首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expression of the Escherichia coli dam gene   总被引:7,自引:0,他引:7  
  相似文献   

2.
3.
Abstract The cloned afu locus of Actinobacillus pleuropneumoniae restored the ability of an Escherichia coli K-12 mutant ( aroB ) to grow on iron-limited media. DNA sequence analysis of the fragment showed that there are three genes designated afuA, afuB and afuC (Actinobacillus ferric uptake) that encode products similar to the SfuABC proteins of Serratia marcescens , the HitABC proteins of Haemophilia influenzae , the FbpABC proteins of Neisseria gonorrhoeae and the YfuABC proteins of Yersinia enterocolitica . The three genes encode a periplasmic iron-binding protein (AfuA), a highly hydrophobic integral cytoplasmic membrane protein with two consensus permease motifs (AfuB) and one hydrophilic peripheral cytoplasmic membrane protein with Walker ATP-binding motifs (AfuC), respectively. This system has been shown to constitute a periplasmic binding protein-dependent iron transport system in these organisms. The afuABC operon is locating approximately 200 bp upstream of apxIC gene, but transcribed in opposite direction to the ApxI-toxin genes.  相似文献   

4.
Seryl-tRNA synthetase is the gene product of the serS locus in Escherichia coli. Its gene has been cloned by complementation of a serS temperature sensitive mutant K28 with an E. coli gene bank DNA. The resulting clones overexpress seryl-tRNA synthetase by a factor greater than 50 and more than 6% of the total cellular protein corresponds to the enzyme. The DNA sequence of the complete coding region and the 5'- and 3' untranslated regions was determined. Protein sequence comparison of SerRS with all available aminoacyl-tRNA synthetase sequences revealed some regions of significant homology particularly with the isoleucyl- and phenylalanyl-tRNA synthetases from E. coli.  相似文献   

5.
The gene coding for the 3-dehydroquinate synthetase (aroB) of Neisseria gonorrhoeae has been cloned by functional complementation of an Escherichia coli aroB mutant. The aroB gene isolated from a gonococcal plasmid library encodes a 359 amino acid protein with a molecular mass of 38.6?kDa. Alignment of different prokaryotic and eukaryotic aroB gene products reveals an overall identity ranging from 33 to 55%. An open reading frame coding for an aroK homologue is located immediately upstream of aroB. Downstream of aroB a region of inverted repeats and a gene showing high homology to yafJ of E. coli has been identified. Disruption of aroB generates a gonococcal mutant that is unable to grow in the absence of aromatic compounds. Complementation of the mutant with the intact aroB gene intrans indicates that the gene is responsible for the auxotrophic phenotype. In infection assays with AroB-deficient gonococcal strains, binding, entry and short-term survival in epithelial cells is not affected. The aroB gene might be useful as a selectable marker and target for attenuation of a gonococcal live vaccine strain or as a biosafe laboratory strain.  相似文献   

6.
The enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EC 2.5.1.19), encoded by the aroA locus, is a target site of glyphosate inhibition in bacteria. A glyphosate-resistant aroA allele has been cloned in Escherichia coli from a mutagenized strain of Salmonella typhimurium. Subcloning of this mutant aroA allele shows the gene to reside on a 1.3-kilobase segment of S. typhimurium DNA. Nucleotide sequence analysis of this mutant gene indicates a protein-coding region 427 amino acids in length. Comparison of the mutant and wild type aroA gene sequences reveals a single base pair change resulting in a Pro to Ser amino acid substitution at the 101st codon of the protein. A hybrid gene fusion between mutant and wild type aroA gene sequences was constructed. 5-Enolpyruvylshikimate-3-phosphate synthase was prepared from E. coli cells harboring this construct. The glyphosate-resistant phenotype is shown to be associated with the single amino acid substitution described above.  相似文献   

7.
L Le Chevanton  G Leblon 《Gene》1989,77(1):39-49
We cloned the ura5 gene coding for the orotate phosphoribosyl transferase from the ascomycete Sordaria macrospora by heterologous probing of a Sordaria genomic DNA library with the corresponding Podospora anserina sequence. The Sordaria gene was expressed in an Escherichia coli pyrE mutant strain defective for the same enzyme, and expression was shown to be promoted by plasmid sequences. The nucleotide sequence of the 1246-bp DNA fragment encompassing the region of homology with the Podospora gene has been determined. This sequence contains an open reading frame of 699 nucleotides. The deduced amino acid sequence shows 72% similarity with the corresponding Podospora protein.  相似文献   

8.
Dehydroquinate synthase has been purified 9000-fold from Escherichia coli K-12 (strain MM294). The synthase is encoded by the aroB gene, which is carried by plasmid pLC29-47 from the Carbon-Clarke library. Construction of an appropriate host bearing pLC29-47 results in a strain that produces 20 times more enzyme than strain MM294. Subcloning of the aroB gene behind a tac promoter results in E. coli transformants that produce 1000 times more enzyme than MM294: the synthase constitutes 5% of the soluble protein of the cell. A laborious isolation from 50 g of wild-type E. coli cells yields 80 micrograms of impure enzyme, whereas 50 g of cells containing the subcloned gene yields 150 mg of homogeneous enzyme in a two-column purification. Dehydroquinate synthase is a monomeric protein of Mr 40 000-44 000. The chromosomal enzyme from E. coli K-12, the cloned enzyme encoded by the plasmid pLC29-47, and the subcloned inducible enzyme encoded by pJB14 all comigrate on polyacrylamide gel electrophoresis under denaturing conditions.  相似文献   

9.
The gene for Escherichia coli leucyl-tRNA synthetase leuS has been cloned by complementation of a leuS temperature sensitive mutant KL231 with an E.coli gene bank DNA. The resulting clones overexpress leucyl-tRNA synthetase (LeuRS) by a factor greater than 50. The DNA sequence of the complete coding regions was determined. The derived N-terminal protein sequence of LeuRS was confirmed by independent protein sequencing of the first 8 aminoacids. Sequence comparison of the LeuRS sequence with all aminoacyl-tRNA synthetase sequences available reveal a significant homology with the valyl-, isoleucyl- and methionyl-enzyme indicating that the genes of these enzymes could have derived from a common ancestor. Sequence comparison with the gene product of the yeast nuclear NAM2-1 suppressor allele curing mitochondrial RNA maturation deficiency reveals about 30% homology.  相似文献   

10.
The aroD gene from Salmonella typhi, encoding 5-dehydroquinate hydrolyase (3-dehydroquinase), has been cloned into Escherichia coli and the DNA sequence determined. The aroD gene was isolated from a cosmid gene bank by complementation of an S. typhimurium aroD mutant. Analysis of the DNA sequence revealed the presence of an open reading frame capable of encoding a protein of 252 amino acids with a calculated Mr of 27706. Comparison of the deduced S. typhi 3-dehydroquinase protein sequence with that elucidated for E. coli revealed 69% homology. Alignment of the S. typhi sequence and equivalent Aspergillus nidulans and Saccharomyces cerevisiae sequences showed that homology was lower, at 24%, but still significant. Use of a minicell expression system demonstrated that a polyclonal antibody raised against E. coli 3-dehydroquinase cross-related with its S. typhi counterpart.  相似文献   

11.
The gene coding for the 3-dehydroquinate synthetase (aroB) of Neisseria gonorrhoeae has been cloned by functional complementation of an Escherichia coli aroB mutant. The aroB gene isolated from a gonococcal plasmid library encodes a 359 amino acid protein with a molecular mass of 38.6 kDa. Alignment of different prokaryotic and eukaryotic aroB gene products reveals an overall identity ranging from 33 to 55%. An open reading frame coding for an aroK homologue is located immediately upstream of aroB. Downstream of aroB a region of inverted repeats and a gene showing high homology to yafJ of E. coli has been identified. Disruption of aroB generates a gonococcal mutant that is unable to grow in the absence of aromatic compounds. Complementation of the mutant with the intact aroB gene intrans indicates that the gene is responsible for the auxotrophic phenotype. In infection assays with AroB-deficient gonococcal strains, binding, entry and short-term survival in epithelial cells is not affected. The aroB gene might be useful as a selectable marker and target for attenuation of a gonococcal live vaccine strain or as a biosafe laboratory strain. Received: 23 September 1997 / Accepted: 19 November 1997  相似文献   

12.
Growth of Bartonella henselae is strongly heme dependent, and B. henselae is unable to synthesize heme itself. At least five outer membrane-associated proteins from B. henselae bind hemin, including the 31-kDa protein designated Pap31. The gene of this protein was heterologously expressed in Escherichia coli M15(pREP4) and detected with monoclonal antibodies in the outer membrane fraction. Complementation of the hemA-deficient mutant E. coli K-12 EB53 (aroB tsx malT hemA) with pap31 demonstrated that this protein is involved in heme acquisition and may be an important virulence factor in the pathogenesis of B. henselae.  相似文献   

13.
H S Su  B F Lang    E B Newman 《Journal of bacteriology》1989,171(9):5095-5102
A new mutant of Escherichia coli K-12 unable to grow with L-serine, glycine, and L-leucine has been isolated by lambda plac Mu insertion and shown to be deficient in L-serine deaminase activity. The corresponding gene, sdaA, has been cloned from a prototrophic strain, and the clone has been characterized and sequenced. The evidence is consistent with the hypothesis that sdaA is the structural gene for L-serine deaminase. However, other possibilities are also considered. No significant homology with previously reported DNA or protein sequences was detected.  相似文献   

14.
We describe the cloning of an ntrC gene of Agrobacterium tumefaciens C58 by interspecific complementation of an Escherichia coli ntrC mutant. Restriction mapping and Southern blot analysis of the complementing clone identified a 1.7-kb EcoRI-PvuII DNA fragment whose sequence was determined. Analysis of this sequence revealed coding regions corresponding to a complete ntrC gene and the C-terminal region of an ntrB gene. Amino acid sequence comparisons of A. tumefaciens NTRC protein with NTRC sequences from Rhizobium meliloti, Bradyrhizobium sp. (Parasponia), Klebsiella pneumoniae, E. coli, and Salmonella typhimurium show strong sequence conservation supporting DNA hybridization data, demonstrating strong evolutionary homology among ntrC genes of Rhizobiaceae. The C58 NTRC protein has been identified, by 35S-labeling, in a T7 RNA polymerase (pT7-7) expression vector system.  相似文献   

15.
The aroC genes from Salmonella typhi and Escherichia coli, encoding 5-enolpyruvylshikimate-3-phosphate phospholyase (chorismate synthase) were cloned in E. coli and their DNA sequences were determined. The aroC gene from S. typhi was isolated from a cosmid gene bank by complementation of an E. coli aroC mutant. The corresponding E. coli gene was isolated from a pBR322 gene bank by colony hybridization using DNA encoding the aroC gene from S. typhi as a hybridization probe. Analysis of the nucleotide sequence revealed that both genes have an open reading frame capable of encoding proteins comprising 361 amino acids. The calculated molecular mass of the protein from S. typhi is 39,108 Da while that of the protein from E. coli is 39,138 Da. Homology is particularly strong between the coding regions of the genes: 95% when protein sequences are compared, and 83% when DNA sequences are examined. Use of a deletion variant of the E. coli aroC gene demonstrates that the C-terminal 36 amino acids are not essential for the correct folding or functional activity of the chorismate synthase enzyme.  相似文献   

16.
Deinococcus radiodurans strain rec30, which is a DNA damage repair-deficient mutant, has been estimated to be defective in the deinococcal recA gene. To identify the mutation site of strain rec30 and obtain information about the region flanking the gene, a 4.4-kb fragment carrying the wild-type recA gene was sequenced. It was revealed that the recA locus forms a polycistronic operon with the preceding cistrons (orf105a and orf105b). Predicted amino acid sequences of orf105a and orf105b showed substantial similarity to the competence-damage inducible protein (cinA gene product) from Streptococcus pneumoniae and the 2'-5' RNA ligase from Escherichia coli, respectively. By analyzing polymerase chain reaction (PCR) fragments derived from the genomic DNA of strain rec30, the mutation site in the strain was identified as a single G:C to A:T transition which causes an amino acid substitution at position 224 (Gly to Ser) of the deinococcal RecA protein. Furthermore, we succeeded in expressing both the wild-type and mutant recA genes of D. radiodurans in E. coli without any obvious toxicity or death. The gamma-ray resistance of an E. coli recA1 strain was fully restored by the expression of the wild-type recA gene of D. radiodurans that was cloned in an E. coli vector plasmid. This result is consistent with evidence that RecA proteins from many bacterial species can functionally complement E. coli recA mutants. In contrast with the wild-type gene, the mutant recA gene derived from strain rec30 did not complement E. coli recA1, suggesting that the mutant RecA protein lacks functional activity for recombinational repair.  相似文献   

17.
The Escherichia coli gene firA, previously reported to code for a small, histonelike DNA-binding protein, has been cloned and found to reside immediately downstream from skp, a gene previously identified as the firA locus. firA encodes a 36-kDa protein. The mutant firA200(Ts) allele was also cloned and shown to contain three mutations, each mutation giving rise to a single amino acid change. Partially purified wild-type FirA (from a firA+ strain) and mutant FirA [from a firA200(Ts) strain] proteins have amino-terminal sequences predicted from their common DNA sequences. Both proteins lack an N-terminal methionine. Modest overexpression of wild-type or mutant FirA restored wild-type growth to firA200(Ts) strains at 43 degrees C, whereas high-level expression of wild-type FirA was required for more complete suppression of the rifampin sensitivity of firA200(Ts) rpoB double mutants. High-level expression of mutant FirA did not suppress this rifampin sensitivity.  相似文献   

18.
Acetohydroxyacid isomeroreductase (AHAIR) is the shared second enzyme in the biosynthetic pathways leading to isoleucine and valine. AHAIR is encoded by the ilvC gene in bacteria. A 1,544-bp fragment of genomic DNA containing the ilvC gene was cloned from the cyanobacterium Synechocystis sp. strain PCC 6803, and the complete nucleotide sequence was determined. The identity of the gene was established by comparison of the nucleotide and derived peptide sequences with those of other ilvC genes. The highest degree of sequence similarity was found with the ilvC gene from Rhizobium meliloti. The isolated Synechocystis ilvC gene complemented an Escherichia coli ilvC mutant lacking AHAIR activity. The expressed Synechocystis gene encodes a protein that has a molecular mass of 35.7 kDa and that has AHAIR activity in an in vitro assay. Polyclonal antibodies raised against purified Synechocystis AHAIR produced a single band on a Western blot (immunoblot) of a Synechocystis cell extract and detected the protein in an extract of an E. coli ilvC mutant strain that was transformed with a plasmid containing the Synechocystis ilvC gene. The antibody did not react with an extract of an E. coli ilvC mutant strain that was transformed with a control plasmid lacking the Synechocystis ilvC gene or with an extract of an E. coli IlvC+ control strain.  相似文献   

19.
The argF gene encoding ornithine carbamoyl-transferase (OTCase; EC2.1.3.3) has been cloned from Corynebacterium glutamicum by transforming the Escherichia coli arginine auxotroph with the genomic DNA library. The cloned DNA also complements the E. coli argG mutant, suggesting a clustered organization of the genes in the genome. We have determined the DNA sequence of the minimal fragment complementing the E. coli argF mutant. The coding region of the cloned gene is 957 nucleotides long with a deduced molecular mass of about 35 kDa polypeptide. The enzyme activity and size of the expressed protein in the E. coli auxotroph carrying the argF gene revealed that the cloned gene indeed codes for OTCase. Analysis of the amino acid sequence of the predicted protein revealed a strong similarity to the corresponding protein of other bacteria.  相似文献   

20.
The hemin receptor HemR of Yersinia enterocolitica was identified as a 78 kDa iron regulated outer membrane protein. Cells devoid of the HemR receptor as well as cells mutated in the tonB gene were unable to take up hemin as an iron source. The hemin uptake operon from Y. enterocolitica was cloned in Escherichia coli K12 and was shown to encode four proteins: HemP (6.5 kDa), HemR (78 kDa), HemS (42 kDa) and HemT (27 kDa). When expressed in E.coli hemA aroB, a plasmid carrying genes for HemP and HemR allowed growth on hemin as a porphyrin source. Presence of genes for HemP, HemR and HemS was necessary to allow E.coli hemA aroB cells to use hemin as an iron source. The nucleotide sequence of the hemR gene and its promoter region was determined and the amino acid sequence of the HemR receptor deduced. HemR has a signal peptide of 28 amino acids and a typical TonB box at its amino-terminus. Upstream of the first gene in the operon (hemP), a well conserved Fur box was found which is in accordance with the iron-regulated expression of HemR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号