首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
PHO8 5基因是芽殖酵母中的一个多功能基因。它参与了无机磷酸的代谢、碳源利用、糖原积累、特定蛋白质的降解和细胞周期调控。研究了酵母株YPH499及其衍生的pho85缺失株、pho80缺失株、pap1(pcl7)缺失株在不同浓度的不同金属离子中的存活情况 ,结果表明和芽殖酵母YPH499相比 ,pho85缺失株和pho80缺失株表现出对K 、Mg2 、Zn2 、Ca2 和Mn2 的耐受下降 ,而PAP1基因的缺失则不会导致芽殖酵母对上述金属离子的敏感性的变化 ;而对Cu2 ,3株突变株都表现出和YPH499相同的耐受性。同时测定了各缺失株和YPH499对上述金属离子的半致死浓度以及pho85缺失株、pho80缺失株和YPH499的细胞内总钙量。这些结果显示 ,PHO85蛋白激酶通过和它的PCLPHO80而不是PAP1结合 ,参与了芽殖酵母K 、Mg2 、Zn2 、Ca2 和Mn2 离子平衡的调控。PHO85和PHO80基因的缺失损害了芽殖酵母钙的储存。  相似文献   

7.
8.
9.
Molecular analysis of the PHO81 gene of Saccharomyces cerevisiae.   总被引:2,自引:0,他引:2       下载免费PDF全文
The PHO81 gene product is a positive regulatory factor required for the synthesis of the phosphate repressible acid phosphatase (encoded by the PHO5 gene) in Saccharomyces cerevisiae. Genetic analysis has suggested that PHO81 may be the signal acceptor molecule; however, the biochemical function of the PHO81 gene product is not known. We have cloned the PHO81 gene and sequenced the promoter. A PHO81-LacZ fusion was shown to be a valid reporter since its expression is regulated by the level of inorganic phosphate and is controlled by the same regulatory factors that regulate PHO5 expression. To elucidate the mechanism by which PHO81 functions, we have isolated and cloned dominant mutations in the PHO81 gene which confer constitutive synthesis of acid phosphatase. We have demonstrated that overexpression of the negative regulatory factor, PHO80, but not the negative regulatory factor PHO85, partially blocks the constitutive acid phosphatase synthesis in a strain containing a dominant constitutive allele of PHO81. This suggests that PHO81 may function by interacting with PHO80 or that these molecules compete for the same target.  相似文献   

10.
A set of protein hybrids composed of variable portions of the amino-terminal residues of the yeast phosphate-repressible acid phosphatase (product of PHO5) and an active fragment of bacterial beta-galactosidase has been constructed. When these PHO5-LACZ hybrids are expressed in a yeast strain carrying an intact chromosomal PHO5 gene, they show a size-dependent interference with the secretion of native acid phosphatase. Hybrid proteins containing approximately 50 residues of acid phosphatase do not affect secretion of native acid phosphatase. Hybrids containing greater than 200 residues of acid phosphatase reduce the amount of secreted acid phosphatase more than by 50%. The interference with secretion is specific for acid phosphatase. The hybrids do not affect secretion of invertase, and do not confer a growth-deficient phenotype on yeast. Both the hybrid proteins and acid phosphatase accumulate in non-glycosylated, membrane-bound forms which are sensitive to proteolysis from the cytoplasmic side of the membrane. The hybrids and accumulated acid phosphatase co-migrate on Percoll density gradients with markers of the endoplasmic reticulum, but not with markers of the Golgi or secretory vesicles. These results suggest that PHO5-LACZ hybrid proteins specifically block secretion of native acid phosphatase by interfering with enzyme after targeting but before translocation across the endoplasmic reticulum.  相似文献   

11.
12.
13.
Y Uesono  K Tanaka    A Toh-e 《Nucleic acids research》1987,15(24):10299-10309
One of the negative regulators of the PHO system of Saccharomyces cerevisiae, PHO85, has been isolated by transformation and complementation of a pho85 strain. The complementing activity was delimited within a 1258 bp DNA segment and this region has been sequenced. The largest open reading frame found in this region can encode a protein of 302 amino acid residues. A pho85 mutant resulted from disruption of the chromosomal counterpart of the open reading frame described above. Therefore, we concluded that the gene we have cloned is PHO85. This result also indicates that PHO85 is nonessential. Northern analysis revealed that the size of the PHO85 message is 1.1 kb. No similarity was found between the putative amino acid sequences of two negative regulators, the PHO80 and PHO85 proteins.  相似文献   

14.
15.
The yeast cell wall consists of an internal skeletal layer and an outside protein layer. The synthesis of both β-1,3-glucan and chitin, which together form the cell wall skeleton, is cell cycle-regulated. We show here that the expression of five cell wall protein-encoding genes (CWP1, CWP2, SED1, TIP1 and TIR1) is also cell cycle-regulated. TIP1 is expressed in G1 phase, CWP1, CWP2 and TIR1 are expressed in S/G2 phase, and SED1 in M phase. The data suggest that these proteins fulfil distinct functions in the cell wall.  相似文献   

16.
In yeast, the repression of acid phosphatase under high phosphate growth conditions requires the trans-acting factor PHO80. We have determined the DNA sequence of the PHO80 gene and found that it encodes a protein of 293 amino acids. The expression of the PHO80 gene, as measured by Northern analysis and level of a PHO80-LacZ fusion protein is independent of the level of phosphate in the growth medium. Disruption of the PHO80 gene is a non-lethal event and causes a derepressed phenotype, with acid phosphatase levels which are 3-4 fold higher than the level found in derepressed wild type cells. Furthermore, over-expression of the PHO80 gene causes a reduction in the level of acid phosphatase produced under derepressed growth conditions. Finally, we have cloned, localized and sequenced a temperature-sensitive allele of PHO80 and found the phenotype to be due to T to C transition causing a substitution of a Ser for a Leu at amino acid 163 in the protein product.  相似文献   

17.
18.
PET genes of Saccharomyces cerevisiae.   总被引:32,自引:1,他引:32       下载免费PDF全文
We describe a collection of nuclear respiratory-defective mutants (pet mutants) of Saccharomyces cerevisiae consisting of 215 complementation groups. This set of mutants probably represents a substantial fraction of the total genetic information of the nucleus required for the maintenance of functional mitochondria in S. cerevisiae. The biochemical lesions of mutants in approximately 50 complementation groups have been related to single enzymes or biosynthetic pathways, and the corresponding wild-type genes have been cloned and their structures have been determined. The genes defined by an additional 20 complementation groups were identified by allelism tests with mutants characterized in other laboratories. Mutants representative of the remaining complementation groups have been assigned to one of the following five phenotypic classes: (i) deficiency in cytochrome oxidase, (ii) deficiency in coenzyme QH2-cytochrome c reductase, (iii) deficiency in mitochondrial ATPase, (iv) absence of mitochondrial protein synthesis, and (v) normal composition of respiratory-chain complexes and of oligomycin-sensitive ATPase. In addition to the genes identified through biochemical and genetic analyses of the pet mutants, we have cataloged PET genes not matched to complementation groups in the mutant collection and other genes whose products function in the mitochondria but are not necessary for respiration. Together, this information provides an up-to-date list of the known genes coding for mitochondrial constituents and for proteins whose expression is vital for the respiratory competence of S. cerevisiae.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号