首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We cloned from a rat brain cDNA library a novel cDNA and named it a potential synaptic guanine nucleotide exchange factor (GEF) for Arf (synArfGEF (Po)) (GenBank Accession no. AB057643) based on its domain structure and localization. The cloned gene was 7410 bases long with a 3585-bp coding sequence encoding a protein of 1194 amino acids. The deduced protein contained a coiled-coil structure in the N-terminal portion followed by Sec7 and Plekstrin homology (PH) domains. Thus, the protein was a member of the Sec7 family of proteins, GEFs. Conservation of the ADP-ribosylation factor (Arf)-binding sequence suggested that the protein was a GEF for Arf. The gene was expressed specifically in the brain, where it exhibited region-specific expression. The protein was highly enriched in the postsynaptic density (PSD) fraction prepared from the rat forebrain. Uniquely, the protein interacted with PSD-95, SAP97 and Homer/Vesl 1/PSD-Zip45 via its C-terminal PDZ-binding motif and co-localized with these proteins in cultured cortical neurons. These results supported its localization in the PSD. The postsynaptic localization was also supported by immunohistochemical examination of the rat brain. The mRNA for the synArfGEF was also localized to dendrites, as well as somas, of neuronal cells. Thus, both the mRNA and the protein were localized in the postsynaptic compartments. These results suggest a postsynaptic role of synArfGEF in the brain.  相似文献   

2.
L Lim  C Hall  T Leung    S Whatley 《The Biochemical journal》1984,224(2):677-680
A protein of molecular mass 68 kDa and pI5.6 is a major translation product of rat brain mRNA [Hall, Mahadevan, Whatley, Biswas & Lim (1984) Biochem. J. 219, 751-761]. In the rat brain this protein was associated with microtubule preparations and was present together with tubulin as a component of the synaptosomal plasma membranes, synaptic vesicles and post-synaptic structures. The brain mRNA for this protein was found to hybridize specifically to the Drosophila gene for the 70 kDa heat-shock protein, thus enabling its rapid isolation.  相似文献   

3.
4.
Dendritic degeneration and loss of synaptic proteins are early events correlated with functional decline in neurodegenerative disease. The temporal and mechanistic relationship between synapse loss and cell death, however, remains unclear. We used confocal microscopy and image processing to count post-synaptic sites on rat hippocampal neurons by expressing post-synaptic density protein 95 fused to green fluorescent protein. Fluorescent puncta co-localized with neurotransmitter release sites, NMDA-induced Ca2+ increases and NMDA receptor immunoreactivity. During excitotoxic neurodegeneration, synaptic sites were lost and synaptic transmission impaired. These changes were mediated by NMDA receptors and required Ca2+-dependent activation of the proteasome pathway. Tracking synapses from the same cell following brief neurotoxic insult revealed transient loss followed by recovery. The time-course, concentration-dependence and mechanism for loss of post-synaptic sites were distinct from those leading to cell death. Cells expressing p14ARF, which inhibits ubiquitination of post-synaptic density protein 95 and prevents loss of synaptic sites, displayed an increased sensitivity to glutamate-induced cell death. Thus, excitotoxic synapse loss may be a disease-modifying process rather than an obligatory step leading to cell death. These results demonstrate the importance of assessing synaptic function independent of neuronal survival during neurodegeneration and indicate that this approach will be useful for identifying toxins that degrade synaptic connections and for screening for agents that protect synaptic function.  相似文献   

5.
6.
7.
Cupidin (Homer 2/vesl-2) is a post-synaptic adaptor protein that associates with glutamate receptor complexes and the actin cytoskeleton. We analyzed the developmental and activity-dependent localization of Cupidin in mouse cerebellar granule cells. Cupidin is predominantly localized to granule cell post-synapses connecting with mossy fiber terminals in developing post-natal cerebellum, but is diminished in adult cerebellum. In cultured granule cells 7 days in vitro, Cupidin was present as synaptic and extra-synaptic punctate clusters that largely co-localized with the actin-cytoskeletal binding partners F-actin and drebrin, as well as a post-synaptic scaffold protein PSD-95. Upon stimulation with glutamate, Cupidin clusters were rapidly dissociated without protein degradation, and by short-term but not sustained stimulation they were recovered after post-incubation without glutamate. The glutamate-induced declustering of Cupidin preceded that of F-actin and drebrin, was elicited by NMDA receptor-mediated Ca2+ influx, and was followed by a downstream pathway including MAPK/ERK and protein tyrosine kinase. Specific isoforms with post-translational modification were reduced depending on Ca2+-dependent protein phosphatase activity. In cultured hippocampal neurons, Homer family members Homer 1, Cupidin/Homer 2 and Homer 3 showed similar glutamate-induced declustering. We suggest that Cupidin acts as a mobile adaptor protein that changes the distribution states, clustered versus declustered, in response to synaptic activity.  相似文献   

8.
We have identified a novel gene, USP15, encoding a human ubiquitin-specific protease (USP). The USP15 protein consists of 952 amino acids with a predicted molecular mass of 109.2 kDa and contains the highly conserved Cys and His boxes present in all members of the UBP family of deubiquitinating enzymes. USP15 shares 60.5% sequence identity and 76% sequence similarity with the human homolog (UNP/Unph/USP4) of the mouse Unp proto-oncogene. Recombinant USP15 demonstrated ubiquitin-specific protease activity against engineered linear fusions of ubiquitin to beta-galactosidase and glutathione S-transferase. USP15 can also cleave the ubiquitin-proline bond, a property previously unique to Unp/UNP. Chromosomal mapping by fluorescence in situ hybridization and radiation hybrid analyses localized the USP15 gene to chromosome band 12q14, a different location than that of UNP (3p21.3). Analysis of expressed sequence tag databases reveals evidence of alternate polyadenylation sites in the USP15 gene and also indicates that the gene may possess an exon/intron structure similar to that of the Unp gene, suggesting they have descended from a common ancestor. A systematic nomenclature for the human USPs is proposed.  相似文献   

9.
The ubiquitin-specific proteases (UBP) are a family of enzymes that cleave ubiquitin from ubiquitinated protein substrates. We have recently cloned UBP43, a novel member of this family from AML1-ETO knock-in mice. To analyze the role of UBP43 in hematopoiesis and leukemogenesis, we have cloned a full-length human UBP43 cDNA by screening a human monocytic cDNA library as well as by 5'- and 3'-rapid amplification of cDNA ends analyses. This cDNA encodes a polypeptide of 372 amino acids with all of the structural motifs of a deubiquitinating enzyme. The human UBP43 mRNA is strongly expressed in human liver and thymus. Transfection analysis has demonstrated that UBP43 is a nuclear protein. Interestingly, the gene encoding human UBP43 maps to chromosome 22q11.2. This region, known as DiGeorge syndrome critical region, contains a minimal area of 2 Mb and is consistently deleted in DiGeorge syndrome and related disorders. The syndrome is marked by thymic aplasia or hypoplasia, parathyroid hypoplasia, or congenital cardiac abnormalities. Taken together, our results broaden the understanding of a new human ubiquitin-specific protease, UBP43, and suggest that this gene may also be related to DiGeorge syndrome.  相似文献   

10.
The core structure of postsynaptic density (PSD-core) was prepared from rat cerebral synaptosomes by application of the isolation procedure of synaptic junctions (SJ) after trypsinization, which dissociated pre- and post-synaptic structures. The PSD-core was considered to consist mainly of cytoplasmic part of postsynaptic structure, and lack the proteins localized on the external surface of the synaptic plasma membrane, such as receptors for neurotransmitters, Con A-binding proteins and connecting molecule(s) between pre- and post-synaptic structures. The PSD-core proteins which increased greatly in their contents compared with those of SJ prepared from synaptosomes (Syn-SJ) were 120 k Mr Con A-binding protein (Con A-BP) and 30 k Mr protein. Electron microscopic histochemistry suggested that 120 k Con A-BP localized widely in the main structure of the PSD-core. Protein of 30 k Mr was not extracted from PSD-core with 6 M urea, whereas actin, major PSD protein, and tubulin were easily extractable. The 30 k Mr protein was the most resistant one to trypsinization in the SJ fraction. The results suggest that the 30 k Mr protein plays an important role in stabilization and integrity of the postsynaptic density.  相似文献   

11.
We cloned a rat BAALC 1-6-8 isoform cDNA (GenBank Accession No. AB073318) that encoded a 22-kDa protein, and identified endogenous BAALC 1-6-8 protein in the brain. The gene was expressed widely in the frontal part of the brain, and the protein was localized to the synaptic sites and was increased in parallel with synaptogenesis. The protein interacted with the alpha, but not beta, subunit of Ca(2+)/calmodulin-dependent protein kinase II (CaMKIIalpha). The interaction occurred between the N-terminal 35-amino-acid region of BAALC 1-6-8 protein and the C-terminal end of the regulatory domain of CaMKIIalpha, which contains alpha isoform-specific sequence. Thus, the interaction may be CaMKIIalpha-specific. We also found that BAALC 1-6-8 protein, as well as CaMKIIalpha, was localized to lipid rafts and that both myristoylation and palmitoylation of BAALC 1-6-8 N-terminal portion were required for targeting of the protein into lipid rafts. These findings suggest that BAALC 1-6-8 protein play a synaptic role at the postsynaptic lipid raft possibly through interaction with CaMKIIalpha.  相似文献   

12.
Brain ageing is associated with a dysregulation of intracellular calcium (Ca(2+)) homeostasis which leads to deficits in Ca(2+)-dependent signalling pathways and altered neuronal functions. Given the crucial role of neurogranin/RC3 (Ng) in the post-synaptic regulation of Ca(2+) and calmodulin levels, age-dependent changes in the levels of Ng mRNA and protein expression were analysed in 3, 12, 24 and 31-month-old mouse brains. Ageing produced significant decreases in Ng mRNA expression in the dorsal hippocampal subfields, retrosplenial and primary motor cortices, whereas no reliable changes were seen in any other cortical regions examined. Western blot indicated that Ng protein expression was also down-regulated in the ageing mouse brain. Analysis of Ng immunoreactivity in both hippocampal CA1 and retrosplenial areas indicated that Ng protein in aged mice decreased predominantly in the dendritic segments of pyramidal neurones. These data suggest that age-related changes of post-synaptic Ng in selected brain areas, and particularly in hippocampus, may contribute to altered Ca(2+)/calmodulin-signalling pathways and to region-specific impairments of synaptic plasticity and cognitive decline.  相似文献   

13.
14.
A glutamate binding protein was purified from bovine brain to apparent homogeneity. The procedure used for the purification of this protein involved extraction of a crude synaptic membrane fraction with Na-cholate, followed by solubilization of the binding protein from the membranes by Triton X-100, and, finally, affinity batch separation of the protein on L-glutamate-loaded glass fiber. The molecular characteristics of the purified protein were similar to those previously described for the glutamate binding protein from rat brain synaptic membranes and included the following: small Mr (14,000), acidic (pI = 4.7) protein with a single NH2-terminal amino acid (tyrosine), and significant absorption at wave-lengths greater than 300 nm. Complete amino acid analysis of the protein was not achieved, either because of destruction of some amino acids or of incomplete hydrolysis of the protein. The protein bound L-glutamate with high affinity (KD = 0.87 microM), exhibited one class of L-glutamate binding sites, and bound glutamate with a stoichiometry of 0.7 mol ligand/mol protein. The displacement of protein-bound L-glutamic acid by other neuroactive amino acids had characteristics similar to those observed for the displacement of L-glutamate from rat brain synaptic membrane or purified protein binding sites. Finally, the metal ligand formers KCN and NaN3 inhibited the activity of this protein just as they have been shown to do in rat brain synaptic membranes or the purified protein.  相似文献   

15.
To understand the cell signaling of protein kinases, it is essential to monitor their activity in each of the subcellular compartments. Here we developed a method to visualize the activities of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in the cytoplasm, plasma membrane, and nucleus, separately, by utilizing targeted phosphorylation motifs and phosphorylation-specific antibodies. This approach was used to monitor the activities of post-synaptic CaMKII in cultured hippocampal neurons. Strong stimulation of the neurons by N-methyl-d-aspartate led to global activations of CaMKII in the cell bodies and dendrites. On the other hand, weak stimulation by removal of Mg(2+) block of N-methyl-d-aspartate receptors induced CaMKII signaling localized within single dendritic spines. Post-synaptic CaMKII is thought to modify synaptic efficiency. The present data for the first time demonstrate the activation of CaMKII localized within single dendritic spines and are consistent with the notion that synaptic efficiency is modified by CaMKII in single or multiple spine level depending on the strength of receptor activation.  相似文献   

16.
The nature of the G-proteins present in the pre- and post-synaptic plasma membranes and in the synaptic vesicles of cholinergic nerve terminals purified from the Torpedo electric organ was investigated. In pre- and post-synaptic plasma membranes, Bordetella pertussis toxin, known to catalyze the ADP-ribosylation of the alpha-subunit of several G-proteins, labels two substrates at 41 and 39 kDa. The 39 kDa subunit detected by ADP-ribosylation in the synaptic plasma membrane fractions was immunologically similar to the Go alpha-subunit purified from calf brain. In contrast to bovine chromaffin cell granules, no G-protein could be detected in Torpedo synaptic vesicles either by ADP-ribosylation or by immunoblotting.  相似文献   

17.
Far Westerns with digoxigenin-conjugated protein phosphatase-1 (PP1) catalytic subunit identified PP1-binding proteins in extracts from bovine, rat, and human brain. A major 70-kDa PP1-binding protein was purified from bovine brain cortex plasma membranes, using affinity chromatography on the immobilized phosphatase inhibitor, microcystin-LR. Mixed peptide sequencing following cyanogen bromide digestion identified the 70-kDa membrane-bound PP1-binding protein as bovine neurofilament-L (NF-L). NF-L was the major PP1-binding protein in purified preparations of bovine spinal cord neurofilaments and the cytoskeletal compartment known as post-synaptic density, purified from rat brain cortex. Bovine neurofilaments, at nanomolar concentrations, inhibited the phosphorylase phosphatase activity of rabbit skeletal muscle PP1 catalytic subunit but not the activity of PP2A, another major serine/threonine phosphatase. PP1 binding to bovine NF-L was mapped to the head region. This was confirmed by both binding and inhibition of PP1 by recombinant human NF-L fragments. Together, these studies indicate that NF-L fulfills many of the biochemical criteria established for a PP1-targeting subunit and suggest that NF-L may target the functions of PP1 in membranes and cytoskeleton of mammalian neurons.  相似文献   

18.
We have characterized the mouse ortholog of the human ubiquitin-specific protease USP15. Mouse Usp15 consists of 981 amino acids with a predicted molecular mass of 112 kDa, contains the highly conserved Cys and His boxes present in all members of the UBP family of deubiquitinating enzymes, and is 98% identical/99% similar to human USP15. Usp15 shares 59.5% identity/75.5% sequence similarity with the mouse Unp(Usp4) oncoprotein. Recombinant Usp15 demonstrated ubiquitin-specific protease activity against engineered linear fusions of ubiquitin to glutathione S-transferase. Usp15 can also cleave the ubiquitin-proline bond, as can USP15 and Usp4. Alignment of mouse and human Usp15 and Usp4 protein sequences suggested that Usp15/USP15 may be alternately spliced in a manner analogous to Usp4. Sequence analysis of RT-PCR products from several human and mouse cell lines and tissues revealed alternate splicing in all cells studied. Northern blot analysis of both mouse and human Usp15 revealed two differently sized mRNAs in all tissues examined, owing to alternate polyadenylation sites spaced by 1.5 kb. Chromosomal mapping by interspecific backcross analysis localized the Usp15 gene to the distal region of mouse Chromosome (Chr) 10. This region is syntenic with human Chr 12q24, the location of human USP15, and a different location to Unp(Usp4) (Chr 9). Identification of the mouse Usp15 gene (>69.5 kb) and human USP15 gene (145 kb) sequences in genome databases reveals that both are composed of 22 exons with identical splice sites, and both have an exon/intron structure identical to the mouse Usp4 gene, including the alternately spliced exon. Phylogenetic studies suggest that a sequence currently identified as a chicken Usp4 ortholog is in fact a USP15 ortholog, while bona-fide chicken, cow, and rat Usp4 orthologs can be identified in EST databases.  相似文献   

19.
We have purified a 30-kDa serine protease (designated RNK-Met-1) from the granules of the rat large granular lymphocyte leukemia cell line (RNK-16) that hydrolytically cleaves model peptide substrates after methionine, leucine, and norleucine (Met-ase activity). Utilizing molecular sieve chromatography, heparin-agarose, chromatography, and reverse-phase high pressure liquid chromatography, RNK-Met-1 was purified to homogeneity and 25 NH2-terminal amino acids were sequenced. By using the polymerase chain reaction, oligonucleotide primers derived from amino acids at position 14-25 and from a downstream active site conserved in other serine protease genes were used to generate a 534-base pair cDNA clone encoding a novel serine protease from RNK-16 mRNA. This cDNA clone was used to isolate a full-length 867-base pair RNK-Met-1 cDNA from an RNK-16 lambda-gt11 library. The open reading frame predicts a mature protein of 238 amino acids with two potential sites for N-linked glycosylation. The cDNA also encodes a leader peptide of at least 20 amino acids. The characteristic Ile-Ile-Gly-Gly amino acids of the NH2 terminus and the His, Asp, and Ser residues that form the catalytic triad of serine proteases were both conserved. The amino acid sequence has less than 45% identity with any other member of the serine protease family, indicating that RNK-Met-1 is distinct and may itself represent a new subfamily of serine proteases. Northern blot analysis of total cellular RNA detected a single 0.9-kilobase mRNA in the in vitro and in vivo variants of RNK-16 and in spleen-derived plastic-adherent rat lymphokine-activated killer cells. RNK-Met-1 mRNA was not detectable in freshly isolated rat splenocytes, thymocytes, brain, colon, and liver or activated nonadherent rat splenocytes and thymocytes. These data indicate that RNK-Met-1 is a serine protease with unique activity that is expressed in the granules of large granular lymphocytes.  相似文献   

20.
Targeting of neuronal nitric-oxide synthase (nNOS) to appropriate sites in a cell is mediated by interactions with its PDZ domain and plays an important role in specifying the sites of reaction of nitric oxide (NO) in the central nervous system. Here we report the identification and characterization of a novel nNOS-interacting DHHC domain-containing protein with dendritic mRNA (NIDD) (GenBank accession number AB098078), which increases nNOS enzyme activity by targeting the nNOS to the synaptic plasma membrane in a PDZ domain-dependent manner. The deduced NIDD protein consisted of 392 amino acid residues and possessed five transmembrane segments, a zinc finger DHHC domain, and a PDZ-binding motif (-EDIV) at its C-terminal tail. In vitro pull-down assays suggested that the C-terminal tail region of NIDD specifically interacted with the PDZ domain of nNOS. The PDZ dependence was confirmed by an experiment using a deletion mutant, and the interaction was further confirmed by co-sedimentation assays using COS-7 cells transfected with NIDD and nNOS. Both NIDD and nNOS were enriched in synaptosome and synaptic plasma membrane fractions and were present in the lipid raft and postsynaptic density fractions in the rat brain. Co-localization of these proteins was also observed by double staining of the proteins in cultured cortical neurons. Thus, NIDD and nNOS were co-localized in the brain, although the colocalizing regions were restricted, as indicated by the distribution of their mRNA expression. Most important, co-transfection of NIDD and nNOS increased NO-producing nNOS activity. These results suggested that NIDD plays an important role in the regulation of the NO signaling pathway at postsynaptic sites through targeting of nNOS to the postsynaptic membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号