首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Koalas are infected with two species of Chlamydia, C. pecorum and C. pneumoniae. While it is known that significant genetic diversity occurs in the C. pecorum strains infecting koalas, very little is known about the C. pneumoniae strains that infect this host. In the current study, 10 isolates of koala C. pneumoniae were analysed at four gene loci and found to be different to both the human and horse C. pneumoniae strains at all loci (biovar differences ranging from 0.3% at groESL up to 9.0% at ompAVD4). All koala biovar isolates studied were found to be 100% identical at ompAVD4 (all 10 isolates) and at ompB (all three isolates) gene. This lack of allelic polymorphisms at ompAVD4 has now been observed for koala C. pneumoniae, human C. pneumoniae, guinea pig inclusion conjuctivitis C. psittaci and feline conjuctivitis C. psittaci and may be correlated to a lack of antibody response to the chlamydial major outer membrane protein (MOMP) in these same strain/host combinations. This study also provides the first documented case of natural C. pneumoniae infection causing a severe and extended respiratory episode in a captive koala population. This captive episode is in contrast to most free-range observations in which koala C. pneumoniae is rarely documented as causing respiratory, ocular or urogenital tract disease.  相似文献   

2.
Brazilian spotted fever (BSF) cases have been increasing in the state of S?o Paulo but no genomic information about local rickettsia isolated from humans has been well documented. We recovered spotted-fever group rickettsiae from a sample of patient blood cultured in Vero cells using the shell vial technique. Rickettsial DNA fragments (gltA, ompA, and, ompB genes) were detected, and analysis of the ompB gene base sequences showed identity with the Rickettsia rickettsii ompB sequence available in the GenBank.  相似文献   

3.
We compared five different polymerase chain reaction (PCR) assays for the detection of Chlamydophila pneumoniae DNA using highly purified elementary bodies (EBs) and peripheral blood mononuclear cells (PBMCs) from healthy blood donors. The primers were as follows; two targeting the 16S rRNA gene, one targeting the ompA gene, one targeting the Pst-I gene, and one targeting the 53 kDa outer membrane protein gene. The 16S rRNA touchdown enzyme time release (TETR) PCR, the ompA nested PCR and the 53 kDa nested PCR were the most sensitive assays and could detect one or more EB per assay. These three PCRs also had the same reproducibility, but the minimal amount of C. pneumoniae that could be reproducibly detected (10 of 10 testing positive) was 20 EBs. In a sample of specimens from healthy blood donors, we found 5 of 77 (6.5%) PBMCs specimens to have C. pneumoniae DNA according to the nested ompA PCR. Specimens with the 16S rRNA TETR and 53 kDa nested assays were found to have C. pneumoniae DNA 7 of 77 (9.1%) and 18 of 77 (23.4%) specimens, respectively. The other two assays failed to detect even a single positive. However, the detection rate decreased with repeated testing of the same samples. Our newly designed 53 kDa nested PCR may be as useful as the other four recommended PCR assays and may be a more useful assay for the detection of C. pneumoniae DNA from PBMCs.  相似文献   

4.
DNA sequences coding for 81% of the ompA gene from 24 chlamydial strains, representing all chlamydial species, were determined from DNA amplified by polymerase chain reactions. Chlamydial strains of serovars and strains with similar chromosomal restriction fragment length polymorphism had identical ompA DNA sequences. The ompA sequences were segregated into 23 different ompA alleles and aligned with each other, and phylogenetic relationships among them were inferred by neighbor-joining and maximum parsimony analyses. The neighbor-joining method produced a single phylogram which was rooted at the branch between two major clusters. One cluster included all Chlamydia trachomatis ompA alleles (trachoma group). The second cluster was composed of three major groups of ompA alleles: psittacosis group (alleles MN, 6BC, A22/M, B577, LW508, FEPN, and GPIC), pneumonia group (Chlamydia pneumoniae AR388 with the allele KOALA), and polyarthritis group (ruminant and porcine chlamydial alleles LW613, 66P130, L71, and 1710S with propensity for polyarthritis). These groups were distinguished through specific DNA sequence signatures. Maximum parsimony analysis yielded two equally most parsimonious phylograms with topologies similar to the ompA tree of neighbor joining. Two phylograms constructed from chlamydial genomic DNA distances had topologies identical to that of the ompA phylogram with respect to branching of the chlamydial species. Human serovars of C. trachomatis with essentially identical genomes represented a single taxonomic unit, while they were divergent in the ompA tree. Consistent with the ompA phylogeny, the porcine isolate S45, previously considered to be Chlamydia psittaci, was identified as C. trachomatis through biochemical characteristics. These data demonstrate that chlamydial ompA allelic relationships, except for human serovars of C. trachomatis, are cognate with chromosomal phylogenies.  相似文献   

5.
Nucleotide sequences from strains of the four species currently in the genus Chlamydia, C. pecorum, C. pneumoniae, C. psittaci, and C. trachomatis were investigated. In vitro-amplified RNA genes of the ribosomal small subunit from 30 strains of C. pneumoniae and C. pecorum were subjected to solid-phase DNA sequencing of both strands. The human isolates of C. pneumoniae differed in only one position in the 16S rRNA gene, indicating genetic homogeneity among these strains. Interestingly, horse isolate N16 of C. pneumoniae was found to be closely related to the human isolates of this species, with a 98.9% nucleotide similarity between their 16S rRNA sequences. The type strain and koala isolates of C. pecorum were also found to be very similar to each other, possessing two different 16S rRNA sequences with only one-nucleotide difference. Furthermore, the C. pecorum strains truncated the 16S rRNA molecule by one nucleotide compared to the molecules of the other chlamydial species. This truncation was found to result in loss of a unilaterally bulged nucleotide, an attribute present in all other eubacteria. The phylogenetic structure of the genus Chlamydia was determined by analysis of 16S rRNA sequences. All phylogenetic trees revealed a distinct line of descent of the family Chlamydiaceae built of two main clusters which we denote the C. pneumoniae cluster and the C. psittaci cluster. The clusters were verified by bootstrap analysis of the trees and signature nucleotide analysis. The former cluster contained the human isolates of C. pneumoniae and equine strain N16. The latter cluster consisted of C. psittaci, C. pecorum, and C. trachomatis. The members of the C. pneumoniae cluster showed tight clustering and strain N16 is likely to be a subspecies of C. pneumoniae since these strains also share some antigenic cross-reactivity and clustering of major outer membrane protein gene sequences. C. psittaci and strain N16 branched early out of the respective cluster, and interestingly, their inclusion bodies do not stain with iodine. Furthermore, they also share less reliable features like normal elementary body morphology and plasmid content. Therefore, the branching order presented here is very likely a true reflection of evolution, with strain N16 of the species C. pneumoniae and C. psittaci forming early branches of their respective cluster and with C. trachomatis being the more recently evolved species within the genus Chlamydia.  相似文献   

6.
Sequences of the major outer membrane protein (MOMP) gene (ompA) and the outer membrane complex B protein gene (omcB) from Chlamydia trachomatis, Chlamydia pneumoniae, and Chlamydia psittaci were analyzed for evidence of intragenic recombination and for linkage equilibrium. The Sawyer runs test, compatibility matrices, and index of association analyses provided substantial evidence that there has been a history of intragenic recombination at ompA including one instance of interspecies recombination between the C. trachomatis mouse pneumonitis strain and the C. pneumoniae horse N16 strain. Although none of these methods detected intragenic recombination within omcB, differences in divergence reported in earlier studies suggested that there has been intergenic recombination involving omcB, and the analyses presented in this study are consistent with this. For C. trachomatis, index-of-association analyses suggested a higher degree of recombination for C class than for B class strains and a higher degree of recombination in the downstream half of ompA. In concordance with these findings, many significant breakpoints were found in variable segments 3 and 4 of MOMP for the recombinant strains D/B120, G/UW-57, E/Bour, and LGV-98 identified in this study. We provide examples of how genetic diversity generated by repeated recombination in these regions may be associated with evasion of immune surveillance, serovar-specific differences in tissue tropism, and persistence.  相似文献   

7.
The genomic relatedness of 19 Chlamydia pneumoniae isolates (17 from respiratory origin and 2 from atherosclerotic origin), 21 Chlamydia trachomatis isolates (all serovars from the human biovar, an isolate from the mouse biovar, and a porcine isolate), 6 Chlamydia psittaci isolates (5 avian isolates and 1 feline isolate), and 1 Chlamydia pecorum isolate was studied by analyzing genomic amplified fragment length polymorphism (AFLP) fingerprints. The AFLP procedure was adapted from a previously developed method for characterization of clinical C. trachomatis isolates. The fingerprints of all C. pneumoniae isolates were nearly identical, clustering together at a Dice similarity of 92.6% (+/- 1.6% standard deviation). The fingerprints of the C. trachomatis isolates of human, mouse, and swine origin were clearly distinct from each other. The fingerprints of the isolates from the human biovar could be divided into at least 12 different types when the presence or absence of specific bands was taken into account. The C. psittaci fingerprints could be divided into a parakeet, a pigeon, and a feline type. The fingerprint of C. pecorum was clearly distinct from all others. Cluster analysis of selected isolates from all species revealed groups other than those based on sequence data from single genes (in particular, omp1 and rRNA genes) but was in agreement with available DNA-DNA hybridization data. In conclusion, cluster analysis of AFLP fingerprints of representatives of all species provided suggestions for a grouping of chlamydiae based on the analysis of the whole genome. Furthermore, genomic AFLP analysis showed that the genome of C. pneumoniae is highly conserved and that no differences exist between isolates of respiratory and atherosclerotic origins.  相似文献   

8.
BmPLV-Z is the abbreviation for Bombyx mori parvo-like virus (China isolate). This is a novel virus with two single-stranded linear DNA molecules, viz., VD1 (6543 bp) and VD2 (6022 bp), which are encapsidated respectively into separate virions. Analysis of the deduced amino acid sequence of VD1-ORF4 indicated the existence of a putative DNA-polymerase with exonuclease activity, possibly involved in the replication of BmPLV-Z. In the present study, a recombinant baculovirus was constructed to express the full length of the protein encoded by the VD1-ORF4 gene (3318 bp). In addition, a 2163-bp fragment amplified from the very same gene was cloned into prokaryotic expression vector pET-30a and expressed in E.coli Rosetta 2 (DE3) pLysS. The expressed fusion protein was employed to immunize New Zealand white rabbits for the production of an antiserum, afterwards used for examining the expression of the protein encoded by VD1-ORF4 gene in Sf-9 cells infected with recombinant baculovirus. Western blot analysis of extracts from thus cells infected revealed a specific band of about 120 kDa, thereby indicating that the full length protein encoded by the VD1-ORF4 gene had been successfully and stably expressed in Sf-9 cells.  相似文献   

9.
10.

Background

Chlamydia pecorum is an important pathogen of domesticated livestock including sheep, cattle and pigs. This pathogen is also a key factor in the decline of the koala in Australia. We sequenced the genomes of three koala C. pecorum strains, isolated from the urogenital tracts and conjunctiva of diseased koalas. The genome of the C. pecorum VR629 (IPA) strain, isolated from a sheep with polyarthritis, was also sequenced.

Results

Comparisons of the draft C. pecorum genomes against the complete genomes of livestock C. pecorum isolates revealed that these strains have a conserved gene content and order, sharing a nucleotide sequence similarity > 98%. Single nucleotide polymorphisms (SNPs) appear to be key factors in understanding the adaptive process. Two regions of the chromosome were found to be accumulating a large number of SNPs within the koala strains. These regions include the Chlamydia plasticity zone, which contains two cytotoxin genes (toxA and toxB), and a 77 kbp region that codes for putative type III effector proteins. In one koala strain (MC/MarsBar), the toxB gene was truncated by a premature stop codon but is full-length in IPTaLE and DBDeUG. Another five pseudogenes were also identified, two unique to the urogenital strains C. pecorum MC/MarsBar and C. pecorum DBDeUG, respectively, while three were unique to the koala C. pecorum conjunctival isolate IPTaLE. An examination of the distribution of these pseudogenes in C. pecorum strains from a variety of koala populations, alongside a number of sheep and cattle C. pecorum positive samples from Australian livestock, confirmed the presence of four predicted pseudogenes in koala C. pecorum clinical samples. Consistent with our genomics analyses, none of these pseudogenes were observed in the livestock C. pecorum samples examined. Interestingly, three SNPs resulting in pseudogenes identified in the IPTaLE isolate were not found in any other C. pecorum strain analysed, raising questions over the origin of these point mutations.

Conclusions

The genomic data revealed that variation between C. pecorum strains were mainly due to the accumulation of SNPs, some of which cause gene inactivation. The identification of these genetic differences will provide the basis for further studies to understand the biology and evolution of this important animal pathogen.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-667) contains supplementary material, which is available to authorized users.  相似文献   

11.
To study genetic diversity and occurrence of Chlamydophila psittaci, a total of 1,147 samples from 11 avian orders including 53 genera and 113 species of feral and captive birds were examined using ompA gene based nested PCR. Three types of chlamydiae: C. psittaci (94.12%), C. abortus (4.41%) and unknown Chlamydophila sp. (1.47%) were identified among 68 (5.93%) positive samples (Psittaciformes-59, Ciconiiformes-8 and Passeriformes-1). Based on nucleotide sequence variations in the VD2 region of ompA gene, all 64 detected C. psittaci strains were grouped into 4 genetic clusters. Clusters I, II, III and IV were detected from 57.35%, 19.12%, 10.29% and 7.35% samples respectively. A single strain of unknown Chlamydophila sp. was found phylogenetically intermediate between Chlamydophila species infecting avian and mammalian hosts. Among Psittaciformes, 28 out of 81 tested species including 10 species previously unreported were found to be chlamydiae positive. Chlamydiosis was detected among 8.97% sick and 48.39% dead birds as well 4.43% clinically normal birds. Therefore, it was observed that though various genetically diverse chlamydiae may cause avian chlamydiosis, only a few C. psittaci strains are highly prevalent and frequently associated with clinical/subclinical infections.  相似文献   

12.
Flavobacterium psychrophilum is the causative agent of bacterial coldwater disease (BCWD) and rainbow trout fry syndrome. BCWD has a considerable economic impact on aquaculture operations in Ontario, Canada, and our limited understanding of the population structure and epidemiology of F. psychrophilum isolates is an impediment to the development of improved management strategies. Seventy-five 16S rRNA gene and gyr polymerase chain reaction positive isolates of F. psychrophilum that had been collected over a 16-year period from farmed salmonids with tail rot, necrotic myositis, and osteochondrosis were characterized morphologically, biochemically, and genotypically. Although the isolates were homogeneous by preliminary biochemical and phenotypic characterization, two distinct biovars were found by API ZYM testing. As well, four restriction pattern types were detected by 16S rRNA polymerase chain reaction - restriction fragment length polymorphism analysis and there was a significant (P < 0.001) correlation between biovar I and digestion with MaeIII and between biovar II and digestion with MnlI or no site (P < 0.05). Further heterogenity was detected by sequence analysis of a 194 bp stem loop 3 region of rRNA. Nine sequence types were identified; 40/46 biovar I isolates were sequence type "a", while 21/32 biovar II isolates belonged to either sequence type "c" or "d". More than one biovar and genotype was identified among the strains recovered from separate fish sampled from three groups of rainbow trout (Oncorhynchus mykiss) experiencing BCWD mortality events. No association was found between genotype or biovar and type of disease. Taken together, these data suggest that F. psychrophilum from Ontario can be grouped into two major lineages based on biovar and 16S rRNA polymorphisms, and although three major strain types were most frequently isolated in this study, it appears that the population of F. psychrophilum with pathogenic potential is quite heterogeneous.  相似文献   

13.
14.
A molecular phylogeny for seven taxa of enteric bacteria (Citrobacter freundii, Enterobacter cloacae, Escherichia coli, Hafnia alvei, Klebsiella oxytoca, Klebsiella pneumoniae, and Serratia plymuthica) was made from multiple isolates per taxa taken from a collection of environmental enteric bacteria. Sequences from five housekeeping genes (gapA, groEL, gyrA, ompA, and pgi) and the 16S rRNA gene were used to infer individual gene trees and were concatenated to infer a composite molecular phylogeny for the species. The isolates from each taxa formed tight species clusters in the individual gene trees, suggesting the existence of 'genotypic' clusters that correspond to traditional species designations. These sequence data and the resulting gene trees and consensus tree provide the first data set with which to assess the utility of the recently proposed core genome hypothesis (CGH). The CGH provides a genetically based approach to applying the biological species concept to bacteria.  相似文献   

15.
应用聚合酶联反应(PCR)技术,从肺炎衣原体Chlamydia pneumoniae的主要外膜蛋白(Major Outer Membrane Protein,MOMP)编码基因(ompA)上扩增出抗原优势表位VD2-VD3区基因,构建原核表达系统并诱导表达重组蛋白,经Ni-NTA亲和层析法纯化表达产物。间接酶联免疫吸附试验(Enzyme link immunosorbent assay,ELISA)检测人血清中特异性IgG抗体。试验表明,转化入BL21大肠杆菌的重组质粒,能表达并纯化出相对分子质量(Mr)为24KD的重组蛋白。Western blot证实重组蛋白只与Cpn MOMP mAb发生特异性反应;重组蛋白用作ELISA包被抗原检测Cpn阴阳性参比血清,特异性和灵敏度均为100%;对126位冠心病患者血清进行的检测中,该间接ELISA法与晶美公司Cpn IgG ELISA诊断试剂盒的检测结果相比,符合率达到96.3%。结果证实,制备的重组蛋白MOMPVD2-VD3具有良好的免疫活性,在Cpn血清学诊断的应用中具有较大的利用价值。  相似文献   

16.
17.
一株瘤胃纤维素降解菌的分离鉴定及其纤维素降解特性   总被引:8,自引:0,他引:8  
从蒙古绵羊瘤胃内容物中分离到一株纤维素降解细菌WH-1, 通过形态、生理生化特征、G+C mol%含量和16S rRNA序列分析对分离菌株进行鉴定, 鉴定为溶纤维丁酸弧菌属(Butyrivibrio fibrisolvens)的溶纤维丁酸弧菌(Butyrivibrio fibrisolvens)。同时, 用Mega 4.1软件构建的系统发育树显示分离菌株WH-1与多株溶纤维丁酸弧菌(Butyrivibrio fibrisolvens)的亲缘关系最近。对该菌株纤维素降解特性的初步研究表明:当温度为37°C、  相似文献   

18.
19.
Some hot springs located in the west of Turkey were investigated with respect to the presence of thermophilic microorganisms. Based on phenotyping characteristics and 16S rRNA gene sequence analysis, 16 of the isolates belonged to the genus Geobacillus and grew optimally at about 60 degrees C on nutrient agar. 16S rRNA gene sequence analysis showed that these isolates resembled Geobacillus species by > or = 97%, but SDS-PAGE profiles of these 16 isolates differ from some of the other species of the genus Geobacillus. However, it is also known that analysis of 16S rRNA gene sequences may be insufficient to distinguish between some species. It is proposed that recN sequence comparisons could accurately measure genome similarities for the Geobacillus genus. Based on recN sequence analysis, isolates 11, IT3, and 12 are strains of G stearothermophilus; isolate 14.3 is a strain of G thermodenitrificans; isolates 9.1, IT4.1, and 4.5 are uncertain and it is required to make further analysis. The presence of xylanase and arabinofuranosidase activities, and their optimum temperature and pH were also investigated. These results showed that 7 of the strains have both xylanase and arabinofuranosidase activities, 4 of them has only xylanase, and the remaning 5 strains have neither of these activities. The isolates 9.1, 7.1, and 3.3 have the highest temperature optima (80 degrees C), and 7.2, 9.1, AO4, 9.2, and AO17 have the highest pH optima (pH 8) of xylanase. Isolates 7.2, AO4, AC15, and 12 have optimum arabinofuranosidase activities at 75 degrees C, and only isolate AC 15 has the lowest pH of 5.5.  相似文献   

20.
The present study evaluated rickettsial infection in Amblyomma spp. ticks collected in a farm in Coronel Pacheco, a Brazilian spotted fever (BSF) endemic area. A total of 78 A. cajennense and 78 A. dubitatum free-living adult ticks were collected and tested by polymerase chain reaction (PCR) targeting a fragment of the rickettsial gene gltA. Only one pool of three A. cajennense ticks showed the expected product by PCR. This pool was further tested by PCR using sets of primers targeting the rickettsial genes gltA, ompA, and ompB. All reactions yielded the expected bands that by sequencing, showed 100% identity to the corresponding sequences of the Rickettsia rickettsii gene fragments gltA (1063-bp), ompA (457-bp), and ompB (720-bp). The minimal infection rate of R. rickettii in the A. cajennense population was 1.28% (at least one infected tick within 78 ticks).The present study showed molecular evidence for the presence of R. rickettsii in A. cajennense from a BSF-endemic area in Coronel Pacheco, state of Minas Gerais. Although R. rickettsii has been previously reported infecting A. cajennense ticks in Brazil and other Latin American countries, the present study performed the first molecular characterization of R. rickettsii from the tick A. cajennense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号