首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three fungi, isolated from soil from which Phytophthora was not obtained, were evaluated for antagonism of Phytophthora spp. shown to cause root rot of chestnut in South Australia. Trichoderma hamatum and T. pseudokoningii appeared to inhibit P. cinnamomi by mycoparasitism. with evidence of parallel growth and coiling, and both Trichoderma spp. and Gliocladium virens grew over P. cinnamomi in vitro, preventing further growth of this pathogen. Antibiotics produced by young T. hamatum cultures and G. virens in culture filtrate experiments inhibited growth of P. cinnamomi and P. citricola. with filtrate from 4-day-old cultures of G. virens showing the greatest potential for biocontrol. All three antagonists prevented P. cinnamomi and P. citricola from causing infection symptoms on micropropagated shoots of chestnut cvs Goldsworthy and Buffalo Queen in an in vitro excised shoot bioassay for biocontrol.  相似文献   

2.
A locally severe crown disease of exotic plantation Eucalyptus trees has been recorded periodically in New Zealand since 1986. Symptoms include leaf spots, petiole infection and twig and small branch lesions. Outbreaks of disease are episodic and individual trees may show marked variation in crown symptoms ranging from unaffected to total defoliation. Two previously unknown species of Phytophthora are associated with the disease. These are described and formally designated here as P. captiosa, from Eucalyptus botryoides and E. saligna; and P. fallax, from E. delegatensis, E. fastigata, E. nitens and E. regnans. Both P. captiosa and P. fallax have non-papillate, non-caducous sporangia and both are self-fertile. Phylogenetic analysis on the basis of ITS rDNA sequence data indicates they are closely related to each other but evolutionarily distant from the majority of described Phytophthora taxa. They share a common ancestor with another assemblage of Phytophthora lineages that includes P. insolita, P. macrochlamydospora and P. richardiae. Sporulation of P. captiosa and P. fallax has not been observed in the field. The mode of infection and spread of these non-caducous Phytophthora species in the eucalypt tree canopy remains unknown. This issue, and the possible geographic origins of these two Phytophthora species are discussed.  相似文献   

3.
The pepper accession Criollo de Morelos 334 is the most efficient source of resistance currently known to Phytophthora capsici and P. parasitica. To investigate whether genetic controls of resistance to two Phytophthora species are independent, we compared the genetic architecture of resistance of CM334 to both Phytophthora species. The RIL population F5YC used to construct the high-resolution genetic linkage map of pepper was assessed for resistance to one isolate of each Phytophthora species. Inheritance of the P. capsici and P. parasitica resistance was polygenic. Twelve additive QTLs involved in the P. capsici resistance and 14 additive QTLs involved in the P. parasitica resistance were detected. The QTLs identified in this progeny were specific to these Phytophthora species. Comparative mapping analysis with literature data identified three colocations between resistance QTLs to P. parasitica and P. capsici in pepper. Whereas this result suggests presence of common resistance factors to the two Phytophthora species in pepper, which possibly derive from common ancestral genes, calculation of the colocation probability indicates that these colocations could occur by chance.  相似文献   

4.

Phytophthora collar and crown rots are serious soilborne diseases which for a long time have caused considerable losses in stone fruit orchards in Greece. A number of Phytophthora species are notorious for being the cause of crown and root rots in Greek stone trees, including P. cactorum, P. citricola, P. cryptogea, P. drechsleri, P. nicotianae, P. citrophthora, P. syringae and P. megasperma. The most important Phytophthora species is P. cactorum, while P. syringae and P. citrophthora may be locally significant. The economic consequences from death of peach trees and yield losses caused by this disease in Imathia County are serious.  相似文献   

5.
Zhu YJ  Agbayani R  Moore PH 《Planta》2007,226(1):87-97
Phytophthora spp., some of the more important casual agents of plant diseases, are responsible for heavy economic losses worldwide. Plant defensins have been introduced as transgenes into a range of species to increase host resistance to pathogens to which they were originally susceptible. However, the effectiveness and mechanism of interaction of the defensins with Phytophthora spp. have not been clearly characterized in planta. In this study, we expressed the Dahlia merckii defensin, DmAMP1, in papaya (Carica papaya L.), a plant highly susceptible to a root, stem, and fruit rot disease caused by Phytophthora palmivora. Extracts of total leaf proteins from transformed plants inhibited growth of Phytophthora in vitro and discs cut from the leaves of transformed plants inhibited growth of Phytophthora in a bioassay. Results from our greenhouse inoculation experiments demonstrate that expressing the DmAMP1 gene in papaya plants increased resistance against P. palmivora and that this increased resistance was associated with reduced hyphae growth of P. palmivora at the infection sites. The inhibitory effects of DmAMP1 expression in papaya suggest this approach has good potential to impart transgenic resistance against Phytophthora in papaya.  相似文献   

6.
Between 2002 and the end of 2009, more than 4000 samples from hardy ornamental plants, collected in surveys for Phytophthora ramorum, were examined to establish the occurrence and diversity of Phytophthora species in Scotland. The samples were gathered from more than 77 plant genera in nurseries, gardens and amenity landscapes. Fifteen different Phytophthora spp. were isolated and identified either by polymerase chain reaction (PCR) or by sequencing of the ITS1, 5.8S subunit and ITS2 region of the ribosomal RNA gene. The most widespread Phytophthora spp. were P. ramorum and P. syringae, followed by P. cactorum, P. kernoviae, P. plurivora, P. cambivora, P. citrophthora, P. taxon Pgchlamydo’, P. pseudosyringae and some single isolates of P. cinnamomi, P. cryptogea, P. gonapodyides, P. nicotianae and P. hibernalis. One isolate did not match any known species. In relation to the number of samples, Phytophthora was found more frequently in trade premises than in gardens or amenity landscapes and the species diversity was higher, highlighting the risks involved in plant trade.  相似文献   

7.
Bip T containing about 109 spores of Trichoderma viride, applied to peat 10 days before inoculation of substrate with Phytophthora cryptogea, effectively controlled Phytophthora foot rot of gerbera. The biocide in dosage of 300 and 600 g/m3 inhibited the development of the pathogen in substrate. The other potential antagonists T. hamatum and T. viride applied into peat at a dosage of 600 g/m3, decreased Phytophthora foot rot development.  相似文献   

8.
H. H. Ho 《Mycopathologia》1979,68(1):17-21
Scanning electron microscopy of oogonia of Phytophthora spp. showed that the oogonial wall was smooth in P. cactorum, P. citricola, P. heveae, and P. palmivora; finely granular in P. megasperma and P. megasperma var. sojae; and coarsely granular in P. parasitica. Transmission electron microscopy demonstrated that the oogonial wall in Phytophthora was composed of three layers with the middle layer being the least or the most electron dense. A coat of amorphous material was found on the entire outer surface of the oogonial wall. Elemental analysis of oogonia by means of a SEM electron probe microanalyzer revealed similar emission spectra among Phytophthora spp. with a characteristic peak for calcium.  相似文献   

9.
Oomycetes from the genus Phytophthora are fungus-like plant pathogens that are devastating for agriculture and natural ecosystems. Due to their particular physiological characteristics, no efficient treatments against diseases caused by these microorganisms are presently available. To develop such treatments, it appears essential to dissect the molecular mechanisms that determine the interaction between Phytophthora species and host plants. Available data are scarce, and genomic approaches were mainly developed for the two species, Phytophthora infestans and Phytophthora sojae. However, these two species are exceptions from, rather than representative species for, the genus. P. infestans is a foliar pathogen, and P. sojae infects a narrow range of host plants, while the majority of Phytophthora species are quite unselective, root-infecting pathogens. To represent this majority, Phytophthora parasitica emerges as a model for the genus, and genomic resources for analyzing its interaction with plants are developing. The aim of this review is to assemble current knowledge on cytological and molecular processes that are underlying plant–pathogen interactions involving Phytophthora species and in particular P. parasitica, and to place them into the context of a hypothetical scheme of co-evolution between the pathogen and the host.  相似文献   

10.
In this research, distribution of Phytophthora species were determined in Kerman Province (Bam, Shahdad and Arzuiyeh) during 2004–2007. The Phytophthora species were isolated from infected root, crown and soil. Root and crown pieces were washed and cultured on a CMA-PARPH medium. The isolation from infected soil was performed by bating method using citrus leaves. It was identified by morphological and several physiological characteristics. Distribution of species was determined by recording the number of isolates recovered from samples from each city. In this study, from 220 soil samples collected from 52 citrus orchards, 80 isolates of Phytophthora were recovered. Among of all isolates of Phytophthora, P. parasitica and P. citrophthora were the most important species of causal agent of gummosis on Citrus sp. Distribution of P. citrophthora was highest in Arzuiyeh and lowest in Bam and Shahdad cities, while distribution of P. parasitica was highest in Bam and Shahdad cities. The majority of soil samples contained only P. parasitica, but a few of percentage samples containing P. citrophthora alone and both of fungi in cites samples.  相似文献   

11.
Phytophthora quick wilt is a devastating disease of black peppers in Vietnam. The internal transcribed spacer (ITS) region of the ribosomal DNA of four Phytophthora samples isolated from the diseased vines in Daknong province of the central highland part of Vietnam was Polymerase chain reaction-amplified, cloned, sequenced and characterised. Database search have showed that they are most closely related to an isolate of Phytophthora tropicalis from Taiwan. Sequence comparisons and phylogenetic analyses based on the ITS region of the four Vietnamese and other GenBank isolates of P. tropicalis and a closely related species, P. capsici, provide strong evidences that the Vietnamese isolates are all different isolates of P. tropicalis.  相似文献   

12.
A polyclonal antiserum (A379) against water soluble proteins from Phytophthora cinnamomi mycelium was produced in rabbit. In ELISA, the 1 : 10 000 diluted antiserum revealed only Phytophthora isolates, not allowing a clear‐cut discrimination among congenerous species, in spite of a generally higher reactivity on P. cinnamomi proteins. The antiserum gave positive reactions in Western blot analyses against mycelial proteins from nine species of Phytophthora and Pythium sp. (grown on rich media), but not with Rhizoctonia solani, binucleate Rhizoctonia, Verticillium dahliae, Fusarium oxysporum and Cryphonectria parasitica. All Phytophthora species showed common epitopes on proteins of molecular masses 77, 66, 51 and 48 kDa. However, a species‐specific protein of 55 kDa was immunodecorated only in P. cinnamomi samples, thus allowing univocal identification of this species. When tested against total proteins from the same fungi grown on water, the antibody revealed diagnostic bands of 55 and 51 kDa in P. cinnamomi only. The antiserum is therefore suitable for the specific identification of P. cinnamomi emerging in distilled water from infected tissues of chestnut, blueberry and azalea.  相似文献   

13.
A current trend in Florida agriculture to conserve water is to irrigate with surface runoff water (tailwater) recovered in retention ponds and canals. Water filtration and lemon leaf baiting recovered Phytophthora capsici and other plant pathogenic Oomycetes in runoff water from ponds and canals. A total of 196 isolates of Phytophthora spp. and 471 isolates of Pythium spp. were recovered. Phytophthora spp. included P. capsici, P. cinnamomi, P. lateralis, P. nicotianae, P. citricola, P. cryptogea and P. erythroseptica. Species of Pythium were P. aphanidermatum, P. catenulatum, P. helicoides, P. irregulare, P. myriotylum, and Pythium‘group F’. Isolates of P. aphanidermatum, P. irregulare, P. myriotylum, and Pythium‘group F’ were pathogenic on pepper and tomato. Recovery of P. capsici propagules was related to soil moisture‐holding capacity and time interval but not temperature. Recovery of P. capsici propagules at 100% soil moisture‐holding capacity and 30° C was 57 days. In tailwater, recovery of propagules of P. capsici was 63 days at 24°C to 25°C. The potential exists to reintroduce and disseminate species of Phytophthora and Pythium when using tailwater for irrigation or other practices.  相似文献   

14.
15.
Fatty acid methyl ester (FAME) profiles and amplified fragment length polymorphisms (AFLPs) were evaluated as tools for identifying species of Phytophthora. Five isolates of each of Phytophthora cactorum, Phytophthora citrophthora, Phytophthora cinnamomi, Phytophthora nicotianae and Phytophthora cryptogea were subjected to both analyses to examine variation among and within species. In FAME analysis, isolates of P. cactorum, P. cinnamomi and P.nicotianae were clustered by species, but isolates of P. citrophthora and P.cryptogea were divided into multiple clusters based on greater variations within these two species. The AFLP analysis differentiated all five species of Phytophthora. The five isolates of each species were grouped in a separate terminal cluster, but diversity within a species cluster varied considerably with variation greater in P. cryptogea and P. citrophthora. Comparing the dendrograms based on FAME and AFLP analyses, the overall patterns of both were similar. The P. cactorum cluster was distinct from clusters of the other four species, which formed one large cluster. The higher values of percentages of polymorphic loci and gene diversity in AFLP analysis substantiated diversity observed among isolates of P. citrophthora and P. cryptogea in FAME and AFLP dendrograms. Both FAME and AFLP appear to be useful tools for identifying species of Phytophthora, but only AFLP analysis has potential to study genetic and phylogenetic relationships within and among species in this genus.  相似文献   

16.
Phytophthora citrophthora was inhibited to a greater extent than P. nicotianac var. parasitica by chloramphenicol, hymexazol, PCNB and pimaricin at concentrations used in selective media for the isolation of Phytophthora spp. Reduced concentrations of the antimicrobial components of the selective media to tolerant levels for P. citrophthora markedly increased the recovery of the two brown rot pathogens from soil. Mycelium of both Phytophthora spp. survived in air-dried soil for at least 5 months while mycelium of most Phytophthora spp. do not survive in dry soil. In moist soil, P. nicotianae var. parasitica produced hyphal swellings, sporangia and chlamydospores. P. citrophthora produced hyphal swellings and sporangia, but no chlamydospores. No oospores were produced, even in pairing cultures on agar plates with isolates obtained from several locations of citrus groves andfruits by both species. Sporania were obtained in both species in citrus groves on mycelium mats, in the rhizosphere, in infected leaves and fruits buried at soil depths of 5–35 cm. Numbers of propagules declined during the incubation period, but conside, rable numbers survived throughout the experimental period (6 months). Although P. nicotianae var. parasitica produced chlamydospores while P. citrophthora did not, numbers of surviving propagules recovered from soil after 6 months were comparable with both species. The brown rot pathogens survived in soil both as colonizers of detached leaves and fruits and as parasites in living root tissues.  相似文献   

17.
Isolates belonging to an undescribed Phytophthora species were frequently recovered during an oak forest soil survey of Phytophthora species in eastern and north-central USA in 2004. The species was isolated using an oak leaf baiting method from rhizosphere soil samples collected from Quercus rubra, Q. macrocarpa, and Q. phellos. This species is formally described as P. quercetorum. It is homothallic and has aplerotic oogonia and paragynous antheridia. It produces papillate sporangia (occasionally bipapillate) of ovoid-elongated shapes. Its temperature optimum for growth is ca 22.5 °C with the upper limit of ca 32.5 °C. P. quercetorum differs from the morphologically related P. quercina in producing distinct submerged colony-patterns, different growth-temperature requirements, and oogonial shapes and sizes. Phylogenetic analyses using seven nuclear loci supported P. quercetorum as a novel species within clade 4, closely related to P. arecae, P. palmivora, P. megakarya, and P. quercina.  相似文献   

18.
Samples of tomato, lettuce and cucumber submitted for diagnosis to the Plant Protection Centre at the Norwegian Crop Research Institute and samples of soil, water and cucumber collected from greenhouses employing hydroponic cultures were examined for the occurrence of Pythium spp. and Phytophthora spp. Two species of Phytophthora and 16 species of Pythium were identified. Phytophthora cryptogea was found on tomato and lettuce. Phytophthora nicotianae was found on tomato fruit. Phytophthora was not found on cucumbers. Pythium irregulare and Pythium group F were the two most commonly found Pythium species in hydroponically cultivated cucumbers. A pathogenicity test with 56 isolates was performed on cucumber seedlings. The most aggressive species were Pythium aphanidermatum, P. irregulare, Pythium paroecandrum and Pythium ultimum.  相似文献   

19.

Background  

Phytophthora species are notorious oomycete pathogens that cause diseases on a wide range of plants. Our understanding how these pathogens are able to infect their host plants will benefit greatly from information obtained from model systems representative for plant-Phytophthora interactions. One attractive model system is the interaction between Arabidopsis and Phytophthora brassicae. Under laboratory conditions, Arabidopsis can be easily infected with mycelial plugs as inoculum. In the disease cycle, however, sporangia or zoospores are the infectious propagules. Since the current P. brassicae zoospore isolation methods are generally regarded as inefficient, we aimed at developing an alternative method for obtaining high concentrations of P. brassicae zoospores.  相似文献   

20.
The genus Phytophthora consists of many notorious pathogens of crops and forestry trees. At present, battling Phytophthora diseases is challenging due to a lack of understanding of their pathogenesis. We investigated the role of small RNAs in regulating soybean defense in response to infection by Phytophthora sojae, the second most destructive pathogen of soybean. Small RNAs, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), are universal regulators that repress target gene expression in eukaryotes. We identified known and novel small RNAs that differentially accumulated during P. sojae infection in soybean roots. Among them, miR393 and miR166 were induced by heat‐inactivated P. sojae hyphae, indicating that they may be involved in soybean basal defense. Indeed, knocking down the level of mature miR393 led to enhanced susceptibility of soybean to P. sojae; furthermore, the expression of isoflavonoid biosynthetic genes was drastically reduced in miR393 knockdown roots. These data suggest that miR393 promotes soybean defense against P. sojae. In addition to miRNAs, P. sojae infection also resulted in increased accumulation of phased siRNAs (phasiRNAs) that are predominantly generated from canonical resistance genes encoding nucleotide binding‐leucine rich repeat proteins and genes encoding pentatricopeptide repeat‐containing proteins. This work identifies specific miRNAs and phasiRNAs that regulate defense‐associated genes in soybean during Phytophthora infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号