首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cyanogen bromide peptide alpha 1-(III)CB1,8,10,2 is 180 amino acid residues in length and occupies position 223 to 402 along the alpha 1(III) chain. In order to elucidate its amino acid sequence, alpha 1(III)CB1,8,10,2 was fragmented with hydroxylamine, protease from Staphylococcus aureus V8 and trypsin. Peptides necessary for sequence analysis with the automated Edman degradation were separated using molecular and ion exchange chromatography. Edman degradation of the hydroxylamine-derived fragments resulted in the elucidation of 80% of the entire sequence. The rest was completely established by sequence analysis of some protease V8 and trypsin-derived peptides.  相似文献   

2.
The C-terminal cyanogen bromide peptide alpha 1(III)CB9B is 101 amino acid residues in length and occupies position 928--1028 along the alpha 1(III) chain. For sequence analysis, alpha 1(III)CB9B was fragmented with trypsin and chymotrypsin. The peptides obtained were separated using molecular sieve and ion exchange chromatography and sequenced using the automated Edman degradation procedure.  相似文献   

3.
The cyanogen bromide peptide alpha 1(III)CB5 is 237 amino acid residues in length and occupies position 552--788 along the alpha 1(III) chain. For sequence analysis alpha 1(III)CB5 was fragmented with hydroxylamine, protease from Staphylococcus aureus V8, trypsin and the arginine-specific enzyme from mouse submaxillary gland. The peptides obtained were separated using molecular and ion exchange chromatography and sequenced with the automated Edman degradation procedure.  相似文献   

4.
The cyanogen bromide peptide alpha 1(III)CB9A is 139 amino acid residues in length and occupies positions 789--927 along the alpha 1(III) chain. Peptides necessary for the complete sequence analysis were obtained after fragmentation of alpha 1(III)CB9B with trypsin, protease from Staphylococcus aureus V8, hydroxylamine and chymotrypsin. They were separated mainly by chromatography on Sephadex G-50 and phosphocellulose and subsequently sequenced using the automated Edman degradation procedure.  相似文献   

5.
The amino terminal 227 amino acid residues of the alpha 1(III) chain contain four CNBr peptides: alpha 1(III)CB3A (79 residues), CB3B, CB3C (6 residues each), CB7 (37 residues) and CB6 (99 residues). Fragmentation of the CNBr peptides was carried out using trypsin, chymotrypsin and the protease from Staphylococcus aureus V8. The fragments obtained were isolated by a combination of molecular sieve and ion exchange chromatography. The sequence analysis was performed according to the automated Edman degradation procedure.  相似文献   

6.
Type V collagen was prepared from human amnionic/chorionic membranes and separated into alpha 1(V) and alpha 2(V) polypeptide chains. The alpha 1(V) chain was digested with cyanogen bromide and nine peptides were obtained and purified. Three of the peptides, alpha 1(V)CB1, CB4, and CB7 having molecular weights of 5000, 8000, and 6000, respectively, were further analyzed by amino acid sequence analysis and thermolytic or tryptic digestions. CB1 contained 54 amino acids and identification of its complete sequence was aided by thermolysin digestion and isolation of two peptides, Th1 and Th2. CB4 contained 81 amino acids and sequence analysis of intact CB4 and five tryptic peptides provided us with its complete amino acid sequence. The peptide CB7 contained 67 amino acids and was cleaved into four tryptic peptides that were used for complete sequence analysis. The above results represent the first available covalent structure information on the alpha 1(V) collagen chain. These data enabled us to establish the location of these peptides within the helical structure of other collagen chains. CB4 was homologous to residues 66-145 in the collagen chain while CB1 represented residues 146-200 and CB7 was homologous with residues 201-269. This alignment was facilitated by identification of a helical collagen crossing site consisting of Hyl-Gly-His-Arg located at positions 87-90 in all collagen chains of this size thus far identified. Seventy-one percent homology (excluding Gly residues) was found between amino acids in this region of the alpha 1(XI) and of alpha 1(V) collagen chains while only 21 and 19% identity was calculated for the same region of alpha 2(V) and alpha 1(I) collagen chains, respectively.  相似文献   

7.
P G Scott  A Veis  G Mechanic 《Biochemistry》1976,15(15):3191-3198
A peptide fraction isolated from a cyanogen bromide digest of bovine dentin collagen had a molecular weight of 46000. Its size and amino acid composition indicated that it could not consist of peptides derived from the cleavage of a single alpha chain. On reduction with tritiated sodium borohydride, radioactivity was incorporated primarily into 5, 5'-dihydroxylysinonorleucine without degradation at the peptide backbone. Periodate cleavage of the reduced or nonreduced peptide fraction generated one fragment of molecular weight 28000 and one of 18000 completely accounting for the size of the parent peptide. On amino acid analysis the constituent single-chain peptides were determined to be alpha2CB4 and alpha1CB6. Both peptides isolated after periodate oxidation of the tritiated borohydride reduced cross-link peptide were found to contain (3H)hydroxynorvaline. These data show that some hydroxylysine of alpha2CB4, a helical region peptide, was present in aldehyde form and could act as the aldehyde donor icross-link, Schiff's base formation. The only cross-linkage of this alpha2CB4 acting as an aldehyde donor peptide to alpha1CB6 would be a helical region to helical region bond, perhaps accounting for the unusual stability and low solubility of dentin collagen.  相似文献   

8.
J M Seyer  C Mainardi  A H Kang 《Biochemistry》1980,19(8):1583-1589
Type III collagen was prepared from human liver by limited pepsin digestion, differential salt precipitation, and carboxymethylcellulose chromatography. Ten distinct peptides were obtained by cyanogen bromide digestion. The peptide alpha 1 (III)-CB5 was further purified by carboxymethylcellulose chromatography, and its amino acid sequence was determined. Automatic Edman degradation of intact alpha 1 (III)-CB5, tryptic and thermolytic peptides, and hydroxylamine-derived fragments was used to establish the total sequence. The mammalian collagenase site contained in the alpha 1 (III)-CB5 sequence was ascertained by digestion of native type III collagen with purified rheumatoid synovial collagenase. Collagenase cleavage occurred at a single Gly--Ile bond, one triplet before the corresponding specific cleavage site of type I collagen. The present work brings the known sequence of human liver type III collagen to include alpha 1 (III)-CB3-7-6-1-8-10-2-4-5. These correspond to the homologous region of alpha 1 (I)-CB0-1-2-4-5-8-3-7 residues 11--804.  相似文献   

9.
A baby with the lethal perinatal form of osteogenesis imperfecta was shown to have a structural defect in the alpha 1(I) chain of type I procollagen. Normal and mutant alpha 1(I) CB8 cyanogen bromide peptides, from the helical part of the alpha 1(I) chains, were purified from bone. Amino acid sequencing of tryptic peptides derived from the mutant alpha 1(I) CB8 peptide showed that the glycine residue at position 391 of the alpha 1(I) chain had been replaced by an arginine residue. This substitution accounted for the more basic charged form of this peptide that was observed on two-dimensional electrophoresis of the collagen peptides obtained from the tissues. The substitution was associated with increased enzymatic hydroxylation of lysine residues in the alpha 1(I) CB8 and the adjoining CB3 peptides but not in the carboxyl-terminal CB6 and CB7 peptides. This finding suggested that the sequence abnormality had interfered with the propagation of the triple helix across the mutant region. The abnormal collagen was not incorporated into the more insoluble fraction of bone collagen. The baby appeared to be heterozygous for the sequence abnormality and as the parents did not show any evidence of the defect it is likely that the baby had a new mutation of one allele of the pro-alpha 1(I) gene. The amino acid substitution could result from a single nucleotide mutation in the codon GGC (glycine) to produce the codon CGC (arginine).  相似文献   

10.
The adhesion of human and rabbit platelets to collagens and collagen-derived fragments immobilized on plastic was investigated. Adhesion appeared to be independent of collagen conformation, since similar attachment occurred to collagen (type I) in monomeric form, as fibres or in denatured state. The adhesion of human platelets was stimulated to a variable degree by Mg2+, but rabbit platelet adhesion showed little if any dependence on this cation. Collagens type I, III, V and VI were all able to support adhesion, although that to collagen type V (native) was lower than that to the other collagens. Adhesion to a series of peptides derived from collagens I and III was measured. Attachment did not require the presence of peptides in triple-helical configuration. The extent of adhesion ranged from relatively high, as good as to the intact parent collagen molecule, to little if any adhesive activity beyond the non-specific (background) level. The existence of very different degrees of activity suggests that platelet adhesion is associated with specific structural sites in the collagen molecule. Adhesion in many instances was essentially in accord with the known platelet-aggregatory activity of individual peptides. However, two peptides, alpha 1(I)CB3 and alpha 1(III)CB1,8,10,2, exhibited good adhesive activity although possessing little if any aggregatory activity. Of particular interest, despite its near-total lack of aggregatory activity, adhesion to peptide alpha 1(I)CB3 was as good as that to the structurally homologous peptide alpha 1(III)CB4, in which is located a highly reactive aggregatory site. This implies that platelet adhesion to collagen may involve sites in the collagen molecule distinct from those more directly associated with aggregation.  相似文献   

11.
Bovine articular type II collagen was prepared by limited pepsin digestion, differential salt fractionation and carboxymethylcellulose chromatography. Cyanogen bromide digestion of purified type II collagen alpha chains yielded twelve distinct peptides designated CB1-12. The peptide alpha 1(II)-CB11 was isolated by carboxymethylcellulose chromatography and Sephadex G-75S gel filtration. Automated Edman degradation together with chymotrypsin, thermolysin and trypsin digestion enabled identification of its complete amino acid sequence. Compared with type I and type III collagen, the data show similarity with alpha 1(I)-CB8 and alpha 1(III)-CB6-1-8-10-2 peptides, respectively. The peptide is located within residues 124-402 of the alpha 1(II) collagen chain and with its identification, now extends the known amino acid sequence of bovine type II cartilage collagen to 660 amino acid residues including alpha 1(II)-CB1-2-6-12-11-8-10 (partial). This corresponds to alpha 1(I)-CB0-1-2-4-5-8-3-7 (partial; 1-660) and alpha 1(III)-CB3A-3B-3C-7-6-1-8-10-2-4-5 (partial; 1-660) of bovine alpha 1(I) and alpha 1(III) collagen chains.  相似文献   

12.
Partial covalent structure of the human alpha 2 type V collagen chain   总被引:5,自引:0,他引:5  
Human cDNA libraries were screened with a cDNA fragment presumably encoding the 3' terminus of a procollagen carboxyl propeptide not identifiable as types I, II, III, or IV by protein sequence or Northern blot hybridization. One clone contained a 1350-base pair insert coding in part for 55 uninterrupted Gly-X-Y triplets. Comparison with the amino acid composition of the COOH-terminal cyanogen bromide (CB) peptides of the alpha 1 and alpha 2 type V collagen chains showed similarity only to the alpha 2(V)CB fragment. To identify the NH2 terminus of the peptide designated by methionine, an additional isolate was sequenced and found to contain a Gly-Met-Pro triplet. Thirty-one amino acids from the NH2 terminus of the alpha 2(V)CB9 fragment were then determined by Edman degradation and found to be identical to those derived from the cDNA clone. The DNA sequence encoding part of the triple helical region establishes for the first time the partial structure of a type V collagen chain. Although comparison of residues 796-1020 of the alpha 2(V) collagenous region with alpha 1 (III), alpha 1(I), and alpha 2(I) shows strong conservation of charged positions, the latter three chains appear considerably more similar to each other than to alpha 2(V). A striking feature of the alpha 2(V) sequence between 918-944 is the absence of proline residues. In the analogous region of alpha 1(I) where this amino acid is also lacking, a flexible site in the rigid triple helical structure of type I collagen has been observed (Hofmann, H., Voss, T., Kuhn, K. and Engel, J. (1984) J. Mol. Biol. 172, 325-343).  相似文献   

13.
J M Seyer  A H Kang 《Biochemistry》1978,17(16):3404-3411
Type III collagen was solubilized from human liver by limited pepsin digestion and purified by differential salt precipitation and carboxymethylcellulose chromatography. Digestion with cyanogen bromide yielded the nine distinct peptides previously described and an additional tripeptide not recognized in earlier studies. Five of these peptides, alpha1 (III)-CB1, 2, 4, 8, and 10, were further purified by molecular sieve and/or ion exchange chromatography. They contained 12, 40, 149, 125 and 3 amino acid residues, respectively. The amino acid sequence of these peptides was determined by automated Edman degradation of tryptic (before and after maleylation), chymotryptic, thermolytic or hydroxylamine-derived peptide fragments as well as the intact peptides. The alignment of these five peptides within the collagen chain is deduced to be 1-8-10-2-4 by homology with known alpha1 (I) sequences. The known CNBr peptide alignment of the NH2-terminal portion of type III collagen so far would, therefore, be alpha1 (III)-CB3-7-6-1-8-10-2-4 and correspond to the homologous region of alpha1 (I)-CB0-1-2-4-5-8-3 or residues 11-567 of the alpha1 (III) collagen chain.  相似文献   

14.
The complete amino acid sequence of the 279-residue CNBr peptide CB8 from the alpha 1 chain of type I calf skin collagen is presented. It was determined by sequencing overlapping fragments of CB8 produced by Staphylococcus aureus V8 proteinase, trypsin, Endoproteinase Arg-C and hydroxylamine. Tryptic cleavages were also made specific for lysine by blocking arginine residues with cyclohexane-1,2-dione. This completes the amino acid sequence analysis of the 1054-residues-long alpha (I) chain of calf skin collagen.  相似文献   

15.
The heterogeneity of the CNBr-cleavage peptides of human types I, II, III and V collagens were studied by using two-dimensional electrophoresis combining non-equilibrium pH-gradient-gel electrophoresis and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Specific 'maps' were produced by the peptides obtained from the chains of each type of collagen, and most peptides had at least three charged forms of the same molecular weight. Specific 'maps' were also produced by the peptides of types I, III and V collagens from insoluble dermis and the peptides of types I and V collagens from decalcified bone. The alpha 1(I) CB7 and alpha 1(I) CB8 and the alpha 2 CB4 peptides obtained from the type I collagens of these tissues contained the same number of charged components, but there was a relative increase in the more basic components in bone. Some aspects of the involvement of the alpha 1(I) CB6 and the alpha 1(III) CB9 peptides in cross-linkages were also studied. The recovery of the alpha 1(I) CB6 peptide from bone and dermis was decreased and the alpha 1(III) CB9 peptide was not detected in dermis. Additional peptides, which were probably cross-linked peptides involving the alpha 1(I) CB6 peptide, were also observed.  相似文献   

16.
Native type III collagen and procollagen were prepared from fetal bovine skin. Examination of the cleavage products produced by digestion with tadpole collagenase demonstrated that the three palpha1(III) chains of type III procollagen were linked together by disulfide bonds occurring at both the amino-terminal and carboxy-terminal portions of the molecule. Type III collagen contained interchain disulfide bonds only in the carboxy-terminal region of the molecule. After digestion of procollagen with bacterial collagenase an amino-terminal, triple-stranded peptide fragment was isolated. The reduced and alkylated chain constituents of this fragment had molecular weights of about 21 000. After digestion of procollagen with cyanogen bromide a related triple-stranded fragment was isolated. The chains of the cyanogen bromide fragment had a molecular weight of about 27 000. When the collagenase-derived peptide was fully reduced and alkylated, it became susceptible to further digestion with bacterial collagenase. This treatment released a fragment of about 97 amino acid residues which contained 12 cystein residues and had an amino acid composition typical for globular proteins. A second, non-helical fragment of about 48 amino acid residues contained three cysteines. This latter fragment is formed from sequences that overlap the amino-terminal region in the collagen alpha1(III) chain by 20 amino acids and possesses an antigenic determinant specific for the alpha1(III) chain. The collagenase-sensitive region exposed by reduction comprised about 33 amino acid residues. It was recovered as a mixture of small peptides. These results indicate that the amino-terminal region of type III procollagen has the same type of structure as the homologous region of type I procollagen. It consists of a globular, a collagen-like and a non-helical domain. Interchain disulfide bonding and the occurrence of cysteines in the non-helical domain are, however, unique for type III procollagen.  相似文献   

17.
Cross-linked peptides were isolated from chicken bone collagen that had been digested with CNBr or with bacterial collagenase. Analyses of (3)H radioactivity in disc electrophoretic profiles of the CNBr peptides from bone collagens that had been treated with NaB(3)H indicated that a major site of intermolecular cross-linking in chicken bone collagen is located between the carboxy-terminal region of an alpha1 chain and a small CNBr peptide, probably situated near the amino-terminus of an alpha1 or alpha2 chain in an adjacent collagen molecule. A small amount of this cross-linked CNBr peptide was isolated from a CNBr digest of chicken bone collagen by column chromatography. Amino acid analysis showed that the CNBr peptide, alpha1CB6B, the carboxy-terminal peptide of the alpha1 chain, was the major CNBr peptide in the preparation, and the reduced cross-linking components were identified as hydroxylysinohydroxynorleucine (HylOHNle), with a smaller amount of hydroxylysinonorleucine (HylNle). However, the composition and the low recovery of the cross-linking amino acids suggested that the preparation was a mixture of CNBr peptides alpha1CB6B and alpha1CB6B cross-linked to a small CNBr peptide whose identity could not be determined. A small cross-linked peptide was isolated from chicken bone collagen that had been reduced with NaB(3)H(4) and digested with bacterial collagenase. This peptide was the major cross-linked peptide in the digest and contained a stoicheiometric amount of the reduced cross-linking compounds. A peptide which had the same amino acid composition, but contained the cross-linking compounds in their reducible forms, was isolated from a collagenase digest of chicken bone collagen that had not been treated with NaBH(4). The absence of the reduced cross-links from this peptide indicates that, at least for the cross-linking site from which the peptide derives, natural reduction is not a significant pathway for biosynthesis of stable cross-links. However, most of the reducible cross-linking component in the peptide appeared to stabilize in the bone collagen by rearrangement from aldimine to ketoamine form.  相似文献   

18.
Two overlapping cDNA clones that cover the complete length of the mRNA for human type III procollagen were characterized. The data provided about 2500 base pairs of sequence not previously defined for human type III procollagen. Two tripeptide sequences of -Gly-Xaa-Yaa- were identified that were not detected previously by amino acid sequencing of human type III collagen. The two additional tripeptide units, together with three previously detected, establish that the alpha 1 (III) chain is 15 amino acids longer than either the alpha 1 (I) or alpha 2 (I) chains of type I collagen. The additional tripeptide units made hydropathy plots of the N-terminal and C-terminal regions of type III collagen distinctly different from those of type I collagen. The data also demonstrated that human type III procollagen has the same third base preference in codons for glycine, proline and alanine that was previously found with human and chick type I procollagen. In addition, comparison of two cDNA clones from the same individual revealed a variation in structure in that the codon for amino acid 880 of the alpha 1 (III) chain was -CTT- for leucine in one clone and -TTT- for phenylalanine in the other.  相似文献   

19.
A patient with Ehlers-Danlos syndrome Type VIIB was found to have an interstitial deletion of 18 amino acids in approximately half of the pro-alpha 2(I) chains of Type I procollagen. Analysis of pepsin-solubilized tissue and fibroblast collagen revealed an abnormal additional chain, alpha 2(I)', which migrated in sodium dodecyl sulfate-5% polyacrylamide gel electrophoresis between the normal alpha 1(I) and alpha 2(I) chains. The apparent ratio of normal alpha 1(I):mutant alpha 2(I)':normal alpha 2(I) was 4:1:1. Procollagen studies and enzyme digestion studies of native mutant collagen suggested defective removal of the amino propeptide. Sieve chromatography of CNBr peptides from purified alpha 2(I)' chains revealed the absence of the normal amino telopeptide fragment CB 1 and the appearance of a larger new peptide of approximately 60 residues (CB X). Compositional and sequencing studies of this peptide identified normal amino propeptide sequences. However, the most carboxyl-terminal tryptic peptide of CB X differed substantially in composition and sequence from the expected and was found to have an interstitial deletion of 18 amino acids corresponding to the N-telopeptide of the pro-alpha 2(I) chain. This deletion removes the normal sites of cleavage of the N-proteinase and also removes a critical cross-linking lysine residue. The 18 amino acids deleted correspond exactly to the residues encoded by exon 6 of the pro-alpha 2(I) collagen gene (COL 1 A2), and, therefore, the protein defect may be due to a genomic deletion, or alternatively, an RNA splicing defect.  相似文献   

20.
Bovine type I collagen: A study of cross-linking in various mature tissues   总被引:1,自引:0,他引:1  
The cyanogen bromide peptides from insoluble and pepsin solubilised type I collagen of bovine bone, dentine, meniscus, tendon, skin and cornea were compared by SDS-polyacrylamide gel electrophoresis. In each case alpha 1CB6 was shown to be the only peptide of molecular weight greater than 10 000 involved in cross-linking. The major helical peptides alpha 1CB3, alpha 1CB8, alpha 1CB7 and alpha 2CB4 were not implicated in cross-linking in any tissue either by end overlap or helix-helix interaction. The C-terminal alpha 2 chain peptide alpha 2CB3,5, which contains a large helical region, was not involved in cross-linking to any large peptides, although a slight increase in molecular weight in all tissues examined did suggest a possible interaction(s) with a very small peptide of molecular weight 4--5000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号