首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amino acid transport by choroid plexus in vitro   总被引:2,自引:0,他引:2  
Choroid plexus from mongrel cats was incubated from 1 to 120 min in artificial cerebrospinal fluid containing α-amino[1-14C]isobutyric acid. The uptake of α-amino [1-14C]isobutyric acid occurred against a concentration gradient, was saturable, dependent on metabolic energy, and inhibited by natural amino acids. These results indicate that a transport mechanism is present in choroid plexus which could serve to regulate amino acid concentration in the cerebrospinal fluid of animals.  相似文献   

2.
Summary Scanning electron microscopy (SEM) was used to examine choroid plexuses in the brain of two human adults aged 44 and 46, respectively, and 12 older subjects from 67 to 98 years of age. It was possible to obtain a three-dimensional view of the ring-like structures (Biondi bodies) located in the cytoplasm of choroid plexus epithelial cells in the older-age group. The filaments forming the rings were clearly visible. No such structures were found between epithelial cells. The intracellular location of the Biondi bodies and their state of preservation compared to other cytoplasmic elements suggest that they may have a destructive effect on epithelial cells of choroid plexuses. The same material was examined by transmission electron microscopy (TEM); the results obtained were in full agreement with the evidence obtained with SEM.  相似文献   

3.
4.
We have studied the transport of ferritin that was internalized by coated micropinocytic vesicles at the apical surface of the choroid plexus epithelium in situ. After ventriculocisternal perfusion of native ferritin (NF) or cationized ferritin (CF), three routes followed by the tracers are revealed: (a) to lysosomes, (b) to cisternal compartments, and (c) to the basolateral cell surface. (a) NF is micropinocytosed to a very limited degree and appears in a few lysosomal elements whereas CF is taken up in large amounts and can be followed, via endocytic vacuoles and light multivesicular bodies, to dark multivesicular bodies and dense bodies. (b) Occasionally, CF particles are found in cisterns that may represent GERL or trans-Golgi elements, whereas stacked Golgi cisterns never contain CF. (c) Transepithelial vesicular transport of CF is distinctly revealed. The intercellular spaces of the epithelium, below the apical tight junctions, contain numerous clusters of CF particles, often associated with surface-connected, coated vesicles. Vesicles in the process of exocytosis of CF are also present at the basal epithelial surface, whereas connective tissue elements below the epithelium are unlabeled. Our conclusion is that fluid and solutes removed from the cerebrospinal fluid by endocytosis either become sequestered in the lysosomal apparatus of the choroidal epithelium or are transported to the basolateral surface. However, our results do not indicate any significant recycling via Golgi complexes of internalized apical cell membrane.  相似文献   

5.
Summary The experiments described herein use an in vitro preparation of choroid plexus to demonstrate that it is a vasopressin-responsive organ by morphologic criteria. Choroid plexus from rats was incubated for one hour in graded concentrations of arginine vasopressin (AVP). Within physiologic range of molar concentration, incubation in vasopressin induced a decrease in basal and lateral spaces in choroid plexus epithelial cells as well as an increase in number of dark cells. The number of cells with basal spaces decreased significantly from 82.7±9.2 in control tissue to 19±18 in tissue incubated in 10-12 M AVP; similarly, the number with lateral cellular spaces decreased from 20±8.8 to 7.6±2.2 cells in 10-10 M AVP. Dark cells increased in number from 3.8±2.6 in control conditions to 49±4 with 10-9 M vasopressin. These data suggest important effects of arginine vasopressin in cerebrospinal fluid (CSF) on choroid plexus, compatible with enhanced fluid transport across choroid epithelial cells.  相似文献   

6.
7.
Thyroxine transport in choroid plexus   总被引:4,自引:0,他引:4  
The role of the choroid plexus in thyroid hormone transport between body and brain, suggested by strong synthesis and secretion of transthyretin in this tissue, was investigated in in vitro and in vivo systems. Rat choroid plexus pieces incubated in vitro were found to accumulate thyroid hormones from surrounding medium in a non-saturable process. At equilibrium, the ratio of thyroid hormone concentration in choroid plexus pieces to that in medium decreased upon increasing the concentration of transthyretin in the medium. Fluorescence quenching of fluorophores located at different depths in liposome membranes showed maximal hormone accumulation in the middle of the phospholipid bilayer. Partition coefficients of thyroxine and triiodothyronine between lipid and aqueous phase were about 20,000. After intravenous injection of 125I-labeled thyroid hormones, choroid plexus and parts of the brain steadily accumulated 125I-thyroxine, but not [125I]triiodothyronine, for many hours. The accumulation of 125I-thyroxine in choroid plexus preceded that in brain. The amount of 125I-thyroxine in non-brain tissues and the [125I]triiodothyronine content of all tissues decreased steadily beginning immediately after injection. A model is proposed for thyroxine transport from the bloodstream into cerebrospinal fluid based on partitioning of thyroxine between choroid plexus and surrounding fluids and binding of thyroxine to transthyretin newly synthesized and secreted by choroid plexus.  相似文献   

8.
The tight junctions of the choroid plexus epithelium of rats were studied by freeze-fracture. In glutaraldehyde-fixed material, the junctions exhibited rows of aligned particles and short bars on P-faces, the E-faces showing grooves bearing relatively many particles. A particulate nature of the junctional strands could be established by using unfixed material. The mean values of junctional strands from the lateral, third, and fourth ventricles of Lewis rats were 7.5 +/- 2.6, 7.4 +/- 2.2, and 7.5 +/- 2.4; and of Sprague-Dawley rats 7.7 +/- 3.4, 7.4 +/- 2.3, and 7.3 +/- 1.6. Examination of complementary replicas (of fixed tissue) showed that discomtinuities are present in the junctional strands: 42.2 +/- 4.6% of the length of measured P-face ridges were discontinuities, and the total amount of complementary particles in E-face grooves constituted 17.8 +/- 4.4% of the total length of the grooves, thus approximately 25% of the junctional strands can be considered to be discontinuous. The average width of the discontinuities, when corrected for complementary particles in E-face grooves, was 7.7 +/- 4.5 nm. In control experiments with a "tighter" tight junction (small intestine), complementary replicas revealed that the junctional fibrils are rather continuous and that the very few particles in E-face grooves mostly filled out discontinuities in the P-face ridges. Approximately 5% of the strands were found to be discontinuous. These data support the notion that the presence of pores in the junctional strands of the choroid plexus epithelium may explain the high transepithelial conductance in a "leaky" epithelium having a high number of junctional strands. However, loss of junctional material during fracturing is also considered as an alternative explanation of the present results.  相似文献   

9.
5-Bromodeoxyuridine caused structural alterations in a culture of choroid plexus cells of 13-day-old chick embryos, when added to the medium in a concentration of 0.122 mg/ml. The changes consisted of: increase of filamentous profiles, enlargement and segregation of the nucleoli, increase of vesicles in the cytoplasm, diminution of the tubules of the endoplasmic reticulum, and polymorphy of mitochondria. Under the same experimental conditions most of the connective tissue cells of 13-day-old chick embryos become necrotic.  相似文献   

10.
11.
Transport of sulphate, thiosulphate and iodide by choroid plexus in vitro   总被引:1,自引:0,他引:1  
—Isolated choroid plexuses of rabbits and cats were incubated in artificial cerebrospinal fluid medium containing [35S]sulphate, [35S]thiosulphate or [125I]iodide and combinations thereof. After 1 hr incubation the mean ratio of tissue concentration to medium concentration was 2·46 for [35S]sulphate, 2·39 for [35S]thiosulphate, and 270 for [125I]iodide. Uptake of all three anions was greatly reduced at 0° and by addition of dinitrophenol to the medium. Other inhibitors selectively reduced the uptake of particular anions; non-radioactive sulphate and thiosulphate reduced both [35S]sulphate and [35S]-thiosulphate uptake with much less effect on [125I]iodide uptake, while non-radioactive iodide and thiocyanate greatly reduced [125]iodide uptake with little or no effect on [35S]sulphate or [35S]thiosulphate uptake. It was concluded: (a) that sulphate and thiosulphate, like iodide, were accumulated by choroid plexus in vitro by active transport; (b) that sulphate and thiosulphate share and compete for a transport mechanism which is separate from the iodide transport mechanism; and (c) that the transport of sulphate out of cerebrospinal fluid demonstrated in vivo could occur at least in part in the choroid plexus.  相似文献   

12.
In vitro, the transport of [14C]riboflavin into and from the isolated choroid plexus, the anatomical locus of the blood-cerebrospinal fluid barrier, was studied. With concentrations of [14C]riboflavin of 0.7 microM (or greater) in the incubation medium, the choroid plexus accumulated [14C]riboflavin against a large concentration gradient by a process that did not depend on binding or intracellular metabolism of the [14C]riboflavin. The [14C]riboflavin accumulation process in isolated choroid plexus could be described by Michaelis-Menten transport kinetics (kt = 78 microM and Ymax = 1.65 mmol kg-1 (15 min)-1) and was inhibited by other flavins and probenecid but not by ribose, weak bases, or other B vitamins. The accumulation process was markedly depressed by iodoacetate and low temperatures. With a concentration of 0.08 microM [14C]riboflavin in the incubation medium, 28% of the [14C]riboflavin within the choroid plexus was converted to [14C]FAD or [14C]FMN intracellularly. Unlike the active transport of [14C]riboflavin into choroid plexus, accumulated [14C]riboflavin departed choroid plexus by a process independent of intracellular concentration or temperature. The efflux of [14C]riboflavin from choroid plexus could be described by first oder kinetics with a rate constant of -0.08 min-1.  相似文献   

13.
Although lentiviruses such as human, feline and simian immunodeficiency viruses (HIV, FIV, SIV) rapidly gain access to cerebrospinal fluid (CSF), the mechanisms that control this entry are not well understood. One possibility is that the virus may be carried into the brain by immune cells that traffic across the blood–CSF barrier in the choroid plexus. Since few studies have directly examined macrophage trafficking across the blood–CSF barrier, we established transwell and explant cultures of feline choroid plexus epithelium and measured trafficking in the presence or absence of FIV. Macrophages in co-culture with the epithelium showed significant proliferation and robust trafficking that was dependent on the presence of epithelium. Macrophage migration to the apical surface of the epithelium was particularly robust in the choroid plexus explants where 3-fold increases were seen over the first 24 h. Addition of FIV to the cultures greatly increased the number of surface macrophages without influencing replication. The epithelium in the transwell cultures was also permissive to PBMC trafficking, which increased from 17 to 26% of total cells after exposure to FIV. Thus, the choroid plexus epithelium supports trafficking of both macrophages and PBMCs. FIV significantly enhanced translocation of macrophages and T cells indicating that the choroid plexus epithelium is likely to be an active site of immune cell trafficking in response to infection.  相似文献   

14.
15.
Histogenesis of choroid plexus in man   总被引:6,自引:0,他引:6  
  相似文献   

16.
Extracorporeal perfusion of choroid plexus   总被引:1,自引:0,他引:1  
  相似文献   

17.
Accumulation of Tyr-d-Ala-Gly (TAG) in rat choroid plexus was studied in vitro. Choroid plexus of the lateral ventricles and the fourth ventricle accumulated TAG against a concentration gradient. This accumulation was inhibited by some metabolic inhibitors and some peptides, but not by amino acids. The charge and stereo-configuration of peptides had great influence on the accumulation. Metenkephalin was one of the strongest inhibitors. Absence of sodium ions in the medium did not affect the accumulation, but increase or decrease of potassium ions reduced it. Injection of reserpine for chemical denervation of sympathetic nerves or bilateral removal of the superior cervical ganglion had no effect. These results indicate that choroid plexus has different transport systems for amino acids and peptides, which are not affected by denervation of the sympathetic nerves that innervate choroid plexus.  相似文献   

18.
Transport mechanisms in the choroid plexus   总被引:1,自引:0,他引:1  
  相似文献   

19.
Summary The localization of sodium ion in the cat choroid plexus was studied by use of potassium pyroantimonate. The precipitates formed by the potassium pyroantimonate occur mostly on the plasma membrane in the epithelial cell and occasionally in the perivascular space. The precipitates in the epithelial cell are most numerous at the apical surface, particularly on the microvilli, and least in number at the basal and lateral surfaces. In the endothelial cell, the dense precipitates are situated on the plasma membrane as well as on the limiting membrane of the pinocytotic vesicle. Although the dense precipitates are sometimes situated on the external surface of the plasma membrane of the epithelial cell, most of them are localized on the internal surface of the plasma membrane. A similar localization of the precipitates is to be seen on the plasma membrane of the erythrocyte. When the cerebrospinal fluid/plasma ion ratio and potential gradients across the choroid plexus are considered, the precipitates on the plasma membrane would suggest a localization of sodium needed for the activation of ATPase.
Zusammenfassung Die Lokalisation des Natriumions im Plexus chorioideus der Katze wurde mit Hilfe von Kaliumpyroantimonat untersucht. Die durch Kaliumpyroantimonat gebildeten Niederschläge treten meistens an der Plasmamembran in den Epithelzellen und gelegentlich im perivaskulären Raum auf. In den Epithelzellen kommen die Niederschläge am zahlreichsten an der apikalen Oberfläche vor, besonders an den Mikrovilli, am geringsten an den basalen und lateralen Oberflächen. In der Endothelzelle liegen die dichten Niederschläge an der Plasmamembran und an der Grenzmembran der Pinozytosebläschen. Einige der dichten Niederschläge befinden sich an der äußeren Oberfläche der Plasmamembran der Epithelzellen, die meisten aber an der inneren Oberfläche der Plasmamembran. Eine ähnliche Lokalisation der Niedersschläge wurde an der Plasmamembran des Erythrozyten festgestellt. Wenn man das Liquor Plasma-Ionenverhältnis und die Potentialgradienten am Plexus chorioideus in Betracht zieht, liegt es nahe, die nachgewiesene Lokalisation des Natriums auf eine Aktivierung von ATPase zu beziehen.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号