首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
V A Rizzoli  C R Rossi 《Enzyme》1988,39(1):28-43
In intact rat liver mitochondria acetaldehyde is oxidized by three functionally distinct dehydrogenase systems. Two of these reduce intramitochondrial nicotinamide adenine dinucleotide (NAD): one is operative with micromolar acetaldehyde concentrations and is stimulated by Mg2+, the other is operative with millimolar acetaldehyde concentrations and is stimulated by adenosine 5'-triphosphate (ATP). The third system reduces added NAD and is stimulated by rotenone. Connected to these systems, three aldehyde dehydrogenase isozymes (ALDH) have been purified: a low-Km ALDH activated by Mg2+, a high-Km ALDH activated by ATP and Mg2+, a high-Km ALDH activated by rotenone. The properties of some isozymes are affected by detergents. Thus, deoxycholate augments the stimulation of low-Km isozyme by Mg2+ and confers sensitivity to Mg2+ and ATP on one of the high-Km isozymes. A fourth isozyme has been purified. Its affinity for acetaldehyde is so low that it is very unlikely that acetaldehyde is the physiological substrate.  相似文献   

2.
Purification and characterization of enzymes metabolizing retinaldehyde, propionaldehyde, and octanaldehyde from four human livers and three kidneys were done to identify enzymes metabolizing retinaldehyde and their relationship to enzymes metabolizing other aldehydes. The tissue fractionation patterns from human liver and kidney were the same, indicating presence of the same enzymes in human liver and kidney. Moreover, in both organs the major NAD(+)-dependent retinaldehyde activity copurified with the propionaldehyde and octanaldehyde activities; in both organs the major NAD(+)-dependent retinaldehyde activity was associated with the E1 isozyme (coded for by aldh1 gene) of human aldehyde dehydrogenase. A small amount of NAD(+)-dependent retinaldehyde activity was associated with the E2 isozyme (product of aldh2 gene) of aldehyde dehydrogenase. Some NAD(+)-independent retinaldehyde activity in both organs was associated with aldehyde oxidase, which could be easily separated from dehydrogenases. Employing cellular retinoid-binding protein (CRBP), purified from human liver, demonstrated that E1 isozyme (but not E2 isozyme) could utilize CRBP-bound retinaldehyde as substrate, a feature thought to be specific to retinaldehyde dehydrogenases. This is the first report of CRBP-bound retinaldehyde functioning as substrate for aldehyde dehydrogenase of broad substrate specificity. Thus, it is concluded that in the human organism, retinaldehyde dehydrogenase (coded for by raldH1 gene) and broad substrate specificity E1 (a member of EC 1. 2.1.3 aldehyde dehydrogenase family) are the same enzyme. These results suggest that the E1 isozyme may be more important to alcoholism than the acetaldehyde-metabolizing enzyme, E2, because competition between acetaldehyde and retinaldehyde could result in abnormalities associated with vitamin A metabolism and alcoholism.  相似文献   

3.
1. Mitochondrial aldehyde dehydrogenase is purified to near homogeneity by hydroxylapatite-, affinity- and hydrophobic interaction-chromatography. 2. The enzyme is an oligomeric protein and its molecular weight, as determined by gel-filtration, is 117,000 +/- 5000. 3. Active only in the presence of exogenous sulfhydryl compounds and NAD(+)-dependent, aldehyde dehydrogenase works optimally with linear-chain aliphatic aldehydes and is practically inactive with benzaldehyde. The pH-optimum is at about pH 8.5. 4. Km-Values for aliphatic aldehydes (C2-C6) range between 0.17 and 0.32 microM. The Km for NAD+ increases from 16 microM with acetaldehyde to 71 microM with capronaldehyde. 5. Millimolar concentrations of Mg2+ promote high increases of both V and Km for NAD+. At the same time, saturation curves with C4-C6 aldehydes can be simulated with a substrate inhibition model. 6. Inhibition by NADH is competitive: with capronaldehyde, the inhibition constant for NADH is 52 microM in the absence of Mg2+ and 14 microM in the presence of 4 mM Mg2+; with acetaldehyde, the inhibition constant is about three times higher (36 and 159 microM, respectively).  相似文献   

4.
Stimulation of pyruvate dehydrogenase phosphatase activity by polyamines   总被引:6,自引:0,他引:6  
Pyruvate dehydrogenase phosphatase requires Mg2+ or Mn2+, and its activity in the presence of Mg2+ is markedly stimulated by Ca2+. At saturating Mg2+ and Ca2+ concentrations, the polyamines spermine, spermidine and putrescine stimulated the activity of pyruvate dehydrogenase phosphatase 1.5- to 3-fold. Spermine was the most active of the polyamines. At a physiological concentration of Mg2+ (1 mM) and saturating Ca2+ concentration, the stimulation by 0.5 mM spermine was 4- to 5-fold, and at 0.3 mM Mg2+, the stimulation was 20- to 30-fold. In the absence of Mg2+ or Ca2+, spermine had no effect. These results suggest that a polybasic factor may be involved in the regulation of pyruvate dehydrogenase phosphatase activity.  相似文献   

5.
20-Hydroxyleukotriene B4 was converted by rat liver homogenates in the presence of NAD+ to a more polar product on reverse-phase high-performance liquid chromatography. The product was identified as 20-carboxyleukotriene B4 by straight-phase high performance liquid chromatography, ultraviolet spectrophotometry and gas chromatography-mass spectrometry. The oxidative activity of the homogenates was located in the cytosol with an optimal pH of 8.0. The activity was dependent on NAD+, and NADP+ could not substitute for NAD+. 1 mol of 20-carboxyleukotriene B4 was formed with the reduction of 2 mol of NAD+. The reaction was inhibited by pyrazole and 4-methylpyrazole, inhibitors of alcohol dehydrogenase, and by various alcohols, such as ethanol, 12-hydroxylaurate, and 20-hydroxyprostaglandin E1. Disulfiram, an inhibitor of aldehyde dehydrogenase, also inhibited the activity. These results suggest that two discrete steps catalyzed by different enzymes, alcohol dehydrogenase and aldehyde dehydrogenase, are involved in the oxidation of 20-hydroxyleukotriene B4 in rat liver cytosol. The enzyme system seems to be different from that of human neutrophils.  相似文献   

6.
1. Physiological concentrations of either Ca2+ or Mg2+ stimulated L-glycerol 3-phosphate oxidation by intact mitochondria isolated from various mammalian tissues (hamster brown adipose tissue, rat brain, liver of normal and hyperthyroid rats). A higher cation concentration was required for stimulation by Mg2+ than by Ca2+. L-glycerol-3-phosphate dehydrogenase was the target of the stimulation by both cations as revealed by measurements with intact mitochondria as well as with the solubilized enzyme. With different electron acceptors Ca2+ and Mg2+ stimulation occurred at significantly different cation concentrations. 2. Substrate activation of mitochondrial L-glycerol-3-phosphate dehydrogenase was observed in intact mitochondria and with the solubilized enzyme isolated from hyperthyroid rats in the absence of Ca2+ and Mg2+. According to kinetic analysis two independent binding sites, functioning with different turnovers and with different affinities for the substrate, could account for the phenomenon. In the presence of Ca2+ or Mg2+ substrate activation could not be detected; the kinetic parameters apparently correspond to the tight substrate-binding site functioning with high turnover. 3. Thiol group(s), which in the absence of Ca2+ and Mg2+ did not participate in the functioning of the enzyme, played an essential role in the binding of these cations to the enzyme, as shown by chemical modification studies. 4. From the solubilized mitochondrial proteins L-glycerol-3-phosphate dehydrogenase was bound selectively to the hydrophobic phenyl-Sepharose 4B matrix in the presence Ca2+, and the bound enzyme could be eluted with EDTA. This suggests that Ca2+ caused an alteration in the conformation of the enzyme.  相似文献   

7.
The oxidation of formaldehyde by rat liver mitochondria in the presence of 50 mM phosphate was enhanced 2-fold by exogenous NAD+. Absolute requirement of NAD+ for formaldehyde oxidation was demonstrated by depleting the mitochondria of their NAD+ content (4.6 nmol/mg of protein), followed by reincorporation of the NAD+ into the depleted mitochondria. Aldehyde (formaldehyde) dehydrogenase activity was completely abolished in the depleted mitochondria, but the enzyme activity was restored to control levels following reincorporation of the pyridine nucleotide. Phosphate stimulation of formaldehyde oxidation could not be explained fully by the phosphate-induced swelling which enhances membrane permeability to NAD+, since stimulation of the enzyme activity by increased phosphate concentrations was still observed in the absence of exogenous NAD+. The Km for formaldehyde oxidation by the mitochondria was found to be 0.38 nM, a value similar to that obtained with varying concentrations of NAD+; both Vmax values were very similar, giving a value of 70 to 80 nmol/min/mg of protein. The pH optimum for the mitochondrial enzyme was 8.0. Inhibition of the enzyme activity by anaerobiosis was apparently due to the inability of the respiratory chain to oxidize the generated NADH. The inhibition of mitochondrial formaldehyde oxidation by succinate was found to be due to a lowering of the NAD+ level in the mitochondria. Succinate also inhibited acetaldehyde oxidation by the mitochondria. Malonate, a competitive inhibitor of succinic dehydrogenase, blocked the inhibitory effect of succinate. The respiratory chain inhibitors, rotenone, and antimycin A plus succinate, strongly inhibited formaldehyde oxidation by apparently the same mechanism, although the crude enzyme preparation (freed from the membrane) was slightly sensitive to rotenone. The mitochondria were subfractionated, and 85% of the enzyme activity was found in the inner membrane fraction (mitoplast). Furthermore, separation into inner membrane and matrix components indicated a distribution of aldehyde dehydrogenase activity similar to malic dehydrogenase.  相似文献   

8.
The free-living protist Euglena gracilis showed an enhanced growth when cultured in the dark with high concentrations of ethanol as carbon source. In a medium containing glutamate/malate plus 1% ethanol, E. gracilis reached a density of 3 x 10(7) cells/ml after 100 h of culture, which was 5 times higher than that attained with glutamate/malate or ethanol separately. This observation suggested the involvement of a highly active aldehyde dehydrogenase in the metabolism of ethanol. Purification of the E. gracilis aldehyde dehydrogenase from the mitochondrial fraction by affinity chromatography yielded an enrichment of 34 times and recovery of 33% of the total mitochondrial activity. SDS-PAGE and molecular exclusion chromatography revealed a native tetrameric protein of 160 kDa. Kinetic analysis showed Km values of 5 and 50 microM for propionaldehyde and NAD(+), respectively, and a Vm value of 1,300 nmol (min x mg protein)(-1). NAD(+) and NADH stimulated the esterase activity of the purified aldehyde dehydrogenase. The present data indicated that the E. gracilis aldehyde dehydrogenase has kinetic and structural properties similar to those of human aldehyde dehydrogenases class 1 and 2.  相似文献   

9.
A new assay procedure for measurement of rat liver mitochondrial choline dehydrogenase was developed. Oxidation of [methyl-14C]choline to [methyl-14C]betaine aldehyde and [methyl-14C]betaine was measured after isolating these compounds using HPLC. We observed that NAD+ was required for conversion of betaine aldehyde to betaine in rat liver mitochondria. In the absence of this cofactor, oxidation of choline led to the accumulation of betaine aldehyde. The apparent Km of the mitochondrial choline dehydrogenase for choline was 0.14-0.27 mM, which is significantly lower than previously reported. A partially purified preparation of choline dehydrogenase catalyzed betaine aldehyde formation only in the presence of exogenous electron acceptors (e.g., phenazine methosulfate). This preparation failed to catalyze the formation of betaine even in the presence of NAD+, indicating that betaine aldehyde dehydrogenase may be a separate enzyme from choline dehydrogenase.  相似文献   

10.
The presence and some properties of an NAD+ transport system were examined in PA5, a Mg, Ca-ATPase [EC 3.6.1.3]-defective mutant strain of Escherichia coli W2252. NAD+ uptake was stimulated by exogenous energy sources and dependent on external substrate concentrations with an apparent Km of about 25 micrometer. Most of the radioactivity from [14C]-NAD+ accumulated in the cells was identified as NAD+. [14C]NAD+ uptake was competively inhibited by unlabeled NAD+, NADP+, NMN+ or nicotinamide. Similar uptake activity was also observed in W2252.  相似文献   

11.
The kinetic properties of highly purified preparations of sheep liver cytoplasmic aldehyde dehydrogenase (preparations that had been shown to be free from contamination with the corresponding mitochondrial enzyme) were investigated with both propionaldehyde and butyraldehyde as substrates. At low aldehyde concentrations, double-reciprocal plots with aldehyde as the variable substrate are linear, and the mechanism appears to be ordered, with NAD+ as the first substrate to bind. Stopped-flow experiments following absorbance and fluorescence changes show bursts of NADH production in the pre-steady state, but the observed course of reaction depends on the pre-mixing conditions. Pre-mixing enzyme with NAD+ activates the enzyme in the pre-steady state and we suggest that the reaction mechanism may involve isomeric enzyme--NAD+ complexes. High concentrations of aldehyde in steady-state experiments produce significant activation (about 3-fold) at high concentrations of NAD+, but inhibition at low concentrations of NAD+. Such behaviour may be explained by postulating the participation of an abortive complex in product release. Stopped-flow measurements at high aldehyde concentrations indicate that the mechanism of reaction under these conditions is complex.  相似文献   

12.
Stopped-flow experiments in spectrophotometric and fluorescence modes reveal different aspects of the aldehyde dehydrogenase mechanism. Spectrophotometric experiments show a rapid burst of NADH production whose course is not affected by Mg2+. The slower burst seen in the fluorescence mode is markedly accelerated by Mg2+. It is argued that the fluorescence burst accompanies acyl-enzyme hydrolysis and, therefore, that Mg2+ increases the rate of this process. Experiments on the hydrolysis of p-nitrophenyl propionate indicate that acyl-enzyme hydrolysis is indeed accelerated by Mg2+ and a combination of Mg2+ and NADH. Vmax. values for p-nitrophenyl propionate hydrolysis in the presence of NADH and NADH and Mg2+ agree closely with the specific rates of acyl hydrolysis from the E . NADH . acyl and E . NADH . acyl . Mg2+ complexes seen in the dehydrogenase reaction with propionaldehyde. These observations support the view that esterase and dehydrogenase activities occur at the same site on the enzyme. Other evidence is presented to support this conclusion.  相似文献   

13.
(1) The free Ca2+ concentration of the matrix of rat heart mitochondria ([Ca2+]m) was determined from the fluorescence of internalized indo-1. The value of the Kd of indo-1-Ca2+ in the mitochondrial matrix was determined to be 95 nM, on the basis of equilibration of [Ca2+]m with the extramitochondrial free Ca2+ ([Ca2+]o) in the presence of rotenone, nigericin, valinomycin and Br-A23187. (2) [Ca2+]m responded to energization/de-energization protocols, the inhibition of Ca2+-uptake by Ruthenium Red and the potentiation of Ca2+-efflux by Na+ in a manner which was consistent with the known kinetic properties of the mitochondrial Ca2+-transport processes. (3) The concentration gradient [Ca2+]m/[Ca2+]o was found to be near unity (0.82 +/- 0.18) when mitochondria were incubated in media containing 10 mM-Na+; the additional presence of 1 mM-Mg2+ reduced the gradient to values below unity (0.26 +/- 0.03). The polyamine spermine increased the Ca2+ concentration gradient in the presence of 1 mM-Mg2+. (4) The fraction of pyruvate dehydrogenase in the active form (PDHA) was found to increase with [Ca2+]m, with a K0.5 for activation of approximately 300 nM-Ca2+. This value of the activation constant was not affected by conditions, e.g. addition of Mg2+, which changed the [Ca2+]m/[Ca2+]o concentration gradient, and the presence of different oxidizable substrates, which changed the [NADH/NAD+]m concentration ratio. Thus pyruvate dehydrogenase interconversion responds directly to changes in [Ca2+]m, as inferred in earlier work.  相似文献   

14.
In isolated plant mitochondria the oxidation of both succinate and exogenous NADH responded in the expected manner to the addition of ADP or uncoupling agents, and the uncoupled rate of respiration was often in excess of the rate obtained in the presence of ADP. However, the oxidation of NAD+-linked substrates responded in a much more complex manner to the addition of ADP or uncoupling agents such as carbonyl cyanide p-trifluoromethoxyphenylhydrazone to mitochondria oxidizing pyruvate plus malate failed to result in a reliable stimulation; this uncoupled rate could be stimulated by adding AMP or ADP in the presence of oligomycin or bongkrekic acid. Spectrophometric measurements showed that the addition of AMP or ADP resulted in the simultaneous oxidation of endogenous nicotinamide nucleotide and the reduction of cytochrome b. ADP was only effective in bringing about these changes in redox state in the presence of Mg2+ whereas AMP did not require Mg2+. It was concluded that AMP activated the flow of electrons from endogenous nicotinamide nucleotide to cytochrome b, possible at the level of the internal NADH dehydrogenase.  相似文献   

15.
1. Subcellular fractionation of rat, guinea pig and human livers showed that aldehyde dehydrogenase metabolizing gamma-aminobutyraldehyde was exclusively localized in the cytoplasmic fraction in all three mammalian species. 2. Total gamma-aminobutyraldehyde activity of aldehyde dehydrogenase was found to be ca 0.41, 0.3 and 0.24 mumol NADH min-1 g-1 tissue, respectively in rat, guinea pig and human liver, with more than 95% of activity in the cytoplasm. 3. Partially purified cytoplasmic isozyme from rat liver showed similar chromatographic behavior and kinetic properties to the E3 isozyme isolated from human liver. 4. The rat isozyme was insensitive to disulfiram (40 microM) and to magnesium (160 microM) and had Km values of 5 microM (pH 7.4) for gamma-aminobutyraldehyde, 7.5 microM (pH 9.0) for propionaldehyde and 4 microM (pH 7.4) for NAD.  相似文献   

16.
The sensitivity of rat epididymal-adipose-tissue pyruvate dehydrogenase phosphate phosphatase, NAD+-isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase to Ca2+ ions was studied both in mitochondrial extracts and within intact coupled mitochondria. It is concluded that all three enzymes may be activated by increases in the intramitochondrial concentration of Ca2+ and that the distribution of Ca2+ across the mitochondrial inner membrane is determined, as in rat heart mitochondria, by the relative activities of a uniporter (which transports Ca2+ into mitochondria and is inhibited by Mg2+ and Ruthenium Red) and an antiporter (which allows Ca2+ to leave mitochondria in exchange for Na+ and is inhibited by diltiazem). Previous studies with incubated fat-cell mitochondria have indicated that the increases in the amount of active non-phosphorylated pyruvate dehydrogenase in rat epididymal tissue exposed to insulin are the result of activation of pyruvate dehydrogenase phosphate phosphatase. In the present studies, no changes in the activity of the phosphatase were found in extracts of mitochondria, and thus it seemed likely that insulin altered the intramitochondrial concentration of some effector of the phosphatase. Incubation of rat epididymal adipose tissue with medium containing a high concentration of CaCl2 (5mM) was found to increase the active form of pyruvate dehydrogenase to much the same extent as insulin. However, the increases caused by high [Ca2+] in the medium were blocked by Ruthenium Red, whereas those caused by insulin were not. Moreover, whereas the increases resulting from both treatments persisted during the preparation of mitochondria and their subsequent incubation in the absence of Na+, only the increases caused by treatment of the tissue with insulin persisted when the mitochondria were incubated in the presence of Na+ under conditions where the mitochondria are largely depleted of Ca2+. It is concluded that insulin does not act by increasing the intramitochondrial concentration of Ca2+. This conclusion was supported by finding no increases in the activities of the other two Ca2+-responsive intramitochondrial enzymes (NAD+-isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase) in mitochondria prepared from insulin-treated tissue compared with controls.  相似文献   

17.
Acetaldehyde and biogenic aldehydes were used as substrates to investigate the subcellular distribution of aldehyde dehydrogenase activity in autopsied human brain. With 10 microM acetaldehyde as substrate, over 50% of the total activity was found in the mitochondrial fraction and 38% was associated with the cytosol. However, with 4 microM 3,4-dihydroxyphenylacetaldehyde and 10 microM indoleacetaldehyde as substrates, 40-50% of the total activity was found in the soluble fraction, the mitochondrial fraction accounting for only 15-30% of the total activity. These data suggested the presence of distinct aldehyde dehydrogenase isozymes in the different compartments. The mitochondrial and cytosolic fractions were, therefore, subjected to salt fractionation and ion-exchange chromatography to purify further the isozymes present in both fractions. The kinetic data on the partially purified isozymes revealed the presence of a low Km isozyme in both the mitochondria and the cytosol, with Km values for acetaldehyde of 1.7 microM and 10.2 microM, respectively. However, the cytosolic isozyme exhibited lower Km values for the biogenic aldehydes. Both isozymes were activated by Mg2+ and Ca2+ in phosphate buffers (pH 7.4). Also, high Km isozymes were found in the mitochondria and in the microsomes.  相似文献   

18.
Ho KK  Weiner H 《Journal of bacteriology》2005,187(3):1067-1073
An aldehyde dehydrogenase was detected in crude cell extracts of Escherichia coli DH5alpha. Growth studies indicated that the aldehyde dehydrogenase activity was growth phase dependent and increased in cells grown with ethanol. The N-terminal amino acid sequence of the purified enzyme identified the latter as an aldehyde dehydrogenase encoded by aldB, which was thought to play a role in the removal of aldehydes and alcohols in cells that were under stress. The purified enzyme showed an estimated molecular mass of 220 +/- 8 kDa, consisting of four identical subunits, and preferred to use NADP and acetaldehyde. MgCl2 increased the activity of the NADP-dependent enzyme with various substrates. A comparison of the effect of Mg2+ ions on the bacterial enzyme with the effect of Mg2+ ions on human liver mitochondrial aldehyde dehydrogenase revealed that the bacterial enzyme shared kinetic properties with the mammalian enzyme. An R197E mutant of the bacterial enzyme appeared to retain very little NADP-dependent activity on acetaldehyde.  相似文献   

19.
1. A new procedure for purifying pig heart NAD+-isocitrate dehydrogenase from mitochondrial extracts has been developed. This relies on the use of f.p.l.c. techniques and exploits the hydrophobic properties of the gel-filtration medium Superose 6 at high ionic strength. A 300-fold purification to apparent homogeneity is achieved within 5 h and with a yield of greater than 20%. 2. The enzyme had an apparent native molecular mass on gel filtration of 320 kDa. In agreement with previous studies [Ramachandran & Colman (1980) J. Biol. Chem. 255, 8859-8864], three subunits (all close to 38 kDa) were separable by isoelectric focusing 3. This preparation was used to investigate the effects of adenine nucleotides, KCl and the required bivalent metal ions, Mg2+ and Mn2+, on the regulation of the enzyme by Ca2+. 4. In the presence of 1.5 mM-ADP, increasing the concentration of Mg2+ from 20 microM to 6.0 mM raised the concentration of Ca2+ required for half-maximal effect (K0.5 value) from 1.2 microM to 232 microM. Similarly, in the presence of 2.5 microM-Mn2+, a K0.5 value for Ca2+ of 3.3 microM was obtained, and this value was increased to 8.9 microM in the presence of 100 microM-Mn2+. In the presence of 1 mM-Mg2+ and 1.5 mM-ADP, the K0.5 value for Ca2+ was raised from 4.7 microM to 10 microM by 75 mM-KCl.  相似文献   

20.
Study on the mechanism of hexokinase isozyme II adsorption on mitochondrial membranes in the presence of 10 mM MgCl2 demonstrated that 0.16% of the total proteins of the soluble fraction and the total hexokinase pool are capable of reversible binding to the membrane. The plot for the dependence of the degree of enzyme adsorption on Mg2+ concentration is hyperbolic. Under these conditions, hexokinase competes favourably for the binding sites with lactate dehydrogenase and creatine kinase. Analysis of the adsorption capacity of natural and artificial phospholipid membranes showed that hexokinase isozyme II is adsorbed in much the same way on inner and outer mitochondrial membranes as well as on a mixture of membranes obtained from various sources and on lecithin liposomes. The adsorption properties of hexokinase isozyme II and of its functional analog--isozyme I--point to marked differences in the mechanism of their interaction with the membrane. In contrast with isozyme I, isozyme II of hexokinase undergoes kinetic alterations. Besides, it was found that mild autolysis of isozyme II is accompanied by a loss of the enzyme ability to bind to mitochondrial membranes. The data obtained suggest that the specificity of hexokinase isozyme II adsorption depends on the structural peculiarities of the protein but not on those of the mitochondrial membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号