首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biological activity of DnaK, the bacterial representative of the Hsp70 protein family, is regulated by the allosteric interaction between its nucleotide and peptide substrate binding domains. Despite the importance of the nucleotide-induced cycling of DnaK between substrate-accepting and releasing states, the heterotropic allosteric mechanism remains as yet undefined. To further characterize this mechanism, the nucleotide-induced absorbance changes in the vibrational spectrum of wild-type DnaK was characterized. To assign the conformation sensitive absorption bands, two deletion mutants (one lacking the C-terminal alpha-helical subdomain and another comprising only the N-terminal ATPase domain), and a single-point DnaK mutant (T199A) with strongly reduced ATPase activity, were investigated by time-resolved infrared difference spectroscopy combined with the use of caged-nucleotides. The results indicate that (1) ATP, but not ADP, binding promotes a conformational change in both subdomains of the peptide binding domain that can be individually resolved; (2) these conformational changes are kinetically coupled, most likely to ensure a decrease in the affinity of DnaK for peptide substrates and a concomitant displacement of the lid away from the peptide binding site that would promote efficient diffusion of the released peptide to the medium; and (3) the alpha-helical subdomain contributes to stabilize the interdomain interface against the thermal challenge and allows bidirectional transmission of the allosteric signal between the ATPase and substrate binding domains at stress temperatures (42 degrees C).  相似文献   

2.
The 70 kDa heat shock proteins (the Hsp70 family) assist refolding of their substrates through ATP-controlled binding. We have analyzed mutants of DnaK, an Hsp70 homolog, altered in key residues of its substrate binding domain. Substrate binding occurs by a dynamic mechanism involving: a hydrophobic pocket for a single residue that is crucial for affinity, a two-layered closing device involving independent action of an alpha-helical lid and an arch, and a superimposed allosteric mechanism of ATP-controlled opening of the substrate binding cavity that operates largely through a beta-structured subdomain. Correlative evidence from mutational analysis suggests that the ADP and ATP states of DnaK differ in the frequency of the conformational changes in the alpha-helical lid and beta-domain that cause opening of the substrate binding cavity. The affinity for substrates, as defined by this mechanism, determines the efficiency of DnaJ-mediated and ATP hydrolysis mediated locking-in of substrates and chaperone activity of DnaK.  相似文献   

3.
The 70-kDa heat shock proteins (Hsp70), including the cognates (Hsc70), are molecular chaperones that prevent misfolding and aggregation of polypeptides in cells under both normal and stressed conditions. They are composed of two major structural domains: an N-terminal 44-kDa ATPase domain and a C-terminal 30-kDa substrate binding domain. The 30-kDa domain can be divided into an 18-kDa subdomain and a 10-kDa subdomain. Here we report the crystal structure of the 10-kDa subdomain of rat Hsc70 at 3.45 A. Its helical region adopted a helix-loop-helix fold. This conformation is different from the equivalent subdomain of DnaK, the bacterial homologue of Hsc70. Moreover, in the crystalline state, the 10-kDa subdomain formed dimers. The results of gel filtration chromatography further supported the view that this subdomain was self-associated. Upon gel filtration, Hsc70 was found to exist as a mixture of monomers, dimers, and oligomers, but the 60-kDa fragment was predominantly found to exist as monomers. These findings suggest that the alpha-helical region of the 10-kDa subdomain dictates the chaperone self-association.  相似文献   

4.
Molecular chaperones of the heat shock protein 70 family (Hsp70; also called DnaK in prokaryotes) play an important role in the folding and functioning of cellular protein machinery. The dnaK gene from the plant pathogen Agrobacterium tumefaciens RUOR was amplified using the polymerase chain reaction and the DnaK protein (Agt DnaK) was over-produced as a His-tagged protein in Escherichia coli. The Agt DnaK amino acid sequence was 96% identical to the A. tumefaciens C58 DnaK sequence and 65% identical to the E. coli DnaK sequence. Agt DnaK was shown to be able to functionally replace E. coli DnaK in vivo using complementation assays with an E. coli dnaK756 mutant strain and a dnaK52 deletion strain. Over-production and purification of Agt DnaK was successful, and allowed for further characterization of the protein. Kinetic analysis of the basal ATPase activity of purified Agt DnaK revealed a Vmax of 1.3 nmol phosphate released per minute per milligram DnaK, and a Km of 62 microM ATP. Thus, this is the first study to provide both in vivo and in vitro evidence that Agt DnaK has the properties of a molecular chaperone of the Hsp70 family.  相似文献   

5.
In the DnaK (Hsp70) molecular chaperone system of Escherichia coli, the substrate polypeptide is fed into the chaperone cycle by association with the fast-binding, ATP-liganded form of the DnaK. The substrate binding properties of DnaK are controlled by its two cochaperones DnaJ (Hsp40) and GrpE. DnaJ stimulates the hydrolysis of DnaK-bound ATP, and GrpE accelerates ADP/ATP exchange. DnaJ has been described as targeting the substrate to DnaK, a concept that has remained rather obscure. Based on binding experiments with peptides and polypeptides we propose here a novel mechanism for the targeting action of DnaJ: ATP.DnaK and DnaJ with its substrate-binding domain bind to different segments of one and the same polypeptide chain forming (ATP.DnaK)m.substrate.DnaJn complexes; in these ternary complexes efficient cis-interaction of the J-domain of DnaJ with DnaK is favored by their propinquity and triggers the hydrolysis of DnaK-bound ATP, converting DnaK to its ADP-liganded high affinity state and thus locking it onto the substrate polypeptide.  相似文献   

6.
Hsp70 family members together with their Hsp40 cochaperones function as molecular chaperones, using an ATP-controlled cycle of polypeptide binding and release to mediate protein folding. Hsp40 plays a key role in the chaperone reaction by stimulating the ATPase activity and activating the substrate binding of Hsp70. We have explored the interaction between the Escherichia coli Hsp70 family member, DnaK, and its cochaperone partner DnaJ. Our data show that the binding of ATP, subsequent conformational changes in DnaK, and DnaJ-stimulated ATP hydrolysis are all required for the formation of a DnaK-DnaJ complex as monitored by Biacore analysis. In addition, our data imply that the interaction of the J-domain with DnaK depends on the substrate binding state of DnaK.  相似文献   

7.
The Escherichia coli Hsp40 DnaJ uses its J-domain to target substrate polypeptides for binding to the Hsp70 DnaK, but the mechanism of J-domain function has been obscured by a substrate-like interaction between DnaJ and DnaK. ATP hydrolysis in DnaK is associated with a conformational change that captures the substrate, and both DnaJ and substrate can stimulate ATP hydrolysis. However, substrates cannot trigger capture by DnaK in the presence of ATP, and substrates stimulate a DnaK conformational change that is uncoupled from ATP hydrolysis. The role of the J-domain was examined using the fluorescent derivative of a fusion protein composed of the J-domain and a DnaK-binding peptide. In the absence of ATP, DnaK-binding affinity of the fusion protein is similar to that of the unfused peptide. However, in the presence of ATP, the affinity of the fusion protein is dramatically increased, which is opposite to the decrease in DnaK affinity typically exhibited by peptides. Binding of a fusion protein that contains a defective J-domain is insensitive to ATP. According to results from isothermal titration calorimetry, the J-domain binds to the DnaK ATPase domain with weak affinity (K(D) = 23 microM at 20 degrees C). The interaction is characterized by a positive enthalpy, small heat capacity change (DeltaC(p)= -33 kcal mol(-1)), and increasing binding affinity for increasing temperatures in the physiological range. In conditions that support binding of the J-domain to the ATPase domain, the J-domain accelerates ATP hydrolysis and a simultaneous conformational change in DnaK that is associated with peptide capture. The defective J-domain is inactive, despite the fact that it binds to the DnaK ATPase domain with higher than wild-type affinity. The results are most consistent with an allosteric mechanism of J-domain action in which the J-domain couples ATP hydrolysis to peptide capture by accelerating ATP hydrolysis and delaying DnaK closure until ATP is hydrolyzed.  相似文献   

8.
The first discovery of an Hsp70 chaperone gene was the isolation of an Escherichia coli mutant, dnaK756, which rendered the cells resistant to lytic infection with bacteriophage lambda. The DnaK756 mutant protein has since been used to establish many of the cellular roles and biochemical properties of DnaK. DnaK756 has three glycine-to-aspartate substitutions at residues 32, 455, and 468, which were reported to result in defects in intrinsic and GrpE-stimulated ATPase activities, substrate binding, stability of the substrate-binding domain, interdomain communication, and, consequently, defects in chaperone activity. To dissect the effects of the different amino acid substitutions in DnaK756, we analyzed two DnaK variants carrying only the amino-terminal (residue 32) or the two carboxyl-terminal (residues 455 and 468) substitutions. The amino-terminal substitution interfered with the GrpE-stimulated ATPase activity. The carboxyl-terminal mutations (i) affected stability and function of the substrate-binding domain, (ii) caused a 10-fold elevated ATP hydrolysis rate, but (iii) did not severely affect domain coupling. Surprisingly, DnaK chaperone activity was more severely compromised by the amino-terminal than by the carboxyl-terminal amino acid substitutions both in vivo and in vitro. In the in vitro refolding of denatured firefly luciferase, the defect of the DnaK variant carrying the amino-terminal substitution results from its inability to release, upon GrpE-mediated nucleotide exchange, bound luciferase in a folding competent state. Our results indicate that the DnaK-DnaJ-GrpE chaperone system can tolerate suboptimal substrate binding, whereas the tight kinetic control of substrate dissociation by GrpE is essential.  相似文献   

9.
The molecular co-chaperone BAG1 and other members of the BAG family bind to Hsp70/Hsc70 heat shock proteins through a conserved BAG domain that interacts with the ATPase domain of the chaperone. BAG1 and other accessory proteins stimulate ATP hydrolysis and regulate the ATP-driven activity of the chaperone complexes. Contacts are made through residues in helices alpha2 and alpha3 of the BAG domain and predominantly residues in the C-terminal lobe of the bi-lobed Hsc70 ATPase domain. Within the C-terminal lobe, a subdomain exists that contains all the contacts shown by mutagenesis to be required for BAG1 recognition. In this study, the subdomain, representing Hsc70 residues 229-309, was cloned and expressed as a separately folded unit. The results of in vitro binding assays demonstrate that this subdomain is sufficient for binding to BAG1. Binding analyses with surface plasmon resonance indicated that the subdomain binds to BAG1 with a 10-fold decrease in equilibrium dissociation constant (K(D) = 22 nM) relative to the intact ATPase domain. This result suggests that the stabilizing contacts for docking of BAG1 to Hsc70 are located in the C-terminal lobe of the ATPase domain. These findings provide new insights into the role of co-chaperones as nucleotide exchange factors.  相似文献   

10.
The molecular chaperone DnaK recognizes and binds substrate proteins via a stretch of seven amino acid residues that is usually only exposed in unfolded proteins. The binding kinetics are regulated by the nucleotide state of DnaK, which alternates between DnaK.ATP (fast exchange) and DnaK.ADP (slow exchange). These two forms cycle with a rate mainly determined by the ATPase activity of DnaK and nucleotide exchange. The different substrate binding properties of DnaK are mainly attributed to changes of the position and mobility of a helical region in the C-terminal peptide-binding domain, the so-called LID. It closes the peptide-binding pocket and thus makes peptide binding less dynamic in the ADP-bound state, but does not (strongly) interact with peptides directly. Here, we address the question if nucleotide-dependent structural changes may be observed in the peptide-binding region that could also be connected to peptide binding kinetics and more importantly could induce structural changes in peptide stretches using the energy available from ATP hydrolysis. Model peptides containing two cysteine residues at varying positions were derived from the structurally well-documented peptide NRLLLTG and labelled with electron spin sensitive probes. Measurements of distances and mobilities of these spin labels by electron paramagnetic resonance spectroscopy (EPR) of free peptides or peptides bound to the ATP and ADP-state of DnaK, respectively, showed no significant changes of mobility nor distance of the two labels. This indicates that no structural changes that could be sensed by the probes at the position of central leucine residues located in the center of the binding region occur due to different nucleotide states. We conclude from these studies that the ATPase activity of DnaK is not connected to structural changes of the peptide-binding pocket but rather only has an effect on the LID domain or other further remote residues.  相似文献   

11.
ClpB of Escherichia coli is an ATP-dependent ring-forming chaperone that mediates the resolubilization of aggregated proteins in cooperation with the DnaK chaperone system. ClpB belongs to the Hsp100/Clp subfamily of AAA+ proteins and is composed of an N-terminal domain and two AAA-domains that are separated by a "linker" region. Here we present a detailed structure-function analysis of ClpB, dissecting the individual roles of ClpB domains and conserved motifs in oligomerization, ATP hydrolysis, and chaperone activity. Our results show that ClpB oligomerization is strictly dependent on the presence of the C-terminal domain of the second AAA-domain, while ATP binding to the first AAA-domains stabilized the ClpB oligomer. Analysis of mutants of conserved residues in Walker A and B and sensor 2 motifs revealed that both AAA-domains contribute to the basal ATPase activity of ClpB and communicate in a complex manner. Chaperone activity strictly depends on ClpB oligomerization and the presence of a residual ATPase activity. The N-domain is dispensable for oligomerization and for the disaggregating activity in vitro and in vivo. In contrast the presence of the linker region, although not involved in oligomerization, is essential for ClpB chaperone activity.  相似文献   

12.
The C-terminal, polypeptide binding domain of the 70-kDa molecular chaperone DnaK is composed of a unique lidlike subdomain that appears to hinder steric access to the peptide binding site. We have expressed, purified, and characterized a lidless form of DnaK to test the influence of the lid on the ATPase activity, on interdomain communication, and on the kinetics of peptide binding. The principal findings are that loss of the lid creates an activated form of DnaK which is not equivalent to ATP-bound DnaK. For example, at 25 degrees C the NR peptide (NRLLLTG) dissociates from the ADP and ATP states of DnaK with observed off-rate constants of 0.001 and 4.8 s(-1), respectively. In contrast, for DnaK that lacks most of the helical lid, residues 518-638, the NR peptide dissociates with observed off-rate constants of 0.1 and 188 s(-1). These results show that the loss of the lid does not interfere with interdomain communication, that the beta-sandwich peptide binding domain can exist in two discrete conformations, and that the lid functions to increase the lifetime of a DnaK.peptide complex. We discuss several mechanisms to explain how the lid affects the lifetime of a DnaK.peptide complex.  相似文献   

13.
Landry SJ 《Biochemistry》2003,42(17):4926-4936
The molecular chaperone machine composed of Escherichia coli Hsp70/DnaK and Hsp40/DnaJ binds and releases client proteins in cycles of ATP-dependent protein folding, membrane translocation, disassembly, and degradation. The J-domain of DnaJ simultaneously stimulates ATP hydrolysis in the ATPase domain and capture of the client protein in the peptide-binding domain of DnaK. ATP-dependent binding of DnaJ to DnaK mimics DnaJ-dependent capture of a client protein. The dnaJ mutation that replaces aspartate-35 with asparagine (D35N) in the J-domain causes a defect in binding of DnaJ to DnaK. The dnaK mutation that replaces arginine-167 with alanine (R167A) in the ATPase domain of DnaK(R167A) restores binding of DnaJ(D35N). This genetic interaction was said to be allele-specific because wild-type DnaJ does not bind to DnaK(R167A). The J-domain of DnaJ binds to the ATPase domain of DnaK in its capacity as modulator of DnaK ATPase activity and conformational behavior. Surprisingly, the mutations affect the domainwise interaction in an almost opposite manner. D35N increases the affinity of the J-domain for the ATPase domain. R167A has no affect on the affinity of the ATPase domain for the D35N mutant J-domain, but it reduces the affinity for the wild-type J-domain. Previous amide ((1)H, (15)N) NMR chemical shift perturbation mapping in the J-domain suggested that the ATPase domain binds to J-domain helix II and the flanking loops. In the D35N mutant J-domain, chemical shift perturbations include additional effects at amides in the flexible loop II-III and helix III, which have been proposed to undergo an induced fit conformational change upon binding to DnaK. The integrated magnitudes of chemical shift perturbations for the various J-domain and ATPase domain pairs correlate with the free energies of binding. Thus, the J-domain structure can be described as a dynamic ensemble of conformations that is constrained by binding to the ATPase domain. J-domain helix II bends upon binding to the ATPase domain. D35N increases helix II bending, but less so in combination with R167A in the ATPase domain. Taken together, the results suggest that D35N overstabilizes an induced fit conformational change in loop II-III and helix III that is necessary for the J-domain to couple ATP hydrolysis with a conformational change in DnaK, and R167A destabilizes the induced conformation. Conclusions from this work have implications for understanding mechanisms of protein-protein interaction that are involved in allosteric regulation and genetic suppression.  相似文献   

14.
Members of the Hsp70 (heat-shock protein of 70 kDa) family of molecular chaperones bind to exposed hydrophobic stretches on substrate proteins in order to dissociate molecular complexes and prevent aggregation in the cell. Substrate affinity for the C-terminal domain of the Hsp70 is regulated by ATP binding to the N-terminal domain utilizing an allosteric mechanism. Our multi-dimensional NMR studies of a substrate-binding domain fragment (amino acids 387-552) from an Escherichia coli Hsp70, DnaK(387-552), have uncovered a pH-dependent conformational change, which we propose to be relevant for the full-length protein also. At pH 7, the C-terminus of DnaK(387-552) mimics substrate by binding to its own substrate-binding site, as has been observed previously for truncated Hsp70 constructs. At pH 5, the C-terminus is released from the binding site, such that DnaK is in the substrate-free state 10-20% of the time. We propose that the mechanism for the release of the tail is a loss of affinity for substrate at low pH. The pH-dependent fluorescence changes at a tryptophan residue near the substrate-binding pocket in full-length DnaK lead us to extend these conclusions to the full-length DnaK as well. In the context of the DnaK substrate-binding domain fragment, the release of the C-terminus from the substrate-binding site provides our first glimpse of the empty conformation of an Hsp70 substrate-binding domain containing a portion of the helical subdomain.  相似文献   

15.
ClpX mediates ATP-dependent denaturation of specific target proteins and disassembly of protein complexes. Like other AAA + family members, ClpX contains an alphabeta ATPase domain and an alpha-helical C-terminal domain. ClpX proteins with mutations in the C-terminal domain were constructed and screened for disassembly activity in vivo. Seven mutant enzymes with defective phenotypes were purified and characterized. Three of these proteins (L381K, D382K and Y385A) had low activity in disassembly or unfolding assays in vitro. In contrast to wild-type ClpX, substrate binding to these mutants inhibited ATP hydrolysis instead of increasing it. These mutants appear to be defective in a reaction step that engages bound substrate proteins and is required both for enhancement of ATP hydrolysis and for unfolding/disassembly. Some of these side chains form part of the interface between the C-terminal domain of one ClpX subunit and the ATPase domain of an adjacent subunit in the hexamer and appear to be required for communication between adjacent nucleotide binding sites.  相似文献   

16.
Hsp70 chaperones assist protein folding through ATP-regulated transient association with substrates. Substrate binding by Hsp70 is controlled by DnaJ co-chaperones which stimulate Hsp70 to hydrolyze ATP and, consequently, to close its substrate binding cavity allowing trapping of substrates. We analyzed the interaction of the Escherichia coli Hsp70 homologue, DnaK, with DnaJ using surface plasmon resonance (SPR) spectroscopy. Resonance signals of complex kinetic characteristics were detected when DnaK was passed over a sensor chip with coupled DnaJ. This interaction was specific as it was not detected with a functionally defective DnaJ mutant protein, DnaJ259, that carries a mutation in the HPD signature motif of the conserved J-domain. Detectable DnaK-DnaJ interaction required ATP hydrolysis by DnaK and was competitively inhibited by chaperone substrates of DnaK. For DnaK mutant proteins with amino acid substitutions in the substrate binding cavity that affect substrate binding, the strength of detected interaction with DnaJ decreased proportionally with increased strength of the substrate binding defects. These findings indicate that the detected response signals resulted from DnaJ and ATP hydrolysis-dependent association of DnaJ as substrate for DnaK. Although not considered as physiologically relevant, this association allowed us to experimentally unravel the mechanism of DnaJ action. Accordingly, DnaJ stimulates ATP hydrolysis only after association of a substrate with the substrate binding cavity of DnaK. Further analysis revealed that this coupling mechanism required the J-domain of DnaJ and was also functional for natural DnaK substrates, and thus is central to the mechanism of action of the DnaK chaperone system.  相似文献   

17.
DnaK/DnaJ/GrpE constitutes the primary chaperone machinery in E. coli that functions to protect proteins against heat-induced protein aggregation. Surprisingly, upon exposure of cells to reactive oxygen species at elevated temperature, proteins are no longer protected by the DnaK system. Instead, they bind now to the redox-regulated chaperone Hsp33, which is activated by the same conditions that inactivate DnaK. The inactivation of DnaK seems to be induced by the dramatic decrease in intracellular ATP levels that occurs upon exposure of cells to reactive oxygen species. This appears to render DnaK's N-terminal ATPase domain nucleotide depleted and thermolabile. DnaK's N terminus reversibly unfolds in vivo, and DnaK loses its ability to protect proteins against stress-induced aggregation. Now, the ATP-independent chaperone holdase Hsp33 binds to a large number of cellular proteins and prevents their irreversible aggregation. Upon return to nonstress conditions, Hsp33 becomes inactivated while DnaK reactivates and resumes its task to support protein folding.  相似文献   

18.
Hsp70 chaperones are composed of two domains; the 40 kDa N-terminal nucleotide-binding domain (NDB) and the 30 kDa C-terminal substrate-binding domain (SBD). Structures of the SBD from Escherichia coli homologues DnaK and HscA show it can be further divided into an 18 kDa beta-sandwich subdomain, which forms the hydrophobic binding pocket, and a 10 kDa C-terminal three-helix bundle that forms a lid over the binding pocket. Across prokaryotes and eukaryotes, the NBD and beta-sandwich subdomain are well conserved in both sequence and structure. The C-terminal subdomain is, however, more evolutionary variable and the only eukaryotic structure from rat Hsc70 revealed a diverged helix-loop-helix fold. We have solved the crystal structure of the C-terminal 10 kDa subdomain from Caenorhabditis elegans Hsp70 which forms a helical-bundle similar to the prokaryotic homologues. This provides the first confirmation of the structural conservation of this subdomain in eukaryotes. Comparison with the rat structure reveals a domain-swap dimerisation mechanism; however, the C. elegans subdomain exists exclusively as a monomer in solution in agreement with the hypothesis that regions out with the C-terminal subdomain are necessary for Hsp70 self-association.  相似文献   

19.
We improved the DnaK molecular chaperone system for increased folding efficiency towards two target proteins, by using a multi-parameter screening procedure. First, we used a folding-deficient C-terminal truncated chloramphenicol acetyl transferase (CAT_Cd9) to obtain tunable selective pressure for enhanced DnaK chaperon function in vivo. Second, we screened selected clones in vitro for CAT_Cd9 activity after growth under selective pressure. We then analyzed how these variants performed as compared to wild type DnaK towards folding assistance of a second target protein; namely, chemically denatured firefly luciferase. A total of 11 single point DnaK mutants and 1 truncated variant were identified using CAT_Cd9 as the protein target, while 4 of the 12 selected variants showed improved luciferase refolding in vitro. This shows that improving the DnaK chaperone by using a certain target substrate protein, does not necessarily result in a loss or reduction in its ability to assist other proteins. Of the 12 identified mutations, half were clustered in the nucleotide binding domain, and half in the lid domain (LD) of DnaK. The truncated variant is characterized by a 35-residue C-terminal truncation (Cd35) and exhibited the highest improvement for luciferase refolding. Cd35 showed a 7-fold increase in initial refolding rate for denatured luciferase and resulted in a 5-fold increase in maximal luminescence as compared to wild type DnaK. Given that the best in vitro performing mutants contained LD substitutions, and that the LD is not involved in ATP binding, ATP hydrolysis or client protein association, but is involved in allosteric regulation of the chaperone cycle, we propose that improved DnaK variants result in changes to allosteric domain communication, ultimately retuning the ATP-dependent chaperone cycle.  相似文献   

20.
Central to the chaperone function of Hsp70 stress proteins including Escherichia coli DnaK is the ability of Hsp70 to bind unfolded protein substrates in an ATP-dependent manner. Mg2+/ATP dissociates bound substrates and, furthermore, substrate binding stimulates the ATPase of Hsp70. This coupling is proposed to require a glutamate residue, E175 of bovine Hsc70, that is entirely conserved within the Hsp70 family, as it contacts bound Mg2+/ATP and is part of a hinge required for a postulated ATP-dependent opening/closing movement of the nucleotide binding cleft which then triggers substrate release. We analyzed the effects of dnaK mutations which alter the corresponding glutamate-171 of DnaK to alanine, leucine or lysine. In vivo, the mutated dnaK alleles failed to complement the delta dnaK52 mutation and were dominant negative in dnaK+ cells. In vitro, all three mutant DnaK proteins were inactive in known DnaK-dependent reactions, including refolding of denatured luciferase and initiation of lambda DNA replication. The mutant proteins retained ATPase activity, as well as the capacity to bind peptide substrates. The intrinsic ATPase activities of the mutant proteins, however, did exhibit increased Km and Vmax values. More importantly, these mutant proteins showed no stimulation of ATPase activity by substrates and no substrate dissociation by Mg2+/ATP. Thus, glutamate-171 is required for coupling of ATPase activity with substrate binding, and this coupling is essential for the chaperone function of DnaK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号