首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Recently we have reported that a selective binding of potato virus X (PVX)-coded movement protein (termed TGBp1 MP) to one end of a polar coat protein (CP) helix converted viral RNA into a translatable form and induced a linear destabilization of the whole helical particle. Here, the native PVX virions, RNase-treated (PVX(RNA-DEG)) helical particles lacking intact RNA and their complexes with TGBp1 (TGBp1-PVX and TGBp1-PVX(RNA-DEG)), were examined by atomic force microscopy (AFM). When complexes of the TGBp1 MP with PVX were examined by means of AFM in liquid, no structural reorganization of PVX particles was observed. By contrast, the products of TGBp1-dependent PVX degradation termed "beads-on-string" were formed under conditions of AFM in air. The AFM images of PVX(RNA-DEG) were indistinguishable from images of native PVX particles; however, the TGBp1-dependent disassembly of the CP-helix was triggered when the TGBp1-PVX(RNA-DEG) complexes were examined by AFM, regardless of the conditions used (in air or in liquid). Our data supported the idea that binding of TGBp1 to one end of the PVX CP-helix induced linear destabilization of the whole helical particle, which may lead to its disassembly under conditions of AFM.  相似文献   

2.
This paper summarizes some structural characteristics of Potato virus X (PVX), the flexuous filamentous plant potexvirus. A model of PVX coat protein (CP) tertiary structure in the virion proposed on the basis of tritium planigraphy combined with predictions of the protein tertiary structure is described. A possible role of glycosylation and phosphorylation in the CP structure and function is discussed. Two forms of PVX virion disassembly are discussed: (i) the virion co-translational disassembly after PVX CP in situ phosphorylation and (ii) disassembly of PVX triggered by different factors after linear destabilization of the virion by binding of the PVX-coded movement protein (TGBp1) to one end of the polar CP-helix. Special emphasis was placed on a translational activation of encapsidated PVX RNA and rapid disassembly of TGBp1-PVX complexes into free RNA and CP. The results of experiments on the PVX CP repolymerization and PVX reconstitution are considered. In particular, the products assembled from PVX RNA, CP and TGBp1 were examined. Single-tailed particles were found with a helical, head-like structure consisting of helically arranged CP subunits located at the 5'-tail of RNA; the TGBp1 was bound to the end of the head. Translatable 'RNA-CP-TGBp1' complexes may represent the transport form of the PVX infection.  相似文献   

3.
Previously, we have shown that encapsidated Potato virus X (PVX) RNA was non-translatable in vitro , but could be converted into a translatable form by binding of the PVX movement protein TGBp1 to one end of the virion or by coat protein (CP) phosphorylation. Here, a mutagenic analysis of PVX CP and TGBp1 was used to identify the regions involved in TGBp1–CP binding and translational activation of PVX RNA by TGBp1. It was found that the C-terminal (C-ter) 10/18 amino acids region was not essential for virus-like particle (VP) assembly from CP and RNA. However, the VPs assembled from the CP lacking C-ter 10/18 amino acids were incapable of TGBp1 binding and being translationally activated. It was suggested that the 10-amino-acid C-ter regions of protein subunits located at one end of a polar helical PVX particle contain a domain accessible to TGBp1 binding and PVX remodelling. The non-translatable particles assembled from the C-ter mutant CP could be converted into a translatable form by CP phosphorylation. The TGBp1–CP binding activity was preserved unless a conservative motif IV was removed from TGBp1. By contrast, TGBp1-dependent activation of PVX RNA translation was abolished by deletions of various NTPase/helicase conservative motifs and their combinations. The motif IV might be essential for TGBp1–CP binding, but insufficient for PVX RNA translation activation. The evidence to discriminate between these two events, i.e. TGBp1 binding to the CP-helix and TGBp1-dependent RNA translation activation, is discussed.  相似文献   

4.
Previously, we have reported that intact Potato virus X (PVX) virions cannot be translated in cell-free systems, but acquire this capacity by the binding of PVX-specific triple gene block protein 1 (TGBp1) or after phosphorylation of the exposed N-terminal segment of intravirus coat protein (CP) by protein kinases. With the help of in vitro mutagenesis, a nonphosphorylatable PVX mutant (denoted ST PVX) was prepared in which all 12 S and T residues in the 20-residue-long N-terminal CP segment were substituted by A or G. Contrary to expectations, ST PVX was infectious, produced normal progeny and was translated in vitro in the absence of any additional factors. We suggest that the N-terminal PVX CP segment somehow participates in virion assembly in vivo and that CP subunits in ST virions may differ in structure from those in the wild-type (UK3 strain). In the present work, to test this suggestion, we performed a comparative tritium planigraphy study of CP structure in UK3 and ST virions. It was found that the profile of tritium incorporation into ST mutant virions in some CP segments differed from that of normal UK3 virions and from UK3 complexed with the PVX movement protein TGBp1. It is proposed that amino acid substitutions in ST CP and the TGBp1-driven remodelling of UK3 virions induce structural alterations in intravirus CPs. These alterations affect the predicted RNA recognition motif of PVX CP, but in different ways: for ST PVX, labelling is increased in α-helices 6 and 7, whereas, in remodelled UK3, labelling is increased in the β-sheet strands β3, β4 and β5.  相似文献   

5.
Transient expression of foreign genes based on plant viral vectors is a suitable system for the production of relevant immunogens that can be used for the development of a new generation of vaccines against a variety of infectious diseases. In the present study the epitope derived from HPV-16 L2 minor capsid protein (amino acids 108–120) was expressed from Potato virus X (PVX)-based vector pGR106 as N- or C-terminal fusion with the PVX coat protein (PVX CP) in transgenic Nicotiana benthamiana plants. The fusion protein L2108-120-PVX CP was successfully expressed in plants at a level of 170 mg/kg of fresh leaf tissue. The C-terminal fusion protein PVX CP- L2108-120 was expressed using mutated vector sequence to avoid homologous recombination at a level of 8 mg/kg of fresh leaf tissue. Immunogenicity of L2108-120-PVX CP virus-like particles was tested after immunization of mice by subcutaneous injection or tattoo administration. In animal sera the antibodies against the PVX CP and the L2108-120 epitope were found after both methods of vaccine delivery.  相似文献   

6.
The efficiency of in vitro translation of the potato virus X (PVX) RNA was studied for viral ribonucleoprotein complexes (vRNP) assembled from the genomic RNA and the viral coat protein (CP). In vRNP particles the 5′-proximal RNA segments were encapsidated into the CP, which formed helical headlike structures differing in length. Translation of the PVX RNA was completely suppressed upon incubation with PVX CP and was activated within vRNPs assembled in vitro with two CP forms, differing in the modification of the N-terminal peptide containing the main phosphorylation site(s) for Thr/Ser protein kinases. It was shown that CP phosphorylation activates RNA translation within vRNPs and that the removal of the N-terminal peptide of CP suppresses activation, but CP still acts as a translational suppressor. This fact made it possible to suppose that the replacement of Ser/Thr by amino acid residues that are not subject to phosphorylation in the N-terminal peptide of CP of the mutant PVX (PVX-ST) completely inhibits RNA translation within vRNP. However, experiments disproved this assumption: PVX-ST RNA was efficiently translated within native virions, RNA of the wild-type (wt) PVX was efficiently translated in heterogeneous vRNP (wtRNA + PVX-ST CP), and the opposite result (repression of translation) was obtained for another heterogeneous vRNP (PVX-ST RNA + wtCP). Therefore, the N-terminal CP peptide located on the surface of the PVX virion or vRNP particles plays a key role in the activation of viral RNA translation.  相似文献   

7.
A new cell-to-cell transport model for Potexviruses   总被引:1,自引:0,他引:1  
In the last five years, we have gained significant insight into the role of the Potexvirus proteins in virus movement and RNA silencing. Potexviruses require three movement proteins, named triple gene block (TGB)p1, TGBp2, and TGBp3, and the viral coat protein (CP) to facilitate viral cell-to-cell and vascular transport. TGBp1 is a multifunctional protein that has RNA helicase activity, promotes translation of viral RNAs, increases plasmodesmal size exclusion limits, and suppresses RNA silencing. TGBp2 and TGBp3 are membrane-binding proteins. CP is required for genome encapsidation and forms ribonucleoprotein complexes along with TGBp1 and viral RNA. This review considers the functions of the TGB proteins, how they interact with each other and CP, and how silencing suppression might be linked to viral transport. A new model of the mechanism for Potexvirus transport is proposed.  相似文献   

8.
9.
The triple gene block proteins (TGBp1-3) and coat protein (CP) of potexviruses are required for cell-to-cell movement. Separate models have been proposed for intercellular movement of two of these viruses, transport of intact virions, or a ribonucleoprotein complex (RNP) comprising genomic RNA, TGBp1, and the CP. At issue therefore, is the form(s) in which RNA transport occurs and the roles of TGBp1-3 and the CP in movement. Evidence is presented that, based on microprojectile bombardment studies, TGBp1 and the CP, but not TGBp2 or TGBp3, are co-translocated between cells with viral RNA. In addition, cell-to-cell movement and encapsidation functions of the CP were shown to be separable, and the rate-limiting factor of potexvirus movement was shown not to be virion accumulation, but rather, the presence of TGBp1-3 and the CP in the infected cell. These findings are consistent with a common mode of transport for potexviruses, involving a non-virion RNP, and show that TGBp1 is the movement protein, whereas TGBp2 and TGBp3 are either involved in intracellular transport or interact with the cellular machinery/docking sites at the plasmodesmata.  相似文献   

10.
Most RNA viruses remodel the endomembrane network to promote virus replication, maturation, or egress. Rearrangement of cellular membranes is a crucial component of viral pathogenesis. The PVX TGBp2 protein induces vesicles of the granular type to bud from the endoplasmic reticulum network. Green fluorescent protein (GFP) was fused to the PVX TGBp2 coding sequence and inserted into the viral genome and into pRTL2 plasmids to study protein subcellular targeting in the presence and absence of virus infection. Mutations were introduced into the central domain of TGBp2, which contains a stretch of conserved amino acids. Deletion of a 10-amino-acid segment (m2 mutation) overlapping the segment of conserved residues eliminated the granular vesicle and inhibited virus movement. GFP-TGBp2m2 proteins accumulated in enlarged vesicles. Substitution of individual conserved residues in the same region similarly inhibited virus movement and caused the mutant GFP-TGBp2 fusion proteins to accumulate in enlarged vesicles. These results identify a novel element in the PVX TGBp2 protein which determines vesicle morphology. In addition, the data indicate that vesicles of the granular type induced by TGBp2 are necessary for PVX plasmodesmata transport.  相似文献   

11.
We propose the modified model of the structure of coat protein (CP) subunits in filamentous virions of potato virus X (PVX). The model is similar to the one proposed by us in 2001 for the CP of another helical plant virus (potato virus A) belonging to other (potyvirus) group. In this model the PVX CP molecule consist of two main domains--a bundle of four alpha-helices located close to the virion long axis and a so-called RNP-fold (or abCd-fold) located near the virion surface. Basing on this model we suggest possible mechanism of described by J.G. Atabekov and colleagues structural transition ("remodeling") of the PVX virions resulting from their interaction with virus-specific TGB-1 protein.  相似文献   

12.
The efficiency of in vitro translation of potato virus X (PVX) RNA within vRNP complexes assembled from genomic RNA and viral CP was examined. The vRNP particles contain the 5'-proximal RNA segments encapsidated by helically arranged CP head-like portions heterogeneous in length and the CP-free RNA tail. Translation of RNA is completely repressed upon incubation with PVX CP and is accompanied by vRNP particles production. By contrast, translation is activated in vRNPs in vitro assembled using two CP forms, differing in the principals of their N-terminal peptides modification. The N-terminal peptide of PVX CP represents the major phosphorylation site(s) for Thr/Ser-specific protein kinases. It was shown that: (i) CP phosphorylation results in a translational activation of vRNP; (ii) removal of N-terminal peptide from CP abolished activation and CP retains the translation repressing ability. It was suggested that substitution of Ser/Thr residues by non-phosphorylated Ala/Gly in N-terminal peptide of the mutant CP will led to a complete inhibition of vRNP translation. However, opposite results were obtained in our experiments: (i) RNA of such mutant virus (PVX-ST) was efficiently translated within the virions; (ii) RNA of a wild-type (wt) PVX also efficiently translated in mixedly assembled vRNP "wt PVX RNA + PVX-ST CP"; (iii) opposite result (repression of translation) was obtained with "mixed" vRNP (PVX-ST RNA + wtPVX CP). Therefore, the N-terminal peptide located at the surface of the particle and of the particles plays a key role in translation activation of the RNA encapsidated in vRNP and native virions.  相似文献   

13.
A review of the structural studies of tobacco mosaic virus (TMV) is given. TMV is essentially a flat helical microcrystal with 16 1/3 subunits per turn. A single strand of RNA runs along the helix and is deeply embedded in the protein. The virus particles form oriented gels from which high-resolution X-ray fiber diffraction data can be obtained. This may be interpreted by the use of six heavy-atom derivatives to give an electron density map at 0.4 nm resolution from which the RNA configuration and the form of the inner part of the protein subunit may be determined. In addition, the protein subunits form a stable 17-fold two-layered disk which is involved in virus assembly and which crystallizes. By the use of noncrystallographic symmetry and a single heavy-atom derivative, it has been possible to solve the structure of the double disk to 0.28 nm resolution. In this structure one sees that an important structural role is played by four alpha-helices, one of which (the LR helix) appears to form the main binding site for the RNA. The main components of the binding site appear to be hydrophobic interactions with the bases, hydrogen bonds between aspartate groups and the sugars, and arginine salt bridges to the phosphate groups. The binding site is between two turns of the virus helix or between the turns of the double disk. In the disk, the region proximal to the RNA binding site is in a random coil until the RNA binds, whereupon the 24 residues involved build a well-defined structure, thereby encapsulating the RNA.  相似文献   

14.
The Potato virus X (PVX) triple gene block protein 3 (TGBp3), an 8‐kDa membrane binding protein, aids virus movement and induces the unfolded protein response (UPR) during PVX infection. TGBp3 was expressed from the Tobacco mosaic virus (TMV) genome (TMV‐p3), and we noted the up‐regulation of SKP1 and several endoplasmic reticulum (ER)‐resident chaperones, including the ER luminal binding protein (BiP), protein disulphide isomerase (PDI), calreticulin (CRT) and calmodulin (CAM). Local lesions were seen on leaves inoculated with TMV‐p3, but not TMV or PVX. Such lesions were the result of TGBp3‐elicited programmed cell death (PCD), as shown by an increase in reactive oxygen species, DNA fragmentation and induction of SKP1 expression. UPR‐related gene expression occurred within 8 h of TMV‐p3 inoculation and declined before the onset of PCD. TGBp3‐mediated cell death was suppressed in plants that overexpressed BiP, indicating that UPR induction by TGBp3 is a pro‐survival mechanism. Anti‐apoptotic genes Bcl‐xl, CED‐9 and Op‐IAP were expressed in transgenic plants and suppressed N gene‐mediated resistance to TMV, but failed to alleviate TGBp3‐induced PCD. However, TGBp3‐mediated cell death was reduced in SKP1‐silenced Nicotiana benthamiana plants. The combined data suggest that TGBp3 triggers the UPR and elicits PCD in plants.  相似文献   

15.
竹花叶病毒卫星RNA(satBaMV)是一个长度为836个核苷酸(不包括polyA)的单链正义RNA分子,可编码一20ku的卫星蛋白(P20).satBaMV的复制和包被需依赖竹花叶病毒(BaMV).P20是核酸结合蛋白,能促进satBaMV在寄主植物的长距离移动.利用细菌双杂交系统(BTH)和pull-downassays研究了P20自身、P20与BaMV蛋白以及BaMV蛋白之间的相互作用.研究表明:P20自身的相互作用是最强的;P20与甲基转移酶(MET)和衣壳蛋白(CP)之间有明显的相互作用;三基因连锁蛋白之间亦存在强的相互作用;CP与三基因连锁蛋白之间有明显的相互作用.删减分析表明,位于P20N端包括RNA结合位点在内的15个氨基酸是P20自身相互作用所必需的.N端缺失可导致P20间相互作用消失.P20的β折叠结构也是P20间相互作用所必需.此外,P20与烟草细胞色素C还原酶和β微管蛋白之间有较强的相互作用.BaMV蛋白与P20之间的同型和异型相互作用对BaMV及其卫星RNA在寄主植物中的移动起重要作用.  相似文献   

16.
Transgenic Nicotiana tabacum plants expressing the TGBp1 movement protein of potato virus X (PVX) were studied to investigate the effects caused by this protein on plant physiology and development. TGBp1 caused consistent reductions of size and weight in different organs of these plants; however shoot-to-root ratios were similar to those of control plants. Transgenic seedlings showed smaller root meristems and calli derived from TGBp1 leaves grew at a slower rate through successive subcultures. Microscopic observations of TGBp1 plants revealed flattened chloroplasts containing plastoglobuli-like bodies. Further analyses showed a considerable reduction in photosynthetic rate, lower starch levels in leaves and roots, higher nitrate accumulation in leaves and induction of pathogenesis-related (PR) protein genes. Since these changes were not observed when other PVX sequences were expressed in tobacco, we postulate that TGBp1 is an important symptom contributor in PVX infections.  相似文献   

17.
The kinetics of assembly and disassembly of tobacco mosaic virus coat protein (TMVP) following temperature jumps have been studied by small-angle X-ray scattering and turbidimetry. The structures of the principal aggregates of TMVP oligomers (A protein), intermediate size (helix I) and large size helical rods (helix II), have been characterized by their average radii of gyration of thickness, cross section, and shape obtained from the corresponding regimes of the small-angle scattering pattern. This structural information was obtained within seconds after the temperature-induced initiation of either polymerization or depolymerization and allowed us to detect transient intermediates. This methodology made it possible to observe and characterize the structure of a principal intermediate. Taken together with other kinetic information, these data suggest that polymerization of TMVP under virus self-assembly conditions may proceed via a single-layered helical nucleus that contains about 20 subunits. Previous studies have shown that overshoot polymerization of TMVP can occur and results in metastable long helical viruslike rods which subsequently depolymerize and then form short helical rods, depending on the conditions of the final equilibrium state. The longer rods (helix II) are overshoot polymers which form within seconds and contain 17 1/3 subunits per turn (helix IIB), in contrast to the subunit packing arrangement of 16 1/3 subunits per turn found in the shorter helical rods (helix IA). The latter packing arrangement is the one found in TMV. An overall polymerization scheme is proposed for the formation of these two helical forms of TMVP.  相似文献   

18.
The green fluorescent protein (GFP) gene was fused to the potato virus X (PVX) TGBp2 gene, inserted into either the PVX infectious clone or pRTL2 plasmids, and used to study protein subcellular targeting. In protoplasts and plants inoculated with PVX-GFP:TGBp2 or transfected with pRTL2-GFP:TGBp2, fluorescence was mainly in vesicles and the endoplasmic reticulum (ER). During late stages of virus infection, fluorescence became increasingly cytosolic and nuclear. Protoplasts transfected with PVX-GFP:TGBp2 or pRTL2-GFP:TGBp2 were treated with cycloheximide and the decline of GFP fluorescence was greater in virus-infected protoplasts than in pRTL2-GFP:TGBp2-transfected protoplasts. Thus, protein instability is enhanced in virus-infected protoplasts, which may account for the cytosolic and nuclear fluorescence during late stages of infection. Immunogold labeling and electron microscopy were used to further characterize the GFP:TGBp2-induced vesicles. Label was associated with the ER and vesicles, but not the Golgi apparatus. The TGBp2-induced vesicles appeared to be ER derived. For comparison, plasmids expressing GFP fused to TGBp3 were transfected to protoplasts, bombarded to tobacco leaves, and studied in transgenic leaves. The GFP:TGBp3 proteins were associated mainly with the ER and did not cause obvious changes in the endomembrane architecture, suggesting that the vesicles reported in GFP:TGBp2 studies were induced by the PVX TGBp2 protein. In double-labeling studies using confocal microscopy, fluorescence was associated with actin filaments, but not with Golgi vesicles. We propose a model in which reorganization of the ER and increased protein degradation is linked to plasmodesmata gating.  相似文献   

19.
With help of several optical methods and differential scanning calorimetry we studied the structure and stability of molecules of coat protein (CP) of filamentous of potato virus X (PVX) in free state and in the virions. According to the results of all these methods, at room temperature (25 degrees C) free PVX CP subunits possess some fixed tertiary structure but this structure is highly unstable and is completely disrupted at temperatures as low as 35 degrees C. The free PVX CP tertiary structure was also disrupted by very low sodium dodecylsulfate and cetyltrimetylammonium bromide concentrations: 3 to 5 moleculs of the surfactants per the CP molecule were sufficient to induce its total disruption. At the same time, these treatments did not result in any changes in the PVX CP secondary structure. Incorporation of the CP subunits into the PVX virions resulted in a strong increase in their stability to effects of increased temperatures and surfactants. This combination of highly labile tertiary structure and rather stable secondary structure of free PVX CP subunits may represent a structural basis for recently observed capacity of the PVX CP moleculs to assume two different functional states in the virion.  相似文献   

20.
Plant viruses must interact with host cellular components to replicate and move from cell to cell. In the case of Potato virus X (PVX), it carries stem-loop 1 (SL1) RNA essential for viral replication and movement. Using two-dimensional electrophoresis northwestern blot analysis, we previously identified several host proteins that bind to SL1 RNA. Of those, we further characterized a DnaJ-like protein from Nicotiana benthamiana named NbDnaJ. An electrophoretic mobility shift assay confirmed that NbDnaJ binds only to SL1 minus-strand RNA, and bimolecular fluorescence complementation (BiFC) indicated that NbDnaJ interacts with PVX capsid protein (CP). Using a series of deletion mutants, the C-terminal region of NbDnaJ was found to be essential for the interaction with PVX CP. The expression of NbDnaJ significantly changed upon infection with different plant viruses such as PVX, Tobacco mosaic virus, and Cucumber mosaic virus, but varied depending on the viral species. In transient experiments, both PVX replication and movement were inhibited in plants that over-expressed NbDnaJ but accelerated in plants in which NbDnaJ was silenced. In summary, we suggest that the newly identified NbDnaJ plays a role in PVX replication and movement by interacting with SL1(-) RNA and PVX CP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号