首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 194 毫秒
1.
We have found that 3-benzyl-5-((2-nitrophenoxy) methyl)-dihydrofuran -2(3H)-one (3BDO), could effectively suppress human umbilical vascular endothelial cell (HUVEC) apoptosis induced by deprivation of fibroblast growth factor-2 and serum. Here, our purpose was to investigate whether 3BDO could modulate angiogenesis and its possible acting mechanism. The effect of 3BDO on angiogenesis was investigated by capillary-like tubule formation and rat aortic ring assay. Proliferation and migration of cells were detected by counting living cell number and scraping cell monolayer, respectively. Na, K-ATPase activity was measured spectrophotometrically. Mitochondrial membrane potential was analyzed using tetramethylrhodamine methylester fluorescence by confocal microscopy. Our results showed that 3BDO inhibited migration and proliferation of vascular smooth muscle cells (VSMCs), but maintained migration and tubule formation of HUVECs. In HUVECs, 3BDO inhibited Na, K-ATPase activity, but had no effect on mitochondria membrane potential. In VSMCs, it did not affect Na, K-ATPase activity, but depressed mitochondria membrane potential obviously. The data showed that 3BDO had selective effects on HUVECs and VSMCs, it might perform its role through the selective effects on the activity of Na, K-ATPase and the mitochondria membrane potential in HUVECs and VSMCs.  相似文献   

2.
Fusion of enhanced green fluorescent protein (EGFP) to the C-terminal of rat Na,K-ATPase a1-subunit is introduced as a novel procedure for visualizing trafficking of Na,K-pumps in living COS-1 renal cells in response to PKA or PKC stimulation. Stable, functional expression of the fluorescent chimera (Na,K-EGFP) was achieved in COS-1 cells using combined puromycin and ouabain selection procedures. Na,K-pump activities were unchanged after fusion with EGFP, both in basal and regulated states. In confocal laser scanning and fluorescence microscopes, the Na,K-EGFP chimera was distributed mainly along the plasma membrane of COS cells. In unstimulated COS cells, Na,K-EGFP was also present in lysosomes and in vesicles en route from the endoplasmic reticulum to the plasma membrane, but it was almost absent from recycling endosomes labelled with fluorescent transferrin. After activation of protein kinase A or C, the density of co-localizing Na,K-EGFP and transferrin vesicles was increased 3-4-fold, while the ouabain-sensitive 86Rb uptake was reduced by 22%. Simultaneous activation of PKA and PKC had additive effects with a 6-fold increase of co-localization and a 38% reduction of 86Rb uptake. Responses of similar magnitude were seen after inhibition of protein phosphatase by okadaic acid. Reduction of the amount of Na,K-ATPase in surface plasma membranes through internalization in recycling endosomes may thus in part explain a decrease in Na,K-pump activity following protein kinase activation or protein phosphatase inhibition.  相似文献   

3.
Regulation of caveolin-1 membrane trafficking by the Na/K-ATPase   总被引:2,自引:0,他引:2  
Here, we show that the Na/K-ATPase interacts with caveolin-1 (Cav1) and regulates Cav1 trafficking. Graded knockdown of Na/K-ATPase decreases the plasma membrane pool of Cav1, which results in a significant reduction in the number of caveolae on the cell surface. These effects are independent of the pumping function of Na/K-ATPase, and instead depend on interaction between Na/K-ATPase and Cav1 mediated by an N-terminal caveolin-binding motif within the ATPase α1 subunit. Moreover, knockdown of the Na/K-ATPase increases basal levels of active Src and stimulates endocytosis of Cav1 from the plasma membrane. Microtubule-dependent long-range directional trafficking in Na/K-ATPase–depleted cells results in perinuclear accumulation of Cav1-positive vesicles. Finally, Na/K-ATPase knockdown has no effect on processing or exit of Cav1 from the Golgi. Thus, the Na/K-ATPase regulates Cav1 endocytic trafficking and stabilizes the Cav1 plasma membrane pool.  相似文献   

4.
In most polarized cells, the Na,K-ATPase is localized on the basolateral plasma membrane. However, an unusual location of the Na,K-ATPase was detected in polarized HGT-1 cells (a human gastric adenocarcinoma cell line). The Na,K-ATPase alpha1 subunit was detected along with the beta2 subunit predominantly on the apical membrane, whereas the Na,K-ATPase beta1 subunit was not found in HGT-1 cells. However, when expressed in the same cell line, a yellow fluorescent protein-linked Na,K-ATPase beta1 subunit was localized exclusively to the basolateral surface and resulted in partial redistribution of the endogenous alpha1 subunit to the basolateral membrane. The human beta2 subunit has eight N-glycosylation sites, whereas the beta1 isoform has only three. Accordingly, up to five additional N-glycosylation sites homologous to the ones present in the beta2 subunit were successively introduced in the beta1 subunit by site-directed mutagenesis. The mutated beta1 subunits were detected on both apical and basolateral membranes. The fraction of a mutant beta1 subunit present on the apical membrane increased in proportion to the number of glycosylation sites inserted and reached 80% of the total surface amount for the beta1 mutant with five additional sites. Clustered distribution and co-localization with caveolin-1 was detected by confocal microscopy for the endogenous beta2 subunit and the beta1 mutant with additional glycosylation sites but not for the wild type beta1 subunit. Hence, the N-glycans linked to the beta2 subunit of the Na,K-ATPase contain apical sorting information, and the high abundance of the beta2 subunit isoform, which is rich in N-glycans, along with the absence of the beta1 subunit, is responsible for the unusual apical location of the Na,K-ATPase in HGT-1 cells.  相似文献   

5.
To study the size and structure of the Na,K-pump molecule, the ultrastructure of phospholipid vesicles was examined after incorporation of purified Na,K-ATPase which catalyzes active coupled transport of Na+ and K+ in a ratio close to 3Na/2K. The vesicles were analyzed by thin sectioning and freeze-fracture electron microscopy after reconstitution with different ratios of Na,K-ATPase protein to lipid, and the ultrastructural observations were correlated to the cation transport capacity. The purified Na,K-ATPase reconstituted with phospholipids to form a very uniform population of vesicles. Thin sections of preparations fixed with glutaraldehyde and osmium tetroxide showed vesicles limited by a single membrane which in samples stained with tannic acid appeared triple-layered with a thickness of 70 A. Also, freeze-fracture electron microscopy demonstrated uniform vesicles with diameters in the range of 700-1,100 A and an average value close to 900 A. The vesicle diameter was independent of the amount of protein used for reconstitution. Intramembrane particles appeared only in the vesicle membrane after introduction of Na,K-ATPase and the frequency of intramembrane particles was proportional to the amount of Na,K-ATPase protein used in the reconstitution. The particles were evenly distributed on the inner and the outer leaflet of the vesicle membrane. The diameter of the particles was 90 A and similar to our previous values for the diameter of intramembrane particles in the purified Na,K-ATPase. The capacity for active cation transport in the reconstituted vesicles was proportional to the frequency of intramembrane particles over a range of 0.2-16 particles per vesicle. The data therefore show that active coupled Na,K transport can be carried out by units of Na,K-ATPase which appear as single intramembrane particles with diameters close fo 90 A in the freeze-fracture micrographs.  相似文献   

6.
Recent evidence indicates that newly synthesized membrane proteins that share the same distributions in the plasma membranes of polarized epithelial cells can pursue a variety of distinct trafficking routes as they travel from the Golgi complex to their common destination at the cell surface. In most polarized epithelial cells, both the Na,K-ATPase and E-cadherin are localized to the basolateral domains of the plasma membrane. To examine the itineraries pursued by newly synthesized Na,K-ATPase and E-cadherin in polarized MDCK epithelial cells, we used the SNAP and CLIP labeling systems to fluorescently tag temporally defined cohorts of these proteins and observe their behaviors simultaneously as they traverse the secretory pathway. These experiments reveal that E-cadherin is delivered to the cell surface substantially faster than is the Na,K-ATPase. Furthermore, the surface delivery of newly synthesized E-cadherin to the plasma membrane was not prevented by the 19°C temperature block that inhibits the trafficking of most proteins, including the Na,K-ATPase, out of the trans-Golgi network. Consistent with these distinct behaviors, populations of newly synthesized E-cadherin and Na,K-ATPase become separated from one another within the trans-Golgi network, suggesting that they are sorted into different carrier vesicles that mediate their post-Golgi trafficking.  相似文献   

7.
Motion of integral membrane proteins to the plasma membrane in response to G-protein-coupled receptor signals requires selective cargo recognition motifs that bind adaptor protein 1 and clathrin. Angiotensin II, through the activation of AT1 receptors, promotes the recruitment to the plasma membrane of Na,K-ATPase molecules from intracellular compartments. We present evidence to demonstrate that a tyrosine-based sequence (IVVY-255) present within the Na,K-ATPase alpha1-subunit is involved in the binding of adaptor protein 1. Mutation of Tyr-255 to a phenylalanine residue in the Na,K-ATPase alpha1-subunit greatly reduces the angiotensin II-dependent activation of Na,K-ATPase, recruitment of Na,K-ATPase molecules to the plasma membrane, and association of adaptor protein 1 with Na,K-ATPase alpha1-subunit molecules. To determine protein-protein interaction, we used fluorescence resonance energy transfer between fluorophores attached to the Na,K-ATPase alpha1-subunit and adaptor protein 1. Although angiotensin II activation of AT1 receptors induces a significant increase in the level of fluorescence resonance energy transfer between the two molecules, this effect was blunted in cells expressing the Tyr-255 mutant. Thus, results from different methods and techniques suggest that the Tyr-255-based sequence within the NKA alpha1-subunit is the site of adaptor protein 1 binding in response to the G-protein-coupled receptor signals produced by angiotensin II binding to AT1 receptors.  相似文献   

8.
The effects and modes of action of certain lipid second messengers and protein kinase C regulators, such as sphingosine, lysophosphatidylcholine (lyso-PC), and oleic acid, on Na,K-ATPase and sodium pump were examined. Inhibition of purified rat brain synaptosome Na,K-ATPase by these lipid metabolites, unlike that by ouabain, was subject to membrane dilution (i.e. inhibition being counteracted by increasing amounts of membrane lipids). Kinetic analysis, using the purified enzyme, indicated that sphingosine and lyso-PC were likely to interact, directly or indirectly, with Na+-binding sites of Na,K-ATPase located at the intracellular face of plasma membranes, a conclusion also supported by studies on Na,K-ATPase and 22Na uptake using the inside-out vesicles of human erythrocyte membranes. The studies also showed that ouabain (but not sphingosine and lyso-PC) increased the affinity constant (K0.5) for K+, whereas sphingosine and lyso-PC (but not ouabain) increased K0.5 for Na+. Sphingosine and lyso-PC inhibited 86Rb uptake by intact human leukemia HL-60 cells at potencies comparable to those for inhibitions of purified Na,K-ATPase and protein kinase C. It is suggested that Na,K-ATPase (sodium pump) might represent an additional target system, besides protein kinase C, for sphingosine and possibly other lipid second messengers.  相似文献   

9.
Summary Membrane fragments containing a high density of Na, K-ATPase can be noncovalently labeled with amphiphilic styryl dyes (e.g., RH 421). Phosphorylation of the Na,K-ATPase by ATP in the presence of Na+ and in the absence of K+ leads to a large increase of the fluorescence of RH 421 (up to 100%). In this paper evidence is presented that the styryl dye mainly responds to changes of the electric field strength in the membrane, resulting from charge movements during the pumping cycle: (i) The spectral characteristic of the ATP-induced dye response essentially agrees with the predictions for an electrochromic shift of the absorption peak. (ii) Adsorption of lipophilic anions to Na, K-ATPase membranes leads to an increase, adsorption of lipophilic cations to the decrease of dye fluorescence. These ions are known to bind to the hydrophobic interior of the membrane and to change the electric field strength in the boundary layer close to the interface. (iii) The fluorescence change that is normally observed upon phosphorylation by ATP is abolished at high concentrations of lipophilic ions. Lipophilic ions are thought to redistribute between the adsorption sites and water and to neutralize in this way the change of field strength caused by ion translocation in the pump protein. (iv) Changes of the fluorescence of RH 421 correlate with known electrogenic transitions in the pumping cycle, whereas transitions that are known to be electrically silent do not lead to fluorescence changes. The information obtained from experiments with amphiphilic styryl dyes is complementary to the results of electrophysiological investigations in which pump currents are measured as a function of transmembrane voltage. In particular, electrochromic dyes can be used for studying electrogenic processes in microsomal membrane preparations which are not amenable to electrophysiological techniques.Deceased (September 13, 1990).  相似文献   

10.
Fibril formation of islet amyloid polypeptide (IAPP) is associated with cell death of the insulin-producing pancreatic beta-cells in patients with Type 2 Diabetes Mellitus. A likely cause for the cytotoxicity of human IAPP is that it destroys the barrier properties of the cell membrane. Here, we show by fluorescence confocal microscopy on lipid vesicles that the process of hIAPP amyloid formation is accompanied by a loss of barrier function, whereby lipids are extracted from the membrane and taken up in the forming amyloid deposits. No membrane interaction was observed when preformed fibrils were used. It is proposed that lipid uptake from the cell membrane is responsible for amyloid-induced membrane damage and that this represents a general mechanism underlying the cytotoxicity of amyloid forming proteins.  相似文献   

11.
Na/K-ATPase of salt-stressed salt glands of the domestic duck (Anas platyrhynchos) was purified in membrane-bound form by incubation of the microsomal fraction with sodium dodecylsulphate and ATP followed by discontinuous sucrose gradient centrifugation. Gel electrophoresis of the purified plasma membrane preparation substantially showed the two polypeptide subunits of the Na/K-ATPase both of which stained with the periodic acid-Schiff reagent. About 99% of the total ATPase activity was ouabain-inhibitable amounting to 1300 mumol Pi/(mg protein X h) of specific activity. The anion-stimulated, ouabain-insensitive ATPase increased parallel to the Na/K-ATPase up to the microsomal fraction until it totally vanished during SDS incubation. Electron microscopy of thin sections revealed that the purified fraction consisted of flat and cup-shaped triple-layered membrane fragments. Particles arranged into clusters and strands were visible as 3 to 5 nm surface particles in negatively stained suspensions and as 8 to 10 nm intramembraneous particles in freeze fracture replicas. The differential distribution of the intramembraneous particles on the fracture faces reflected the structural membrane asymmetry. Solubilization of Na/K-ATPase led to the disappearance of intramembraneous particles. Incorporation of the solubilized enzyme into phosphatidylcholine vesicles again showed 8 to 10 nm particles apparently orientated at random in the artificial membrane. Control liposomes prepared in the absence of solubilized enzyme were devoid of intramembraneous particles. These results clearly demonstrate that the avian salt gland Na/K-ATPase exists as 8 to 10 nm particles in both the purified plasma membrane and the artificial phospholipid membrane.  相似文献   

12.
The anticancer ether lipid analogs ET-18-OCH3 and BM 41.440 inhibited Na, K-ATPase in the purified rat brain membrane fragments, with a potency comparable to that of their inhibition of protein kinase C. They also inhibited Na,K-ATPase in the crude membrane fraction of HL60 cells. Kinetic analysis indicated that the lipids had a mode of action different from that of ouabain, a classic inhibitor of the ATPase. The lipids also blocked 22Na uptake in the inside-out membrane vesicles of human erythrocytes. It is suggested that Na,K-ATPase might represent an additional site with which certain protein kinase C inhibitors can interact to alter cellular activities.  相似文献   

13.
Cisplatin is a chemotherapeutic agent commonly used in the treatment of a wide variety of malignant tumors. Resistance to cisplatin represents a major obstacle to effective cancer therapy because clinically significant levels of resistance quickly emerge after treatment. Based on previous studies indicating abnormal plasma membrane protein trafficking in cisplatin-resistant (CP-r) cells, Fluorescence (Alexa Fluor)-labeled cisplatin was used to determine whether this defect altered the trafficking and localization of cisplatin by comparing drug sensitive KB-3-1 and KB-CP-r cells. Alexa Fluor-cisplatin was readily internalized and localized throughout the KB-3-1 cells, but overall fluorescence decreased in KB-CP-r cells, as detected by flow cytometry (FACS) and confocal microscopy. Only punctate cytoplasmic staining was observed in KB-CP-r cells with less fluorescence observed in the nucleus. Colocalization experiments with a Golgi-selective stain indicate the involvement of Golgi-like vesicles in initial intracellular processing of Alexa Fluor conjugated cisplatin complexes. As detected using an antibody to Alexa Fluor-cisplatin, cisplatin complex-binding proteins (CCBPs) were reduced in membrane fractions of single-step cisplatin-resistant KB-CP.5 cells, and increased in the cytoplasm of KB-CP.5 cells compared to KB-3-1 cells. CCBPs localized to lower density fractions in KB-CP.5 cells than in KB-3-1 cells as determined by iodixanol gradient centrifugation. In summary, inappropriate trafficking of CCBPs might explain resistance to cisplatin in cultured cancer cells, presumably because membrane binding proteins for cisplatin are not properly located on the cell surface in these cells, but are instead trapped in low density vesicles within the cytoplasm.  相似文献   

14.
Our original attempt was to examine whether inhibition of Na/H exchange in proximal tubule would affect the expression of basolateral membrane protein Na,K-ATPase. Three amiloride analogues were tested within the range of 10(-6) M to 10(-4) M in primary cultures of proximal tubule cells. Only ethylisopropyl amiloride (EIPA) dose-dependently downregulated Na,K-ATPase activity in cultured proximal tubule cells. The time course study revealed that EIPA (10(-4) M) significantly decreased Na,K-ATPase alpha- and alpha-mRNA abundance within 4 hr and suppressed Na,K-ATPase alpha- and beta-mRNA levels by 76.3 +/- 4.5% and 85.5 +/- 5.8%, respectively, within 24 hr. The decrease in Na,K-ATPase mRNA was followed by a decrease in Na,K-ATPase activity by 22.5 +/- 10.8% and 48.8 +/- 5.9% within 12 and 24 hr, respectively, which could be reflected by a coordinate decrease in levels of both alpha- and mature beta-protein. The cell viability was not affected until 20 hr of EIPA treatment, when an increase in LDH release and cell detachment was observed. Because EIPA rapidly decreased intracellular pH (pHi) to 6.7 within 2 hr and raising pHi to 6.6 by metabolic acidosis could not elicit changes in Na,K-ATPase activity, EIPA-induced downregulation of Na,K-ATPase should not be mediated through H+. In view of the time course of EIPA effects on Na,K-ATPase subunit mRNA, protein, activity and cell toxicity, the cytotoxic effect is likely resulted from a decrease in Na,K-ATPase activity. Take together, we conclude that EIPA induces downregulation of Na,K-ATPase expression via both pre- and post-translational mechanisms, which confers cytotoxic effects on proximal tubule cells.  相似文献   

15.
The observation of phase separation in intact plasma membranes isolated from live cells is a breakthrough for research into eukaryotic membrane lateral heterogeneity, specifically in the context of membrane rafts. These observations are made in giant plasma membrane vesicles (GPMVs), which can be isolated by chemical vesiculants from a variety of cell types and microscopically observed using basic reagents and equipment available in any cell biology laboratory. Microscopic phase separation is detectable by fluorescent labeling, followed by cooling of the membranes below their miscibility phase transition temperature. This protocol describes the methods to prepare and isolate the vesicles, equipment to observe them under temperature-controlled conditions and three examples of fluorescence analysis: (i) fluorescence spectroscopy with an environment-sensitive dye (laurdan); (ii) two-photon microscopy of the same dye; and (iii) quantitative confocal microscopy to determine component partitioning between raft and nonraft phases. GPMV preparation and isolation, including fluorescent labeling and observation, can be accomplished within 4 h.  相似文献   

16.
We reported previously that cofilin, an actin-binding protein, interacts with Na,K-ATPase and enhances its activity (Lee, K., Jung, J., Kim, M., and Guidotti, G. (2001) Biochem. J. 353, 377-385). To understand the nature of this interaction and the role of cofilin in the regulation of Na,K-ATPase activity, we searched for cofilin-binding proteins in the rat skeletal muscle cDNA library using the yeast two-hybrid system. Several cDNA clones were isolated, some of which coded for triose-phosphate isomerase, a glycolytic enzyme. The interaction of cofilin with triose-phosphate isomerase as well as Na,K-ATPase was confirmed by immunoprecipitation and confocal microscopy in HeLa cells. Cofilin was translocated to the plasma membrane along with triose-phosphate isomerase by the Rho activator lysophosphatidic acid but not by the p160 Rho-associated kinase inhibitor Y-27632, suggesting that the phosphorylated form of cofilin bound to TPI interacts with Na,K-ATPase. Ouabain-sensitive (86)Rb(+) uptake showed that Na,K-ATPase activity was increased by the overexpression of cofilin and lysophosphatidic acid treatment, but not by the overexpression of mutant cofilin S3A and Y-27632 treatment. Pretreatment with the glycolytic inhibitor iodoacetic acid caused a remarkable reduction of Na,K-ATPase activity, whereas pretreatment with the oxidative inhibitor carbonyl cyanide m-chlorophenylhydrazone caused no detectable changes, suggesting that the phosphorylated cofilin is involved in feeding glycolytic fuel for Na,K-ATPase activity. These findings provide a novel molecular mechanism for the regulation of Na,K-ATPase activity and for the nature of the functional coupling of cellular energy transduction.  相似文献   

17.
Microparticles are small membrane vesicles released from the cell membrane by exogenous budding. To elucidate the interactions of microparticles with macrophages, the effect of microparticles released from Jurkat T cells on RAW 264.7 cells was determined. Microparticles were isolated by differential centrifugation, using FACS analysis with annexin V and cell surface markers for identification. Various inducers of apoptosis increased the release of microparticles from Jurkat cells up to 5-fold. The released microparticles were then cultured with RAW 264.7 cells. As shown by confocal microscopy and FACS analysis, RAW 264.7 macrophages cleared microparticles by phagocytosis. In addition, microparticles induced apoptosis in RAW 264.7 cells in a dose-dependent manner with up to a 5-fold increase of annexin V positive cells and 9-fold increase in caspase 3 activity. Cell proliferation as determined by the MTT test was also reduced. Furthermore, microparticles stimulated the release of microparticles from macrophages. These effects were specific for macrophages, since no apoptosis was observed in NIH 3T3 and L929 cells. These findings indicate that microparticles can induce macrophages to undergo apoptosis, in turn resulting in a further increase of microparticles. The release of microparticles from apoptotic cells may therefore represent a novel amplification loop of cell death.  相似文献   

18.
The increase in Na+/K+ transport activity in skeletal muscles exposed to insulin was analysed. Plasma-membrane fractions were prepared from frog (Rana catesbeiana) skeletal muscles, and examination of the Na,K-ATPase (Na+ + K+-dependent ATPase) activity showed that it was insensitive to ouabain. In contrast, plasma-membrane fractions prepared from ouabain-pretreated muscles, by the same procedures, showed extremely low Na,K-ATPase activity. On adding saponin to the membrane suspension, the Na,K-ATPase activity increased, according to the detergent concentration. The maximum activity was about twice the control value, at 0.33 mg of saponin/mg of protein. Thus saponin makes vesicle membranes leaky, allowing ouabain in assay solutions to reach receptors on the inner surface of vesicles. Addition of insulin to saponin-treated membrane suspensions had no effect on the Na,K-ATPase activity, whereas the maximum activity of Na,K-ATPase in whole muscles was stimulated by exposure to insulin. The results show that the stimulation of Na+/K+ transport by insulin is not directly due to insulin binding to receptors on the cell surface, but rather support the view that the increase in the Na,K-ATPase induced by insulin requires an alteration of intracellular events.  相似文献   

19.
A ligand for the digitalis receptor located on the membrane-embedded Na,K-ATPase (NKA; EC 3.6.1.37) has been isolated from bovine hypothalamus (hypothalamic inhibitory factor; HIF) and identified as isomeric ouabain (Tymiaket al, 1993,Proc. Natl. Acad. Sci. 90: 8189–8193). In analogy to cardioactive steroids (CS) derived from plants or from toad, HIF inhibits the Na/K-exchange process and the ATPase activity of isolated Na,K-ATPase although by a different molecular action mechanism. In the present work we show that, as plant-derived ouabain, HIF inhibits86Rb-uptake by isolated human lymphocytes with an IC50 of about 20 nM; above this concentration HIF reduces cell viability in contrast to ouabain. The decrease in cell viability by excess HIF is accompanied by discrete morphological alterations (mitochondrial swelling) visible by transmission electron microscopy of ultra-thin sectioned peripheral blood mononuclear cells. Taken together the results show that the hypothalamic NKA inhibitor blocks NKA of isolated human lymphocytes with high potency at nanomolar concentrations without toxicity; concentrations exceeding the ones required to block86Rb-uptake reduce cell viability, probably due to leak formation across the NKA molecule. Thus, lymphocytes constitute a potential target for HIF action and by their altered NKA status a possible messenger between the nervous and the immune system.Abbreviations D-PBS Dulbecco's phosphate buffered saline - HBSS Hank's balanced salt Solution - NKA Na,K-ATPase  相似文献   

20.
Using polyethylene glycol-mediated fusion of ATP-ase-enriched (native) microsomes with red blood cells, we have delivered sarcoplasmic reticulum (SR) Ca-ATPase and kidney Na,K-ATPase into the mammalian erythrocyte membrane. Experiments involving delivery of the SR Ca-ATPase into human red cells were first carried out to assess the feasibility of the fusion protocol. Whereas there was little detectable 45Ca2+ uptake into control cells in either the absence or presence of extracellular ATP, a marked time-dependent uptake of 45Ca2+ was observed in the presence of ATP in cells fused with SR Ca-ATPase. Comparison of the kinetics of uptake into microsome-fused cells versus native SR vesicles supports the conclusion of true delivery of pumps into the red cell membrane. Thus, the time to reach steady state was more than two orders of magnitude longer in the (large) cells versus the native SR vesicles. Na,K-ATPase from dog and rat kidney microsomes were fused with red cells of humans, sheep, and dogs. Using dog kidney microsomes fused with dog red cells which are practically devoid of Na,K-ATPase, functional incorporation of sodium pumps was evidenced in ouabain-sensitive Rb+ uptake and Na+ efflux energized by intracellular ATP, as well as in ATP-stimulated Na+ influx and Rb+ efflux from inside-out membrane vesicles prepared from the fusion-treated cells. From analysis of the biphasic kinetics of ouabain-sensitive Na+ efflux under conditions of limited intracellular Na+ concentration, it is concluded that the kidney pumps are incorporated into a relatively small fraction (approximately 15%) of the red cells. This system provides a uniquely useful system for studying the behavior of native sodium pumps in a compartment (red cell) of small surface/volume ratio. The newly incorporated native kidney pumps, while of the same isoform as the endogenous red cell pump, behave differently from the endogenous red cell sodium pump with respect to their very low "uncoupled" Na+/O flux activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号