首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Insertions of the yeast element Ty3 resulting from induced retrotransposition were characterized in order to identify the genomic targets of transposition. The DNA sequences of the junctions between Ty3 and flanking DNA were determined for two insertions of an unmarked element. Each insertion was at position -17 from the 5' end of a tRNA-coding sequence. Ninety-one independent insertions of a marked Ty3 element were studied by Southern blot analysis. Pairs of independent insertions into seven genomic loci accounted for 14 of these insertions. The DNA sequence flanking the insertion site was determined for at least one member of each pair of integrated elements. In each case, insertion was at position -16 or -17 relative to the 5' end of one of seven different tRNA genes. This proportion of genomic loci used twice for Ty3 integration is consistent with that predicted by a Poisson distribution for a number of genomic targets roughly equivalent to the estimated number of yeast tRNA genes. In addition, insertions upstream of the same tRNA gene in one case were at different positions, but in all cases were in the same orientation. Thus, genomic insertions of Ty3 in a particular orientation are apparently specified by the target, while the actual position of the insertion relative to the tRNA-coding sequence can vary slightly.  相似文献   

7.
Plus-strand strong-stop DNA transfer in yeast Ty retrotransposons.   总被引:4,自引:0,他引:4       下载免费PDF全文
V Lauermann  J D Boeke 《The EMBO journal》1997,16(21):6603-6612
  相似文献   

8.
The analysis of the tRNAs associated to the virus-like particles produced by the Ty1 element revealed the specific packaging of three major tRNA species, in about equal amounts: the replication primer initiator tRNA(Met), the tRNA(Ser)AGA and a tRNA undetected until now as an expressed species in yeast. The latter tRNA is coded by the already described tDNA(Ser)GCT. This tRNA is enriched more than 150 fold in the particles as compared to its content in total cellular tRNA where it represents less than 0.1% (initiator tRNA(Met) and tRNA(Ser)AGA being 11 and 4 fold enriched respectively). This tRNA is the only species coded by the tDNA(Ser)GCT gene which is found in three copies per genome since no other corresponding expressed tRNA could be detected. This gene is thus very poorly expressed. The high concentration of tRNA(Ser)GCU in the particles compared to its very low cellular content led us to consider its possible implication in Ty specific processes.  相似文献   

9.
We have identified a composite element, Ty4, in S. cerevisiae that is ca 6.3 kb in length and contains two tau sequences as long terminal repeats. According to hybridization analyses, Ty4 occurs in low but varying copy number (one to four copies) in different yeast strains. By several criteria, Ty4 is a novel type of retroelement which is similar but not related to the other Ty elements in yeast. Two cosmid clones from strain C836 (c90 and c476) carrying individual copies of Ty4 were isolated. By restriction analysis and nucleotide sequence we show that c476 derives from the 'transposition right arm hot spot' of chromosome III [1]. The analysis of c476 revealed that an initiator tRNA(Met) gene is present at this locus and that an unusual concentration of different Ty elements has occurred: in addition to the Ty4, a Ty1 and a Ty2 element were detected in this region, confirming its highly polymorphic character.  相似文献   

10.
Ty1 and delta elements occur adjacent to several tRNA genes in yeast   总被引:18,自引:2,他引:16       下载免费PDF全文
A Eigel  H Feldmann 《The EMBO journal》1982,1(10):1245-1250
A comparative analysis of a number of yeast DNA-pBR322 recombinant plasmids carrying repetitive sequence elements has revealed that Ty1 or delta elements occur in the vicinity of several tRNA genes. Four examples have been characterized in detail: three glutamate tRNA genes and a serine tRNA gene. The tRNAGlu3 genes occupy different chromosomal locations; two of these genes are found adjacent to Ty1 elements, and the third is found adjacent to an independent delta element. A delta unit is also found adjacent to a tRNASer2 gene. Next to one of the tRNAGlu3 genes, the delta element is joined to a truncated sigma element. Junctions between different delta units were characterized by the sequence analysis of two DNA segments that carry no tRNA genes.  相似文献   

11.
12.
D T Scholes  M Banerjee  B Bowen  M J Curcio 《Genetics》2001,159(4):1449-1465
Most Ty1 retrotransposons in the genome of Saccharomyces cerevisiae are transpositionally competent but rarely transpose. We screened yeast mutagenized by insertion of the mTn3-lacZ/LEU2 transposon for mutations that result in elevated Ty1 cDNA-mediated mobility, which occurs by cDNA integration or recombination. Here, we describe the characterization of mTn3 insertions in 21 RTT (regulation of Ty1 transposition) genes that result in 5- to 111-fold increases in Ty1 mobility. These 21 RTT genes are EST2, RRM3, NUT2, RAD57, RRD2, RAD50, SGS1, TEL1, SAE2, MED1, MRE11, SCH9, KAP122, and 8 previously uncharacterized genes. Disruption of RTT genes did not significantly increase Ty1 RNA levels but did enhance Ty1 cDNA levels, suggesting that most RTT gene products act at a step after mRNA accumulation but before cDNA integration. The rtt mutations had widely varying effects on integration of Ty1 at preferred target sites. Mutations in RTT101 and NUT2 dramatically stimulated Ty1 integration upstream of tRNA genes. In contrast, a mutation in RRM3 increased Ty1 mobility >100-fold without increasing integration upstream of tRNA genes. The regulation of Ty1 transposition by components of fundamental pathways required for genome maintenance suggests that Ty1 and yeast have coevolved to link transpositional dormancy to the integrity of the genome.  相似文献   

13.
14.
15.
M F Belcourt  P J Farabaugh 《Cell》1990,62(2):339-352
Ribosomal frameshifting regulates expression of the TYB gene of yeast Ty retrotransposons. We previously demonstrated that a 14 nucleotide sequence conserved between two families of Ty elements was necessary and sufficient to support ribosomal frameshifting. This work demonstrates that only 7 of these 14 nucleotides are needed for normal levels of frameshifting. Any change to the sequence CUU-AGG-C drastically reduces frameshifting; this suggests that two specific tRNAs, tRNA(UAGLeu) and tRNA(CCUArg), are involved in the event. Our tRNA overproduction data suggest that a leucyl-tRNA, probably tRNA(UAGLeu), an unusual leucine isoacceptor that recognizes all six leucine codons, slips from CUU-Leu onto UUA-Leu (in the +1 reading frame) during a translational pause at the AGG-Arg codon induced by the low availability of tRNA(CCUArg), encoded by a single-copy essential gene. Frameshifting is also directional and reading frame specific. Interestingly, frameshifting is inhibited when the "slip" CUU codon is located three codons downstream, but not four or more codons downstream, of the translational initiation codon.  相似文献   

16.
17.
18.
19.
Retroviruses and their relatives, the long terminal repeat (LTR) retrotransposons, carry out complex life cycles within the cells of their hosts. We have exploited a collection of gene deletion mutants developed by the Saccharomyces Genome Deletion Project to perform a functional genomics screen for host factors that influence the retrovirus-like Ty1 element in yeast. A total of 101 genes that presumably influence many different aspects of the Ty1 retrotransposition cycle were identified from our analysis of 4483 homozygous diploid deletion strains. Of the 101 identified mutants, 46 had significantly altered levels of Ty1 cDNA, whereas the remaining 55 mutants had normal levels of Ty1 cDNA. Thus, approximately half of the mutants apparently affected the early stages of retrotransposition leading up to the assembly of virus-like particles and cDNA replication, whereas the remaining half affected steps that occur after cDNA replication. Although most of the mutants retained the ability to target Ty1 integration to tRNA genes, 2 mutants had reduced levels of tRNA gene targeting. Over 25% of the gene products identified in this study were conserved in other organisms, suggesting that this collection of host factors can serve as a starting point for identifying host factors that influence LTR retroelements and retroviruses in other organisms. Overall, our data indicate that Ty1 requires a large number of cellular host factors to complete its retrotransposition cycle efficiently.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号