首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
García-Dorado A  Caballero A 《Genetics》2000,155(4):1991-2001
T. Mukai and co-workers in the late 1960s and O. Ohnishi in the 1970s carried out a series of experiments to obtain direct estimates of the average coefficient of dominance (h) of minor viability mutations in Drosophila melanogaster. The results of these experiments, although inconsistent, have been interpreted as indicating slight recessivity of deleterious mutations, with h approximately 0.4. Mukai obtained conflicting results depending on the type of heterozygotes used, some estimates suggesting overdominance and others partial dominance. Ohnishi's estimates, based on the ratio of heterozygous to homozygous viability declines, were more consistent, pointing to the above value. However, we have reanalyzed Ohnishi's data, estimating h by the regression method, and obtained a much smaller estimate of approximately 0.1. This significant difference can be due partly to the different weighting implicit in the estimates, but we suggest that this is not the only explanation. We propose as a plausible hypothesis that a putative nonmutational decline in viability occurring in the first half of Ohnishi's experiment (affecting both homozygotes and heterozygotes) has biased upward the estimates from the ratio, while it would not bias the regression estimates. This hypothesis also explains the very high h approximately 0.7 observed in Ohnishi's high-viability chromosomes. By constructing a model of spontaneous mutations using parameters in the literature, we investigate the above possibility. The results indicate that a model of few mutations with moderately large effects and h approximately 0.2 is able to explain the observed estimates and the distributions of homozygous and heterozygous viabilities. Accounting for an expression of mutations in genotypes with the balancer chromosome Cy does not alter the conclusions qualitatively.  相似文献   

2.
High rates of mildly deleterious mutation could cause the extinction of small populations, reduce neutral genetic variation and provide an evolutionary advantage for sex. In the first attempts to estimate the rate of mildly deleterious mutation, Mukai and Ohnishi allowed spontaneous mutations to accumulate on D. melanogaster second chromosomes shielded from recombination and selection. Viability of the shielded chromosomes appeared to decline rapidly, implying a deleterious mutation rate on the order of one per zygote per generation. These results have been challenged, however; at issue is whether Mukai and Ohnishi may have confounded viability declines caused by mutation with declines resulting from environmental changes or other extraneous factors. Here, using a method not sensitive to non-mutational viability changes, I reanalyse the previous mutation-accumulation (MA) experiments, and report the results of a new one. I show that in each of four experiments, including Mukai's two experiments, viability declines due to mildly deleterious mutations were rapid. The results give no support for the view that Mukai overestimated the declines. Although there is substantial variation in estimates of genomic mutation rates from the experiments, this variation is probably due to some combination of sampling error, strain differences and differences in assay conditions, rather than to failure to distinguish mutational and non-mutational viability changes.  相似文献   

3.
Fry JD 《Genetics》2004,166(2):797-806
High rates of deleterious mutations could severely reduce the fitness of populations, even endangering their persistence; these effects would be mitigated if mutations synergize each others' effects. An experiment by Mukai in the 1960s gave evidence that in Drosophila melanogaster, viability-depressing mutations occur at the surprisingly high rate of around one per zygote and that the mutations interact synergistically. A later experiment by Ohnishi seemed to support the high mutation rate, but gave no evidence for synergistic epistasis. Both of these studies, however, were flawed by the lack of suitable controls for assessing viability declines of the mutation-accumulation (MA) lines. By comparing homozygous viability of the MA lines to simultaneously estimated heterozygous viability and using estimates of the dominance of mutations in the experiments, I estimate the viability declines relative to an appropriate control. This approach yields two unexpected conclusions. First, in Ohnishi's experiment as well as in Mukai's, MA lines showed faster-than-linear declines in viability, indicative of synergistic epistasis. Second, while Mukai's estimate of the genomic mutation rate is supported, that from Ohnishi's experiment is an order of magnitude lower. The different results of the experiments most likely resulted from differences in the starting genotypes; even within Mukai's experiment, a subset of MA lines, which I argue probably resulted from a contamination event, showed much slower viability declines than did the majority of lines. Because different genotypes may show very different mutational behavior, only studies using many founding genotypes can determine the average rate and distribution of effects of mutations relevant to natural populations.  相似文献   

4.
The empirical distribution of the mean viability of mutation accumulation lines, obtained from three published experiments, was analyzed using minimum-distance estimation. In two cases (Mukai et al. 1972; Ohnishi 1977), mutations were allowed to accumulate in copies of chromosome II protected from natural selection and recombination. In the other one (Fernández and López-Fanjul 1996), they accumulated in inbred lines derived from an isogenic stock. In contrast with currently accepted hypotheses, we consistently estimated low (about 0.01) genomic viability mutation rates, λ, and a small kurtosis of the distribution of mutational effects on viability (a) in the three datasets. Minimum-distance estimates of the per-generation mean viability change due to mutation (λE[a]) were also obtained. These were very similar for both chromosomal datasets, their absolute values being about five times smaller than estimates obtained from the observed change in mean viability during the mutation process. It must be noted that, in both experiments, viability was measured relative to the Cy chromosome of a Cy/Pm stock. Thus, an unnoticed viability increase in this Cy chromosome may have resulted in overestimation of the mean viability reduction in the lines. In parallel, minimum-distance estimation of λE(a) from inbred lines data (where the selective pressure during the accumulation process was larger) was even somewhat smaller, in absolute value, and very close to the estimate obtained by comparing the mean viability of the lines with that of the control isogenic line. The evolutionary importance of these results, as well as their relevance to the solution of the mutational load paradox, is discussed.  相似文献   

5.
In a previous experiment, the effect of 255 generations of mutation accumulation (MA) on the second chromosome viability of Drosophila melanogaster was studied using 200 full-sib MA1 lines and a large C1 control, both derived from a genetically homogeneous base population. At generation 265, one of those MA1 lines was expanded to start 150 new full-sib MA2 lines and a new C2 large control. After 46 generations, the rate of decline in mean viability in MA2 was approximately 2.5 times that estimated in MA1, while the average degree of dominance of mutations was small and nonsignificant by generation 40 and moderate by generation 80. In parallel, the inbreeding depression rate for viability and the amount of additive variance for two bristle traits in C2 were 2-3 times larger than those in C1. The results are consistent with a mutation rate in the line from which MA2 and C2 were derived about 2.5 times larger than that in MA1. The mean viability of C2 remained roughly similar to that of C1, but the rate of MA2 line extinction increased progressively, leading to mutational collapse, which can be ascribed to accelerated mutation and/or synergy after important deleterious accumulation.  相似文献   

6.
Six hundred and ninety-one second chromosomes were extracted from a Raleigh, North Carolina population, and the following experimental results were obtained: (1) Salivary gland chromosomes of all lines were observed and the number of inversion-carrying chromosomes was 130, among which 76 carried In(2R)NS, 36 carried In(2L)t, 4 carried In(2L)t and In(2R)NS, and 14 carried different kinds of rare inversions. (2) Viabilities of homozygotes and heterozygotes were examined. The frequency of lethal-carrying chromosomes was 275/691 (or 0.398):70/130 (or 0.538) in inversion-carrying chromosomes and 205/561 (or 0.365) in inversion-free chromosomes. The former is significantly higher than the latter. The average homozygote viability was 0.4342 including lethal lines and 0.7163 excluding those, the average heterozygote viability being 1.0000. The detrimental load to lethal load ratio (D:L ratio) was 0.334/0.501 = 0.67. The average viability of lethal heterozygotes was less than that of lethal-free heterozygotes, significantly in inversion-free individuals but not significantly so in inversion-carrying individuals. Inversion heterozygotes seem to have slightly better viability than the inversion-free heterozygotes on the average, but not significantly so. (3) The average degree of dominance of viability polygenes was estimated to be 0.293 +/- 0.071 for all heterozygotes whose component chromosomes had better viabilities than 0.6 of the average heterozygote viability, 0.177 +/- 0.077 for inversion-free heterozygotes and 0.489 +/- 0.082 for inversion heterozygotes. (4) Mutation rates of viability polygenes and lethal genes were estimated on the basis of genetic loads and average degrees of dominance of lethal genes and viability polygenes. Estimates were very close to those obtained by direct estimation. (5) Possible overdominance and epistasis were detected, but the magnitude must be very small. (6) The effective size of the population was estimated to be much greater than 10,000 by using the allelism rate of lethal-carrying chromosomes (0.0040) and their frequency.-On the basis of these findings and the comparison with the predicted result (Mukai and Maruyama 1971), the mechanisms of the maintenance of genetic variability in the population are discussed.  相似文献   

7.
Fry JD  Heinsohn SL 《Genetics》2002,161(3):1155-1167
The genomic rate of mildly deleterious mutations (U) figures prominently in much evolutionary and ecological theory. In Drosophila melanogaster, estimates of U have varied widely, from <0.1 to nearly 1 per zygote. The source of this variation is unknown, but could include differences in the conditions used for assaying fitness traits. We examined how assay conditions affect estimates of the rates and effects of viability-depressing mutations in two sets of lines with accumulated spontaneous mutations on the second chromosome. In each set, the among-line variance in egg-to-adult viability was significantly greater when viability was assayed using a high parental density than when it was assayed using a low density. In contrast, the proportional decline in viability due to new mutations did not differ between densities. Two other manipulations, lowering the temperature and adding ethanol to the medium, had no significant effects on either the mean decline or among-line variance. Cross-environment genetic correlations in viability were generally close to one, implying that most mutations reduced viability in all environments. Using data from the low-density, lower-bound estimates of U approached the classic, high values of Mukai and Ohnishi; at the high density, U estimates were similar to recently reported low values. The difference in estimated mutation rates, taken at face value, would imply that many mutations affected fitness at low density but not at high density, but this is shown to be incompatible with the observed high cross-environment correlations. Possible reasons for this discrepancy are discussed. Regardless of the interpretation, the results show that assay conditions can have a large effect on estimates of mutational parameters for fitness traits.  相似文献   

8.
A divergent selection experiment with mice, using plasma concentrations of insulin-like growth factor-1 (IGF-1) at 42 days of age as the selection criterion, was undertaken for 7 generations. Lines were not replicated. To obtain sufficient plasma for the IGF-1 assay, blood from four individuals was volumetrically bulked to obtain a litter mean IGF-1 concentration. This necessitated the use of between family selection. Although inbreeding accumulated in a linear fashion in each of the high, control and low lines, the rates were different for each line (3.6, 1.6 and 5.3% per generation for the high, control and low lines, respectively). As a consequence, the effects of selection and inbreeding are confounded in this experiment. Divergence between the high and low lines in plasma concentrations of IGF-1 continued steadily until generation 5. In generations 6 and 7, there was a reduced degree of divergence and this contributed towards the low realized heritability value of 0.15 +/- 0.12. Six-week liveweight showed a steady positive correlated response to selection for or against plasma concentrations of IGF-1 until generation 4 (high-low difference = 1.7 g = 12%). In generation 5, a substantial drop in 6-week liveweight in the low line relative to both the high and control lines occurred (high-low difference, 3.9; g, 25%). This difference was maintained until generation 7.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Summary This experiment was designed to study the relationship between rate of inbreeding and observed inbreeding depression of larval viability, adult fecundity and cold shock mortality in Drosophila melanogaster. Rates of inbreeding used were full-sib mating and closed lines of N=4 and N=20. Eight generations of mating in the N=20 lines, three generations in the N=4 lines and one generation of full-sib mating were synchronised to simultaneously produce individuals with an expected level of inbreeding coefficient (F) of approximately 0.25. Inbreeding depression for the three traits was significant at F=0.25. N=20 lines showed significantly less inbreeding depression than full-sib mated lines for larval viability at approximately the same level of F. A similar trend was observed for fecundity. No effect of rate of inbreeding depression was found for cold shock mortality, but this trait was measured with less precision than the other two. Natural selection acting on loci influencing larval viability and fecundity during the process of inbreeding could explain these results. Selection is expected to be more effective with slow rates of inbreeding because there are more generations and greater opportunity for selection to act before F=0.25 is reached. Selection intensities seem to have been different in the three traits measured. Selection was most intense for larval viability, less intense for fecundity and, perhaps, negligible at loci influencing cold shock mortality.  相似文献   

10.
Polymorphism at the alpha-Gpdh locus was studied in Drosophila melanogaster. Using two different lines, one marked by the F allele (FF line) another by the S allele (SS line), four populations were initiated, two in which the initial frequency of F was 0.1 and two in which it was 0.9. They have been observed for 34 generations. From the fifth generation on, the equilibrium frequency in the four cages was about 0.60. Viability has been measured during the evolution of te populations while F frequencies changed and recombinations between the FF and SS lines occurred. It has been evaluated in synthetic populations built with different frequencies: (1) from the original FF and SS lines and (2) from FF and SS lines extracted after 34 generations of joint evolution. In all three cases, the FF viability depended on the frequency of the F allele. The similarity of the three linear regressions implies that alpha-Gpdh locus or other closely linked loci is the target of the selection in the populations analyzed here.  相似文献   

11.
The effect of 250 generations of mutation accumulation (MA) on the second chromosome competitive viability of Drosophila melanogaster was analyzed both in homozygous and heterozygous conditions. We used full-sib MA lines, where selection hampers the accumulation of severely deleterious mutations but is ineffective against mildly deleterious ones. A large control population was simultaneously evaluated. Competitive viability scores, unaffected by the expression of mutations in heterozygosis, were obtained relative to a Cy/L(2) genotype. The rate of decline in mean DeltaM approximately 0.1% was small. However, that of increase in variance DeltaV approximately 0.08 x 10(-3) was similar to the values obtained in previous experiments when severely deleterious mutations were excluded. The corresponding estimates of the mutation rate lambda > or = 0.01 and the average effect of mutations E(s) < or = 0.08 are in good agreement with Bateman-Mukai and minimum distance estimates for noncompetitive viability obtained from the same MA lines after 105 generations. Thus, competitive and noncompetitive viability show similar mutational properties. The regression estimate of the degree of dominance for mild-to-moderate deleterious mutations was approximately 0.3, suggesting that the pertinent value for new unselected mutations should be somewhat smaller.  相似文献   

12.
Here we present results of a Drosophila long term experiment where we study the fitness consequences of equating the number of breeding offspring contributed per family (EC) compared to a random contribution (RC) protocol. The EC strategy slows inbreeding and drift. However, it also prevents natural selection on fecundity and limits selection on viability to that occurring within families, and this includes purge against unconditionally deleterious alleles as well as adaptation to captive conditions. We used populations maintained with 5 or 25 single mated pairs, monitored inbreeding and selection intensity, and assayed competitive and non competitive fitness, as well as fecundity and viability components, in lines maintained with or without EC. In the small lines, EC showed modest advantage for viability during the whole experiment and for fitness up to generation 15 while, in the large lines, fitness increased steadily under both strategies, and EC led in the medium term to a slight fitness disadvantage. On the light of recent theory, these results can be explained as the joint consequence of new and standing deleterious mutations undergoing drift, inbreeding and selection and of adaptation to captive conditions.  相似文献   

13.
We report an assay of egg-to-adult viability in full-sibling mutation accumulation (MA) lines derived from a completely homozygous population of Drosophila melanogaster and maintained for 210 generations. A simultaneous evaluation was also made of a large population derived from the same origin and maintained as a control for the same period. We also present computer simulations to explore the possible decline in viability of the control population due to mutation accumulation and the possible effect of selection within and between MA lines. For this purpose, we used two mutational models independent from the data analyzed and based on radically different assumptions. The first model implies a large number of mutations of small effect, whereas the second implies a much smaller number of mutations with much larger effects. The observed rate of decline in mean viability was very small but significant (0.077%). The rate of increase in among line variance (0.189 x 10(-3)) was similar to those obtained previously in the same lines. The simulation results indicated that a model of many mutations of small effect is incompatible with the evolution of the mean viability of the control and MA lines over generations, the distribution of line means after 210 generations of mutation accumulation, and the pattern of line extinction over generations. Basically, this model predicted a large drop in viability, both in the control and particularly the MA lines, that is not observed empirically. It also predicted a rate of line extinction too low in the early generations and too high in the later ones. In contrast, the model based on few mutations of large effect was generally consistent with all the observations.  相似文献   

14.
To discover the relation between mitochondrial DNA (mtDNA) polymorphism and the geographic population structure of Drosophila subobscura previously established for other genetic traits, a wide Paleartic survey was carried out. A total of 24 nucleomorphs was observed among 261 isofemale lines assayed by 11 restriction endonucleases with 38 different sites in the mtDNA cleavage map. The differentiation of the Canary Islands populations (delta = 0.0119) compared with the mean among all the other continental and insular populations (delta = 0.0002) is striking. Both the great divergence among Canary Islands nucleomorphs (delta = 0.021) compared with the maximum nucleomorph distance in all other populations (delta = 0.017) and the abundance of endemic nucleomorphs (11) on the Canary Islands (50% of the total number of different nucleomorphs found in the entire distribution area) suggest that this molecular differentiation most probably results from the very old age of the Canary Islands populations rather than from drift and founder effects.  相似文献   

15.
The identification of DNA polymorphisms makes it possible to classify trisomy 21 according to the parental origin and stage (meiosis I [MI], meiosis II [MII], or postzygotic mitotic) of the chromosomal error. Studying the effect of parental age on these subgroups could shed light on parental exposures and their timing. From 1989 through 1993, 170 infants with trisomy 21 and 267 randomly selected control infants were ascertained in a population-based, case-control study in metropolitan Atlanta. Blood samples for genetic studies were obtained from case infants and their parents. Using logistic regression, we independently examined the association between maternal and paternal age and subgroups of trisomy 21 defined by parental origin and meiotic stage. The distribution of trisomy 21 by origin was 86% maternal (75% MI and 25% MII), 9% paternal (50% MI and 50% MII), and 5% mitotic. Compared with women <25 years of age, women > or = 40 years old had an odds ratio of 5.2 (95% confidence interval, 1.0-27.4) for maternal MI (MMI) errors and 51.4 (95% confidence interval, 2.3-999.0) for maternal MII (MMII) errors. Birth-prevalence rates for women > or = 40 years old were 4.2/1000 births for MMI errors and 1.9/1000 for MMII errors. These results support an association between advanced maternal age and both MMI and MMII errors. The association with MI does not pinpoint the timing of the error; however, the association with MII implies that there is at least one maternal-age related mechanism acting around the time of conception.  相似文献   

16.
The fluorescence intensity of rhodamine B-labeled thyroid hormone is a nonlinear function of probe concentration. The concentration dependence was analyzed in terms of a model with continuous aggregation of the probe molecules to give very high molecular weight species. The apparent association constant was 3.65 microM-1 at 25 degrees C, pH 7.2. Studies at different temperatures showed apparent delta H = 6.8 kcal/mol and delta S = -7.3 cal/mol/degree for association. Based on their absorbance spectra, these aggregates seem to be linear, with the rhodamine chromophores slanted with respect to the long axis.  相似文献   

17.
Relationship between ozone exposure and pulmonary function changes   总被引:3,自引:0,他引:3  
A detailed comparison of literature-reported averaged decrements in pulmonary function of normal subjects exposed to O3 has been undertaken. The data base was formed by including data published during the past 20 yr from studies that reported at least one of the pulmonary function variables (forced vital capacity, forced expiratory volume at 1 s, mean forced expiratory flow between 25 and 75% of forced vital capacity, and airway resistance) acquired at 2 h of exposures utilizing either original or modified Bates-Hazucha (intermittent exercise) protocol and that satisfied selection criteria. The final set of data (24 studies involving 299 subjects) was divided by ventilation rate (exercise loads) into four categories: light, moderate, high, and very high ventilation level. For each pulmonary function variable and ventilation level a quadratic function has been fitted to the data using regression procedures. The curve parameter estimates have been computed, tabulated, and statistically evaluated. The slope (quadratic coefficient) for each variable within a group and almost all variables between groups were significantly different from zero and from each other at P less than or equal to 0.0001.  相似文献   

18.
A rapid birefringence loss associated with metarhodopsin II formation, delta (delta n) MII, is produced when frog rod outer segments are exposed to a bleaching light flash. To analyze the nature of the underlying structure change, measurements of delta (delta n) MII were made in rod outer segments perfused with glycerol solutions to increase the refractive index of the cytoplasmic and intradisk spaces. Comparisons of experimental results with computed changes in the form birefringence component using two- and three-dielectric outer segment models for several putative structure changes were made. It is concluded that delta (delta n) MII can be due to either a change in the intrinsic birefringence component caused by the reorientation of anisotropic molecules, or to a change in the form birefringence component caused by small changes in the cytoplasmic and/or intradisk volumes.  相似文献   

19.
The effects of external loading, in the form of small weights distributed evenly over the limbs and torso, on physical performance and power output have been studied during vertical jumping in 10 children and four young adults and the results compared with maximal cycling. The results show under control (unloaded) conditions the absolute peak power output (W) achieved by children and adults was 572 W (45%) and 765 W (25%) respectively higher in cycling than jumping. The addition of weights during jumping served only to increase this difference. External loading produced a linear decrease of W in both groups of subjects. The reduction in W was entirely due to a decrease of take-off velocity (VT). The relationship between VT and added weights (delta wt) could be described by the equations: VT (ms-1) = 1.91 - 0.042 delta wt (kg); r = -0.96 (children); VT (ms-1) = 2.49 - 0.021 delta wt (kg); r = -0.99 (adults). Thus, contrary to the recent work of Caiozzo and Kyle (1980) which involved stair-climbing, body size and speed of movement in children and young adults would appear to be optimally matched for the production of lifting work during vertical jumping. External loading reduces the generation of power output immediately prior to take-off of a maximal jump from a force platform.  相似文献   

20.
The orientational change of the absorbing dipole of the retinal chromophore in vertebrate rhodopsin (rhodo) upon photo-excitation to bathorhodopsin (batho), lumirhodopsin (lumi) and isorhodopsin (iso), has been studied by polarized absorption and linear dichroism measurements on magnetically oriented frog rod suspensions that were blocked at liquid nitrogen temperature. Both the azimuthal component delta theta and the polar component delta theta of the total angular change were studied in separate experiments. Delta theta was estimated from polarized absorption measurements on rods oriented transversally with respect to the analyzing beam. The data show unequivocally that upon the rhodo leads to batho transition, the dipole shifts out of the membrane plane by only few degrees; delta theta congruent to -3 degree. This azimuthal shift was nearly exactly reversed upon the batho leads to lumi decay. A very small shift (delta theta less than or equal to 1 degree) toward the membrane plane was observed upon a rhodo leads to iso conversion. The polar component delta theta of the angular shift was estimated by studying the photoreversion of linear dichroism induced by photo-excitation with polarized light in rods oriented parallel to the analyzing beam. Upon the rhodo leads to batho transition, ther was a shift delta theta = 11 +/- 3 degrees. The overall angular shift upon this first photo-exciting step, which corresponded to the isomerisation of retinal, was only delta omega = 11 +/- 3 degrees. This is smaller than what may be expected for a cis-trans isomerization of a retinal molecule with one end fixed, and different from what has been previously estimated by another group. These discrepancies are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号