated protein), a type 1 protein phosphatase (PP1) regulatory subunit, was newly recognized as an interacting partner for merlin. Domain mapping using truncated mutant forms in GST pull down revealed that the N-terminal half of TIMAP (aa 1-290) and the FERM domain of merlin are the regions responsible for the interaction.The catalytic subunit of PP1 (PP1c) was present in all merlin-TIMAP pull down or immunoprecipitation samples demonstrating that merlin actually interacts with the PP1c-TIMAP holoenzyme. On the other hand, from TIMAP depleted cells, without its targeting protein, PP1c could not bind to merlin. Also, when the phosphatase activity of PP1c-TIMAP was inhibited either with depletion of TIMAP or by treatment of the cells with specific PP1 inhibitor, there was an increase in the amount of phospho-Ser518 form of merlin in the membrane of the cells. These data strongly suggest that the PP1c-TIMAP- complex dephosphorylates phospho-Ser518-merlin. ECIS measurements indicate that phospho-merlin accelerates in vitro wound healing of the endothelial monolayer.In conclusion, in endothelial cells, EBP50 is required for the nuclear localization of merlin and the PP1c-TIMAP holoenzyme plays an important role in the dephosphorylation of merlin on its Ser518 side chain, which influence cell migration and proliferation.  相似文献   

5.
6.
Myosin phosphatase targeting subunit 3 (MYPT3) and transforming growth factor-beta-inhibited membrane-associated protein (TIMAP) are two closely related myosin-binding targeting subunits of protein phosphatase 1 (PP1c) with a characteristic CAAX (where AA indicates aliphatic amino acid) box at the C termini. Here we show that MYPT3 can be a substrate for protein kinase A (PKA). We first mapped the multiple phosphorylation sites within a central conserved motif. Deletion or mutations of this motif resulted in enhancement of the associated PP1c activity, suggesting that phosphorylation of MYPT3 may play an important role in regulating PP1c catalytic activity. However, unlike the other known MYPTs, which upon phosphorylation inhibit PP1c, PKA phosphorylation of MYPT3 resulted in PP1c activation, indicating a different mode of action. There is a direct interaction between the central conserved phosphorylated site motif with the N-terminal ankyrin repeat region; this interaction was significantly reduced with MYPT3 phosphorylation or acidic phosphorylation site mutations, with concomitant alterations in biochemical and morphological consequences. We therefore propose a novel mechanism for the phosphorylation of MYPT3 by PKA and activation of the catalytic activity through direct interaction of a central region of MYPT3 with its N-terminal region.  相似文献   

7.
Liu F  Liang Z  Shi J  Yin D  El-Akkad E  Grundke-Iqbal I  Iqbal K  Gong CX 《FEBS letters》2006,580(26):6269-6274
Phosphorylation of tau protein is regulated by several kinases, especially glycogen synthase kinase 3beta (GSK-3beta), cyclin-dependent protein kinase 5 (cdk5) and cAMP-dependent protein kinase (PKA). Phosphorylation of tau by PKA primes it for phosphorylation by GSK-3beta, but the site-specific modulation of GSK-3beta-catalyzed tau phosphorylation by the prephosphorylation has not been well investigated. Here, we found that prephosphorylation by PKA promotes GSK-3beta-catalyzed tau phosphorylation at Thr181, Ser199, Ser202, Thr205, Thr217, Thr231, Ser396 and Ser422, but inhibits its phosphorylation at Thr212 and Ser404. In contrast, the prephosphorylation had no significant effect on its subsequent phosphorylation by cdk5 at Thr181, Ser199, Thr205, Thr231 and Ser422; inhibited it at Ser202, Thr212, Thr217 and Ser404; and slightly promoted it at Ser396. These studies reveal the nature of the inter-regulation of tau phosphorylation by the three major tau kinases.  相似文献   

8.
We have recently shown that while adrenaline alone has no effect on the activation of Protein Kinase B (PKB) in rat soleus muscle, it greatly potentiates the effects of insulin (Brennesvik et al., Cellular Signalling 17: 1551-1559, 2005). In the current study we went on to investigate whether this was paralleled by a similar effect on GSK-3, which is a major PKB target. Surprisingly adrenaline alone increased phosphorylation of GSK-3beta Ser9 and GSK-3alpha Ser21 and adrenaline's effects were additive with those of insulin but did not synergistically potentiate insulin action. Dibutyryl-cAMP (5 mM) and the PKA specific cAMP analogue N6-Benzoyl-cAMP (2 mM) increased GSK-3beta Ser9 phosphorylation, whereas the Epac specific cAMP analogue 8-(4-chlorophenylthio)-2'-O-methyl-cAMP (1 mM) did not. Wortmannin (PI 3-kinase inhibitor; 1 microM) blocked insulin-stimulated GSK-3 phosphorylation completely, but adrenaline increased GSK-3beta Ser9 phosphorylation in the presence of wortmannin. The PKA inhibitor H89 (50 microM) reduced adrenaline-stimulated GSK-3beta Ser9 phosphorylation but did not influence the effects of insulin. Insulin-stimulated GSK-3 Ser9 phosphorylation was paralleled by decreased glycogen synthase phosphorylation at the sites phosphorylated by GSK-3 as expected. However, adrenaline-stimulated GSK-3 Ser9 phosphorylation was paralleled by increased glycogen synthase phosphorylation indicating this pool of GSK-3 may not be directly involved in phosphorylation of glycogen synthase. Our results indicate the existence of at least two distinct pools of GSK-3beta in soleus muscle, one phosphorylated by PKA and another by PKB. Further, we hypothesise that each of these pools is involved in the control of different cellular processes.  相似文献   

9.
TGF-beta-inhibited membrane-associated protein, TIMAP, is expressed at high levels in endothelial cells (EC). It is regarded as a member of the MYPT (myosin phosphatase target subunit) family of protein phosphatase 1 (PP1) regulatory subunits; however, its function in EC is not clear. In our pull-down experiments, recombinant TIMAP binds preferentially the beta-isoform of the catalytic subunit of PP1 (PP1cbeta) from pulmonary artery EC. As PP1cbeta, but not PP1calpha, binds with MYPT1 into functional complex, these results suggest that TIMAP is a novel regulatory subunit of myosin phosphatase in EC. TIMAP depletion by small interfering RNA (siRNA) technique attenuates increases in transendothelial electrical resistance induced by EC barrier-protective agents (sphingosine-1-phosphate, ATP) and enhances the effect of barrier-compromising agents (thrombin, nocodazole) demonstrating a barrier-protective role of TIMAP in EC. Immunofluorescent staining revealed colocalization of TIMAP with membrane/cytoskeletal protein, moesin. Moreover, TIMAP coimmunoprecipitates with moesin suggesting the involvement of TIMAP/moesin interaction in TIMAP-mediated EC barrier enhancement. Activation of cAMP/PKA cascade by forskolin, which has a barrier-protective effect against thrombin-induced EC permeability, attenuates thrombin-induced phosphorylation of moesin at the cell periphery of control siRNA-treated EC. On the contrary, in TIMAP-depleted EC, forskolin failed to affect the level of moesin phosphorylation at the cell edges. These results suggest the involvement of TIMAP in PKA-mediated moesin dephosphorylation and the importance of this dephosphorylation in TIMAP-mediated EC barrier protection.  相似文献   

10.
The activity of NF-kappaB is controlled at several levels including the phosphorylation of the strongly transactivating p65 (RelA) subunit. However, the overall number of phosphorylation sites, the signaling pathways and protein kinases that target p65 NF-kappaB and the functional role of these phosphorylations are still being uncovered. Using a combination of peptide arrays with in vitro kinase assays we identify serine 468 as a novel phosphorylation site of p65 NF-kappaB. Serine 468 lies within a GSK-3beta consensus site, and recombinant GSK-3beta specifically phosphorylates a GST-p65-(354-551) fusion protein at Ser(468) in vitro. In intact cells, phosphorylation of endogenous Ser(468) of p65 is induced by the PP1/PP2A phosphatase inhibitor calyculin A and this effect is inhibited by the GSK-3beta inhibitor LiCl. Reconstitution of p65-deficient cells with a p65 protein where serine 468 was mutated to alanine revealed a negative regulatory role of serine 468 for NF-kappaB activation. Collectively our results suggest that a GSK-3beta-PP1-dependent mechanism regulates phosphorylation of p65 NF-kappaB at Ser(468) in unstimulated cells and thereby controls the basal activity of NF-kappaB.  相似文献   

11.
Representational difference analysis ofthe glomerular endothelial cell response to transforming growthfactor-1 (TGF-1) revealed a novel gene, TIMAP (TGF--inhibitedmembrane-associated protein), which contains 10 exons and maps to humanchromosome 20.q11.22. By Northern blot, TIMAP mRNA is highly expressedin all cultured endothelial and hematopoietic cells. The frequency ofthe TIMAP SAGE tag is much greater in endothelial cell SAGE databasesthan in nonendothelial cells. Immunofluorescence studies of rat tissuesshow that anti-TIMAP antibodies localize to vascular endothelium.TGF-1 represses TIMAP through a protein synthesis- and histonedeacetylase-dependent process. The TIMAP protein contains five ankyrinrepeats, a protein phosphatase-1 (PP1)-interacting domain, aCOOH-terminal CAAX box, a domain arrangement similar to that of MYPT3,and a PP1 inhibitor. A green fluorescent protein-TIMAP fusion proteinlocalized to the plasma membrane in a CAAX box-dependent fashion.Hence, TIMAP is a novel gene highly expressed in endothelial andhematopoietic cells and regulated by TGF-1. On the basis of itsdomain structure, TIMAP may serve a signaling function, potentiallythrough interaction with PP1.

  相似文献   

12.
13.
Glycogen synthase kinase-3 (GSK-3) is a serine-threonine kinase that is involved in multiple cellular signaling pathways, including the Wnt signaling cascade where it phosphorylates beta-catenin, thus targeting it for proteasome-mediated degradation. Unlike phosphorylation of glycogen synthase, phosphorylation of beta-catenin by GSK-3 does not require priming in vitro, i.e. it is not dependent on the presence of a phosphoserine, four residues C-terminal to the GSK-3 phosphorylation site. Recently, a means of dissecting GSK-3 activity toward primed and non-primed substrates has been made possible by identification of the R96A mutant of GSK-3beta. This mutant is unable to phosphorylate primed but can still phosphorylate unprimed substrates (Frame, S., Cohen, P., and Biondi R. M. (2001) Mol. Cell 7, 1321-1327). Here we have investigated whether phosphorylation of Ser(33), Ser(37), and Thr(41) in beta-catenin requires priming through prior phosphorylation at Ser(45) in intact cells. We have shown that the Arg(96) mutant does not induce beta-catenin degradation but instead stabilizes beta-catenin, indicating that it is unable to phosphorylate beta-catenin in intact cells. Furthermore, if Ser(45) in beta-catenin is mutated to Ala, beta-catenin is markedly stabilized, and phosphorylation of Ser(33), Ser(37), and Thr(41) in beta-catenin by wild type GSK-3beta is prevented in intact cells. In addition, we have shown that the L128A mutant, which is deficient in phosphorylating Axin in vitro, is still able to phosphorylate beta-catenin in intact cells although it has reduced activity. Mutation of Tyr(216) to Phe markedly reduces the ability of GSK-3beta to phosphorylate and down-regulate beta-catenin. In conclusion, we have found that the Arg(96) mutant has a dominant-negative effect on GSK-3beta-dependent phosphorylation of beta-catenin and that targeting of beta-catenin for degradation requires prior priming through phosphorylation of Ser(45).  相似文献   

14.
The aim of this study was to determine the role of GSK-3beta in cardiomyocyte protection afforded by erythropoietin (EPO) against oxidant stress-induced apoptosis. Treatment with EPO (10 units/ml) induced Ser473 phosphorylation of Akt and Ser9 phosphorylation of GSK-3beta and significantly reduced the proportion of apoptotic H9c2 cardiomyocytes after exposure to H2O2 from 38.3 +/- 2.7% to 26.0 +/- 2.9%. This protection was not detected in cells transfected with constitutively active GSK-3beta (S9A), which lacks Ser9 for inhibitory phosphorylation. The antiapoptotic effect of EPO was mimicked completely by GSK-3beta knockdown using small interfering RNA and partly by the transfection with kinase-deficient GSK-3beta (K85R). The level of colocalization of intracellular GSK-3beta with mitochondria assessed by enhanced green fluorescent protein-tagged GSK-3beta or immunocytochemistry was not altered by EPO treatment. However, EPO increased the level of Ser9-phospho-GSK-3beta colocalized with mitochondria by 50% in a phosphatidylinositol 3-kinase-dependent manner. Mitochondrial translocation of Bcl-2-associated X protein (BAX) after exposure to H2O2 was inhibited by EPO pretreatment and by GSK-3beta knockdown. These results suggest that the suppression of GSK-3beta activity by Akt-mediated Ser9 phosphorylation in the mitochondria affords cardiomyocytes tolerance against oxidant-induced apoptosis, possibly by inhibiting the access of BAX to the mitochondria.  相似文献   

15.
In Alzheimer disease brain the activities of protein phosphatase (PP)-2A and PP-1 are decreased and the microtubule-associated protein tau is abnormally hyperphosphorylated at several sites at serine/threonine. Employing rat forebrain slices kept metabolically active in oxygenated artificial CSF as a model system, we investigated the role of PP-2A/PP-1 in the regulation of some of the major abnormally hyperphosphorylated sites of tau and the protein kinases involved. Treatment of the brain slices with 1.0 microM okadaic acid inhibited approximately 65% of PP-2A and produced hyperphosphorylation of tau at Ser 198/199/202, Ser 396/404 and Ser 422. No significant changes in the activities of glycogen synthase kinase-3 (GSK-3) and cyclin dependent protein kinases cdk5 and cdc2 were observed. Calyculin A (0.1 microM) inhibited approximately 50% PP-1, approximately 20% PP-2A, 50% GSK-3 and approximately 30% cdk5 but neither inhibited the activity of cyclin AMP dependent protein kinase A (PKA) nor resulted in the hyperphosphorylation of tau at any of the above sites. Treatment of brain slices with 1 microM okadaic acid plus 0.1 microM calyculin A inhibited approximately 100% of both PP-2A and PP-1, approximately 80% of GSK-3, approximately 50% of cdk5 and approximately 30% of cdc2 but neither inhibited PKA nor resulted in the hyperphosphorylation of tau at any of the above sites. These studies suggest (i) that PP-1 upregulates the phosphorylation of tau at Ser 198/199/202 and Ser 396/404 indirectly by regulating the activities of GSK-3, cdk5 and cdc2 whereas PP-2A regulates the phosphorylation of tau directly by dephosphorylation at the above sites, and (ii) that a decrease in the PP-2A activity leads to abnormal hyperphosphorylation of tau at Ser 198/199/202, Ser 396/404 and Ser 422.  相似文献   

16.
Abnormal regulation of brain glycogen metabolism is believed to underlie insulin-induced hypoglycaemia, which may be serious or fatal in diabetic patients on insulin therapy. A key regulator of glycogen levels is glycogen targeted protein phosphatase 1 (PP1), which dephosphorylates and activates glycogen synthase (GS) leading to an increase in glycogen synthesis. In this study, we show that the gene PPP1R3F expresses a glycogen-binding protein (R3F) of 82.8 kDa, present at the high levels in rodent brain. R3F binds to PP1 through a classical 'RVxF' binding motif and substitution of Phe39 for Ala in this motif abrogates PP1 binding. A hydrophobic domain at the carboxy-terminus of R3F has similarities to the putative membrane binding domain near the carboxy-terminus of striated muscle glycogen targeting subunit G(M)/R(GL), and R3F is shown to bind not only to glycogen but also to membranes. GS interacts with PP1-R3F and is hyperphosphorylated at glycogen synthase kinase-3 sites (Ser640 and Ser644) when bound to R3F(Phe39Ala). Deprivation of glucose or stimulation with adenosine or noradrenaline leads to an increased phosphorylation of PP1-R3F bound GS at Ser640 and Ser644 curtailing glycogen synthesis and facilitating glycogen degradation to provide glucose in astrocytoma cells. Adenosine stimulation also modulates phosphorylation of R3F at Ser14/Ser18.  相似文献   

17.
Changes in plasma membrane electrical potential evoke signals that regulate the expressions of various genes in the nervous system. However, the role of glycogen synthase kinase 3beta (GSK-3beta) in this process has not been elucidated. Thus, this study was performed to examine whether membrane depolarization can regulate the phosphorylation of GSK-3beta and to identify the molecular mechanisms involved in this regulation. The depolarization by treating with 100 mm KCl for 5 min resulted in the undulating phosphorylation of GSK-3beta at Ser-9 in SH-SY5Y human neuroblastoma cells, in H19 -7/IGF-IR rat embryonic hippocampal cells, and in PC12 rat pheochromocytoma cells, but not in A172 human glioblastoma cells. Cellular beta-catenin contents showed a temporal pattern similar to that of the Ser-9 phosphorylation of GSK-3beta. Treatment with wortmannin or calphostin C or the expression of dominant negative Akt inhibited phosphorylation of GSK-3beta at Ser-9 following the KCl-induced depolarization of SH-SY5Y cells. Moreover, pretreatment with okadaic acid or cyclosporin A blocked the dephosphorylation of GSK-3beta at Ser-9 at 0, 15, and 30 min after KCl-induced depolarization, and the activity of protein phosphatases (PP) 2A and 2B increased at these times. Treatment with nifedipine or calcium-free medium inhibited GSK-3beta dephosphorylation following membrane depolarization, and the amounts of co-immunoprecipitated GSK-3beta and PP2A changed in parallel with GSK-3beta dephosphorylation. Our study demonstrated that KCl-induced depolarization caused undulating GSK-3beta phosphorylation/dephosphorylation, which was regulated for the most part by phosphatidylinositol 3-kinase and Akt (phosphorylation) and PP2A and PP2B (dephosphorylation), respectively.  相似文献   

18.
In endothelial cells (ECs) beta1 integrin function-blocking antibodies inhibit alphavbeta3 integrin-mediated adhesion to a recombinant alpha4-laminin fragment (ralpha4LN fragment). beta1 integrin sequestration of talin is not the mechanism by which beta1 integrin modulates alphavbeta3 integrin ligand binding. Rather, treatment of the ECs with beta1 integrin function-blocking antibodies enhances cAMP-dependent protein kinase (PKA) activity and increases beta3 integrin serine phosphorylation. The PKA inhibitor H-89 abrogates the effect of beta1 integrin function-blocking antibodies on beta3 integrin serine phosphorylation and EC-ralpha4LN fragment binding. beta3 integrin contains a serine residue at position 752. To confirm the importance of this residue in alphavbeta3 integrin-ralpha4LN fragment binding, we mutated it to alanine (beta3S752A) or aspartic acid (beta3S752D). Chinese hamster ovary (CHO) cells expressing wild type or beta3S752A integrin attach robustly to ligand. CHO cells expressing beta3S752D integrin do not. Because the beta3 cytoplasmic tail lacks a PKA consensus site, it is unlikely that PKA acts directly on beta3 integrin. Instead, we have tested an hypothesis that PKA regulates beta3 integrin serine phosphorylation indirectly through phosphorylation of inhibitor-1, which, when phosphorylated, inhibits protein phosphatase 1 (PP1). Treatment of ECs with beta1 integrin function-blocking antibodies significantly increases phosphorylation of inhibitor-1. Furthermore, blocking PP1 activity pharmacologically inhibits alphavbeta3-mediated cell adhesion to the ralpha4LN fragment when both PKA and beta1 integrin function are inhibited. Concomitantly, there is an increase in serine phosphorylation of the beta3 integrin cytoplasmic tail. These results indicate a novel mechanism by which beta1 integrin negatively modulates alphavbeta3 integrin-ligand binding via activation of PKA and inhibition of PP1 activity.  相似文献   

19.
The actions of LH to induce ovulation and luteinization of preovulatory follicles are mediated principally by activation of cAMP-dependent protein kinase (PKA) in granulosa cells. PKA activity is targeted to specific locations in many cells by A kinase-anchoring proteins (AKAPs). We previously showed that FSH induces expression of microtubule-associated protein (MAP) 2D, an 80-kDa AKAP, in rat granulosa cells, and that MAP2D coimmunoprecipitates with PKA-regulatory subunits in these cells. Here we report a rapid and targeted dephosphorylation of MAP2D at Thr256/Thr259 after treatment with human chorionic gonadotropin, an LH receptor agonist. This event is mimicked by treatment with forskolin or a cAMP analog and is blocked by the PKA inhibitor myristoylated-PKI, indicating a role for cAMP and PKA signaling in phosphoregulation of granulosa cell MAP2D. Furthermore, we show that Thr256/Thr259 dephosphorylation is blocked by the protein phosphatase 2A (PP2A) inhibitor, okadaic acid, and demonstrate interactions between MAP2D and PP2A by coimmunoprecipitation and microcystin-agarose pull-down. We also show that MAP2D interacts with glycogen synthase kinase (GSK) 3beta and is phosphorylated at Thr256/Thr259 by this kinase in the basal state. Increased phosphorylation of GSK3beta at Ser9 and the PP2A B56delta subunit at Ser566 is observed after treatment with human chorionic gonadotropin and appears to result in LH receptor-mediated inhibition of GSK3beta and activation of PP2A, respectively. Taken together, these results show that the phosphorylation status of the AKAP MAP2D is acutely regulated by LH receptor-mediated modulation of kinase and phosphatase activities via PKA.  相似文献   

20.
The extracellular receptor stimulated kinase ERK2 (p42(MAPK))-phosphorylated human cAMP-specific phosphodiesterase PDE4D3 at Ser579 and profoundly reduced ( approximately 75%) its activity. These effects could be reversed by the action of protein phosphatase PP1. The inhibitory state of PDE4D3, engendered by ERK2 phosphorylation, was mimicked by the Ser579-->Asp mutant form of PDE4D3. In COS1 cells transfected to express PDE4D3, challenge with epidermal growth factor (EGF) caused the phosphorylation and inhibition of PDE4D3. This effect was blocked by the MEK inhibitor PD98059 and was not apparent using the Ser579-->Ala mutant form of PDE4D3. Challenge of HEK293 and F442A cells with EGF led to the PD98059-ablatable inhibition of endogenous PDE4D3 and PDE4D5 activities. EGF challenge of COS1 cells transfected to express PDE4D3 increased cAMP levels through a process ablated by PD98059. The activity of the Ser579-->Asp mutant form of PDE4D3 was increased by PKA phosphorylation. The transient form of the EGF-induced inhibition of PDE4D3 is thus suggested to be due to feedback regulation by PKA causing the ablation of the ERK2-induced inhibition of PDE4D3. We identify a novel means of cross-talk between the cAMP and ERK signalling pathways whereby cell stimuli that lead to ERK2 activation may modulate cAMP signalling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号